
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE
  

38123 Povo – Trento (Italy), Via Sommarive 14 
http://www.disi.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
STOCHASTIC RAY PROPAGATION IN STRATIFIED RANDOM 
LATTICES 
 
A. Martini, M. Franceschetti, and A. Massa 
 
 
January 2007 
 
Technical Report # DISI-11-070 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.
 



Sto
hasti
 Ray Propagation in Strati�ed Random Lat-ti
es
Anna Martini,(1) Massimo Fran
es
hetti,(2) Member, IEEE , and Andrea Massa,(1) Mem-ber, IEEE
(1) Department of Information and Communi
ation Te
hnology,University of Trento, Via Sommarive 14, I-38050 Trento - ItalyTel. +39 0461 882057, Fax +39 0461 882093E-mail: andrea.massa�ing.unitn.it, anna.martini�dit.unitn.itWeb-page: http://www.eledia.ing.unitn.it
(2) Department of Ele
tri
al and Computer Engineering,University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407, USAE-mail: massimo�e
e.u
sd.edu,

1



Sto
hasti
 Ray Propagation in Strati�ed Random Lat-ti
es
Anna Martini, Massimo Fran
es
hetti, and Andrea Massa

Abstra
tRay propagation in strati�ed semi-in�nite per
olation latti
es 
onsisting of a su

es-sion of di�erent uniform-density layers is 
onsidered. Assuming that rays undergospe
ular re�e
tions on the o

upied sites, the propagation depth inside the mediumis analyti
ally estimated in terms of the probability that a ray rea
hes a pres
ribedlevel before being re�e
ted ba
k in the above empty half-plane. Numeri
al Monte-Carlo-like experiments validate the proposed solution.

Key words:Per
olation theory, Sto
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 ray tra
ing, Wave propagation, Strati�ed randommedia.
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1 Introdu
tionIn the last years, wave propagation in random media has gained an in
reasing attentionmostly due to the huge amount of pra
ti
al problems where propagation environmentsare suitable to be des
ribed by sto
hasti
 models rather than being deterministi
ally
hara
terized. For instan
e, let us think about appli
ations arising in the �eld of wireless
ommuni
ation [1℄[2℄[3℄ and remote sensing (see [4℄ and the referen
es 
ited therein).In su
h a framework, we study ele
tromagneti
 wave propagation in a semi-in�nite per-
olation latti
e [5℄ of square sites, modeling a random distribution of s
atterers. Theele
tromagneti
 sour
e is assumed to be external to the half-plane and it radiates amono
hromati
 plane wave impinging on the latti
e with a known angle θ. Sites areassumed to be large with respe
t to the wavelength. This allows to model the in
identwave in terms of parallel rays. Su
h rays undergo spe
ular re�e
tion on obsta
les, whileother ele
tromagneti
 intera
tions are negle
ted. The aim is estimating the probabilitythat a single ray rea
hes a pres
ribed level k inside the latti
e before being re�e
ted ba
kin the above empty half-plane, Pr {0 7−→ k ≺ 0}.This problem was addressed for the �rst time in [1℄, where the authors 
onsidered the
ase of a uniform per
olation latti
e, where ea
h 
ell may be o

upied with a knownprobability q. To ensure propagation, su
h o

upan
y probability is assumed to be lowerthan a pres
ribed value qc = 1 − pc, pc being the so-
alled per
olation threshold [5℄(pc ≈ 0.59275 for the two-dimensional 
ase). Ray propagation was modeled in terms ofa sto
hasti
 pro
ess de�ned as the sum of su

essive ray jumps. The �nal result wasexpressed as a 
ombination of two terms: the probability mass fun
tion Pr {r0 = i} ofthe �rst jump r0 and the probability Pr {i 7−→ k ≺ 0 |r0 = i} that a ray rea
hes level kbefore es
aping in the above empty half-plane given the level where the �rst re�e
tiono

