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Abstract

Ray propagation in stratified semi-infinite percolation lattices consisting of a succes-
sion of different uniform-density layers is considered. Assuming that rays undergo
specular reflections on the occupied sites, the propagation depth inside the medium
is analytically estimated in terms of the probability that a ray reaches a prescribed
level before being reflected back in the above empty half-plane. Numerical Monte-

Carlo-like experiments validate the proposed solution.
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1 Introduction

In the last years, wave propagation in random media has gained an increasing attention
mostly due to the huge amount of practical problems where propagation environments
are suitable to be described by stochastic models rather than being deterministically
characterized. For instance, let us think about applications arising in the field of wireless
communication [1][2][3] and remote sensing (see [4] and the references cited therein).

In such a framework, we study electromagnetic wave propagation in a semi-infinite per-
colation lattice [5] of square sites, modeling a random distribution of scatterers. The
electromagnetic source is assumed to be external to the half-plane and it radiates a
monochromatic plane wave impinging on the lattice with a known angle 6. Sites are
assumed to be large with respect to the wavelength. This allows to model the incident
wave in terms of parallel rays. Such rays undergo specular reflection on obstacles, while
other electromagnetic interactions are neglected. The aim is estimating the probability
that a single ray reaches a prescribed level k inside the lattice before being reflected back
in the above empty half-plane, Pr {0 — k < 0}.

This problem was addressed for the first time in [1|, where the authors considered the
case of a uniform percolation lattice, where each cell may be occupied with a known
probability ¢. To ensure propagation, such occupancy probability is assumed to be lower
than a prescribed value ¢. = 1 — p., p. being the so-called percolation threshold [5]
(pe = 0.59275 for the two-dimensional case). Ray propagation was modeled in terms of
a stochastic process defined as the sum of successive ray jumps. The final result was
expressed as a combination of two terms: the probability mass function Pr{ro =i} of
the first jump 79 and the probability Pr{i —— k < 0|rg = ¢} that a ray reaches level k
before escaping in the above empty half-plane given the level where the first reflection
occurs. The latter term was estimated by applying the theory of the Martingale random
processes [6] and the so called Wald approximation.

Extension of this approach to the inhomogeneous case has been proposed in [7][|8], where
the scatterers distribution has been described by a one-dimensional obstacles density pro-
file, f(j) q(j), j being the row index. Numerical experiments and mathematical consider-

ations have shown that the analytical solution holds true in correspondence of obstacles



density profiles with small variations. A little though shows that this is due to the fact
that ray jumps following the first one are considered as a single mathematical entity,
ie., Pr{i—— k <0Jrg =1i}. Thus, such a formulation is not able to faithfully describe
Pr{0 —— k < 0} in correspondence with abrupt variations in the density profile g(j).

This letter is aimed at overcoming such a drawback by providing an ad-hoc formulation for
describing propagation in stratified random lattices consisting of a succession of different
uniform-density layers. The work is organized as follows. In Section 2, the mathematical
formulation is presented. Section 3 provides some numerical experiments performed on

simple test cases. Final comments and conclusions are drawn in Section 4.

2 Problem Statement and Mathematical Formulation

Let us consider a stratified semi-infinite percolating lattice described by the following

obstacles density distribution

a lb=0<j<h,

@ L <j<l,

Gn ln—l <j S lna

where ¢(j) = 1 — p(j) is the probability that a site is occupied at level j. In other words,
the medium is a succession of layers {L,; n > 1}, each one made up of [, — [,,_1 levels
with occupancy probability ¢,. An example of a stratified random lattice with three layers
and the relative obstacles density distribution are shown in Figure 1. For the considered
configuration, our aim is to find the probability Pr {0 —— £k < 0}.

In each uniform layer belonging to the stratified lattice, the propagation is described
through the model proposed in [1]|. In particular, the probability that a ray traveling with

positive direction in level (I,_; 4+ 1) reaches level [,, before being reflected back in level



(ly—1 + 1), B,=Pr{(l,—1 +1) — 1, < (l,—1 + 1)}, turns out to be [1],

1 l,=1,-1+1,

qP—N 1=p] by > ler + 1,

tan 041

o is the effective probability a ray freely crosses a level

where pe, = 1 —¢qe, = p
with occupancy probability ¢, and N,, = (I, — [,_1 — 1). Numerical experiments and
mathematical considerations show that (2) satisfactorily performs for incidence angle 6
not too far from 45° and for dense propagation media [9].

Now, in order to describe propagation in the whole stratified lattice, the probabilities
P, of each single layer (n > 1) must be conveniently combined. If we assume that the
level k£ belongs to the layer Lk, ie., g1 < k < lg, K > 1, our problem is formally
described by the Markov chain [10] depicted in Figure 2, where states j© and j~ denote a
ray traveling in level j with positive and negative direction, respectively, and Q),,=1 — P,,.

With reference to the Markov chain, we state our main result as follows (see Appendix A

for a detailed proof)

Pr{0+— k <0} = T = ; (3)

1 1-P, dn
Py _'_plz [pnPn T pnpnq]

n=2

where Py is evaluated according to (2) by replacing lx with k.
An observation is appropriate. When K = 1, we are dealing with the homogeneous case

and equation (3) takes the form

p1, k= ]-7

p? [1—p§f§71)]

Qeq (k—=1) 7

Pr{0r—k =<0} =p P, = (4)

k> 1.

Such a result is a slightly different version of that in [1], since it takes into account that
a ray traveling with negative direction inside level 1 surely escapes from the grid because
there are not any occupied horizontal faces between level 1 and level 0. As a matter
of fact, the approach in [1] is fine in evaluating provided that x and y, and the levels

between them, have the same occupancy probability because Pr{i — k < 0|rqg =i} is



estimated on the basis of a distance criterion. Consequently, since in our configuration
level 0 is empty, we can not directly apply [1] for computing Pr {