urs. The latter term was estimated by applying the theory of the Martingale randompro
esses [6℄ and the so 
alled Wald approximation.Extension of this approa
h to the inhomogeneous 
ase has been proposed in [7℄[8℄, wherethe s
atterers distribution has been des
ribed by a one-dimensional obsta
les density pro-�le, f(j) q(j), j being the row index. Numeri
al experiments and mathemati
al 
onsider-ations have shown that the analyti
al solution holds true in 
orresponden
e of obsta
les3



density pro�les with small variations. A little though shows that this is due to the fa
tthat ray jumps following the �rst one are 
onsidered as a single mathemati
al entity,i.e., Pr {i 7−→ k ≺ 0 |r0 = i}. Thus, su
h a formulation is not able to faithfully des
ribe
Pr {0 7−→ k ≺ 0} in 
orresponden
e with abrupt variations in the density pro�le q(j).This letter is aimed at over
oming su
h a drawba
k by providing an ad-ho
 formulation fordes
ribing propagation in strati�ed random latti
es 
onsisting of a su

ession of di�erentuniform-density layers. The work is organized as follows. In Se
tion 2, the mathemati
alformulation is presented. Se
tion 3 provides some numeri
al experiments performed onsimple test 
ases. Final 
omments and 
on
lusions are drawn in Se
tion 4.2 Problem Statement and Mathemati
al FormulationLet us 
onsider a strati�ed semi-in�nite per
olating latti
e des
ribed by the followingobsta
les density distribution

q(j) =
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
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

q1 l0 = 0 < j ≤ l1,

q2 l1 < j ≤ l2,...
qn ln−1 < j ≤ ln,... (1)

where q(j) = 1− p(j) is the probability that a site is o

upied at level j. In other words,the medium is a su

ession of layers {Ln; n ≥ 1}, ea
h one made up of ln − ln−1 levelswith o

upan
y probability qn. An example of a strati�ed random latti
e with three layersand the relative obsta
les density distribution are shown in Figure 1. For the 
onsidered
on�guration, our aim is to �nd the probability Pr {0 7−→ k ≺ 0}.In ea
h uniform layer belonging to the strati�ed latti
e, the propagation is des
ribedthrough the model proposed in [1℄. In parti
ular, the probability that a ray traveling withpositive dire
tion in level (ln−1 + 1) rea
hes level ln before being re�e
ted ba
k in level
4



(ln−1 + 1), Pn=̂ Pr {(ln−1 + 1) 7−→ ln ≺ (ln−1 + 1)}, turns out to be [1℄,
Pn =











1 ln = ln−1 + 1,

pn

qenNn

[

1 − pNn

en

]

ln > ln−1 + 1,
(2)where pen

= 1 − qen
= ptan θ+1

n is the e�e
tive probability a ray freely 
rosses a levelwith o

upan
y probability qn and Nn = (ln − ln−1 − 1). Numeri
al experiments andmathemati
al 
onsiderations show that (2) satisfa
torily performs for in
iden
e angle θnot too far from 45o and for dense propagation media [9℄.Now, in order to des
ribe propagation in the whole strati�ed latti
e, the probabilities
Pn of ea
h single layer (n ≥ 1) must be 
onveniently 
ombined. If we assume that thelevel k belongs to the layer LK , i.e., lK−1 < k ≤ lK , K ≥ 1, our problem is formallydes
ribed by the Markov 
hain [10℄ depi
ted in Figure 2, where states j+ and j− denote aray traveling in level j with positive and negative dire
tion, respe
tively, and Qn=̂1−Pn.With referen
e to the Markov 
hain, we state our main result as follows (see Appendix Afor a detailed proof)

Pr {0 7−→ k ≺ 0} =
p1

1
P1

+ p1

K
∑

n=2

[

1−Pn

pnPn
+ qn

pnpn−1

]

, (3)
where PK is evaluated a

ording to (2) by repla
ing lK with k.An observation is appropriate. When K = 1, we are dealing with the homogeneous 
aseand equation (3) takes the form

Pr {0 7−→ k ≺ 0} = p1P1 =











p1, k = 1,

p2
1

h

1−p
(k−1)
e1

i

qe1 (k−1)
, k > 1.

(4)Su
h a result is a slightly di�erent version of that in [1℄, sin
e it takes into a

ount thata ray traveling with negative dire
tion inside level 1 surely es
apes from the grid be
ausethere are not any o

upied horizontal fa
es between level 1 and level 0. As a matterof fa
t, the approa
h in [1℄ is �ne in evaluating provided that x and y, and the levelsbetween them, have the same o

upan
y probability be
ause Pr {i 7−→ k ≺ 0 |r0 = i} is5



estimated on the basis of a distan
e 
riterion. Consequently, sin
e in our 
on�gurationlevel 0 is empty, we 
an not dire
tly apply [1℄ for 
omputing Pr {0 7−→ k ≺ 0}. Therefore,
Pr {0 7−→ k ≺ 0} is evaluated as the produ
t of two terms, the probability p1 to enter the�rst level and the probability P1 = Pr {x 7−→ y ≺ x}⌋x=1, y=k 
omputed as in [1℄.In passing and as expe
ted, it 
an be noti
ed that (3) does not redu
e to (4) in the limit
ase when pn = p, n = 1, ..., K sin
e (3) is not an extension of the result in [1℄ (where theray jumps following the �rst one are evaluated through an approximation on the basis ofa distan
e 
riterion), but it is obtained by mathemati
ally binding in the Markov 
haindepi
ted in Figure 2 the results 
on
erned with the uniform 
ase.3 Numeri
al ValidationIn order to validate the proposed solution, an exhaustive set of numeri
al experimentshas been 
arried out taking into a

ount two-, three- and four-layers s
enarios. In thefollowing, the results of sele
ted representative test 
ases are reported. For 
omparisonpurposes, the propagation depth has been estimated in the �rst K = 32 levels by Monte-Carlo-like ray-tra
ing experiments by following the pro
edure detailed in [1℄.In order to estimate the e�e
tiveness of the proposed model, let us de�ne the followingerror indexes, namely the predi
tion error δk

δk ,
|PrR {0 7−→ k} − PrP {0 7−→ k}|

max
k

[PrR {0 7−→ k}]
× 100, (5)and the mean error 〈δ〉

〈δ〉 ,
1

Kmax

Kmax
∑

k=1

δk, (6)where the sub-s
ripts R and P indi
ate the values estimated with the referen
e approa
hand through (3), respe
tively.Firstly, we �x the in
iden
e angle, θ = 45o, and we analyze how the obsta
les densityat ea
h layer and the size of the variation in the o

upation probability value betweenadja
ent layers, namely Sn,n+1 = |qn − qn+1|, a�e
t the performan
es. With referen
eto Table I, where mean error values relative to single-step pro�les are reported, it 
anbe observed that the e�e
tiveness of the proposed solution does not depend on S1,2. As6



an example, let us 
onsider single-step pro�les having q1 = 0.35 (last row in Tab. I).The mat
hing between referen
e data and the re
onstru
tion obtained by means of (3) isgood whatever S1,2 and it is 
omparable with that of the uniform 
ase. The 
apabilityof the proposed approa
h in 
arefully modeling the behavior of Pr {0 7−→ k ≺ 0} is alsoevident for other single-step pro�les as 
on�rmed by the values of the error index (Tab.I). For a �xed value of q1, the mean error de
reases when q2 in
reases, independentlyfrom S1,2. Su
h an event points out that the predi
tion a

ura
y is a�e
ted only bythe obsta
les density at ea
h layer. In parti
ular, more dense the layers are, lower themean error is. This behaviour is fully predi
table, sin
e the a

ura
y of (2) - the buildingblo
k in deriving the �nal result - in
reases when the o

upan
y probability value tendsto the per
olation threshold [9℄. Su
h a trend, veri�ed for single-step pro�les, is further
on�rmed when random latti
es with a higher number of layers are taken into a

ount.With referen
e to Figure 3, where plots of Pr {0 7−→ k ≺ 0} for three-layers pro�les with�xed q1 = q3 = 0.15 are reported, it 
an be observed that mat
hing between referen
eand estimated data gets better for higher q2, although Sn,n+1 in
reases (S1,2 = S2,3 = 0.1and S1,2 = S2,3 = 0.2 when q2 = 0.05 and q2 = 0.35, respe
tively). This is 
on�rmed bythe mean error values (〈δ〉q2=0.05 = 3.13% vs. 〈δ〉q2=0.35 = 0.8%). In Figure 4, we 
omparethe results relative to two four-layers pro�les, the former very sparse (q1 = q3 = 0.15and q2 = q4 = 0.05) and the latter very dense (q1 = q3 = 0.35 and q2 = q4 = 0.25).As expe
ted, we get better performan
es for the more dense pro�le, as 
on�rmed by themean error values (〈δ〉 = 2.98% vs. 〈δ〉 = 0.7%).Now, the e�e
ts of the in
iden
e angle θ on the performan
es of (3) are analyzed. Towardsthis end, let us de�ne the global mean error ∆,
∆ ,

1

Γ

Γ
∑

s=1

〈δ〉s , (7)
Γ being the total number of s
enarios and 〈δ〉s the mean error relative to the s−thdistribution. Figure 5 plots ∆ obtained by 
onsidering the whole set of three- and four-layers 
on�gurations that 
an be built by varying the o

upation probability of ea
hlayer {qn; n = 1, ..., K} between 0.05 and 0.35 with a step of 0.1. As expe
ted [9℄, weobserve that in both 
ases results get worse as θ diverges from 45o. In parti
ular, ∆7



ranges from {∆}θ=45o = 1.35% up to {∆}θ=15o = 5.52% and from {∆}θ=45o = 1.28%up to {∆}θ=15o = 5.54% for three- and four-layers pro�les, respe
tively. Moreover, itis interesting to observe that the plots 
on
erned with three- and four-layers s
enariosalmost overlap. Su
h an event indi
ates that, on average, the a

ura
y of the approa
h isnot a�e
ted by the number of layers taken into a

ount.4 Con
lusionsRay propagation in strati�ed half-plane random latti
es illuminated by a mono
hromati
plane wave that undergoes spe
ular re�e
tions on the o

upied sites has been studied.We have estimated the penetration depth by mathemati
ally binding in a Markov 
hainresults relative to uniform latti
es [1℄, thus over
oming the limits of the solution presentedin [7℄ when dealing with strati�ed pro�les [9℄.The proposed approa
h has been validated by means of 
omputer-based ray-tra
ing ex-periments showing that the proposed solution satisfa
torily performs in des
ribing thebehavior of Pr {0 7−→ k ≺ 0} when abrupt variations in the obsta
les density pro�les o
-
ur. As a matter of fa
t, the predi
tion a

ura
y is a�e
ted neither by the size of thedensity variation nor by the number of su
h variations (i.e., the number of layers of thelatti
e). On the other hand, the same limitations of the solution relative to the uniform
ase [9℄, still remain (i.e., better predi
tions turn out in 
orresponden
e with dense mediaand in
iden
e angles near to 45o).
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Appendix AIn this Se
tion, we prove (3) by indu
tion.The 
ase K = 1 has been dis
ussed at the end of Se
tion 2. Thus, we need to show that(3) holds true if it holds for (K−1). Towards this end, by making referen
e to the Markov
hain depi
ted in Figure 2, we express Pr {0 7−→ k ≺ 0} as the produ
t of three terms
Pr {0 7−→ k ≺ 0} = Pr {A}Pr {B}Pr {C} (8)where

Pr {A} = Pr
{

0+ 7−→ l+K−1 ≺ 0−
}

, (9)
Pr {B} = Pr

{

l+K−1 7−→ (lK−1 + 1)+ ≺ 0−
}

, (10)
Pr {C} = Pr

{

(lK−1 + 1)+ 7−→ k ≺ 0−
}

. (11)Let us 
onsider Pr {C}. By observing the Markov 
hain, we have
Pr {C} = PK + QK Pr

{

(lK−1 + 1)− 7−→ (lK−1 + 1)+ ≺ 0−
}

Pr {C} , (12)and a

ordingly,
Pr {C} = PK

1−QK Pr{(lK−1+1)− 7−→(lK−1+1)+≺0−}

= PK

PK+QK Pr{(lK−1+1)− 7−→0−≺(lK−1+1)+}
,

(13)the last equality following from mutual ex
lusivity. Now, it 
an be proved [8℄ that, what-ever level j inside the latti
e we are 
onsidering,
Pr

{

j− 7−→ 0− ≺ j+
}

=
Pr {0+ 7−→ j+ ≺ 0−}

p(j)
, (14)

p(j) being the probability a site is free at level j, and a

ordingly
Pr {C} = pKPK

pKPK+QK Pr{0+ 7−→(lK−1+1)+≺0−}

= pKPK

pKPK+QK Pr{A}Pr{B}
.

(15)
9



As far as Pr {B} = Pr
{

l+K−1 7−→ (lK−1 + 1)+ ≺ 0−
} is 
on
erned, by following similarreasoning as in getting Pr {C}, we obtain

Pr {B} = pK + qK Pr
{

l−K−1 7−→ l+K−1 ≺ 0−
}

Pr {B} =

pK + qK

[

1 − Pr{A}
pK−1

]

Pr {B}
(16)and thus,

Pr {B} =
pK−1pK

pK−1pK + qK Pr {A}
. (17)By applying to (8), (15), and (17), after some algebra we have

Pr {0 7−→ k ≺ 0} =
1

1
Pr{A}

+ 1−PK

pKPK

+ qK

pK−1pK

(18)
Now, our main result (3) holds true for whatever k belonging to layer LK−1. Thus, itholds true also for k = lK−1 and a

ordingly we 
an write

Pr {A} =
p1

1
P1

+ p1

K−1
∑

n=2

[

1−Pn

pnPn
+ qn

pnpn−1

]

. (19)
By substituting (19) into (18), we simply get our �nal result (3).

10
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Figure Captions
• Figure 1. Sket
h of ray propagation in a three layers random latti
e (left-handside) and the obsta
les density distribution relative to the grid (right-hand side).
• Figure 2. Markov 
hain modeling ray propagation towards level k.
• Figure 3. Three-layers obsta
les density pro�le with l1 = 8, l2 = 16 and q1 =

q3 = 0.15 - Estimated values of Pr {0 7−→ k ≺ 0} versus k when θ = 45o for (a)
q2 = 0.05 and (b) q2 = 0.35. Crosses denote referen
e data, while solid line des
ribesthe predi
tion obtained by (3).

• Figure 4. Four-layers obsta
les density pro�les with l1 = 8, l2 = 16 and l3 = 24- Estimated values of Pr {0 7−→ k ≺ 0} versus k when θ = 45o for (a) a sparsepro�le (q1 = q3 = 0.15 and q2 = q4 = 0.05) and (b) a dense pro�le (q1 = q3 = 0.35and q2 = q4 = 0.25). Crosses denote referen
e data, while solid line des
ribes thepredi
tion obtained by (3).
• Figure 5. Three-layers obsta
les density pro�les (l1 = 8 and l2 = 16) and four-layers obsta
les density pro�les (l1 = 8, l2 = 16 and l3 = 24) - Global mean error ∆versus the in
iden
e angle θ.
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Table Captions
• Table I. Step pro�le - Mean error 〈ϕ〉 for di�erent values of q1 and q2 when θ =

45o. For 
ompleteness, values relative to uniform 
on�gurations obtained by (4) arereported in square bra
kets on the diagonal.
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q1�q2 0.05 0.15 0.25 0.35

0.05 [3.87] 2.83 1.64 0.53

0.15 3.06 [4.09] 1.86 0.88

0.25 2.31 2.10 [1.93] 0.81

0.35 0.47 0.50 0.31 [0.56]

Tab. I - A. Martini et al., �Sto
hasti
 Ray Propagation ...�
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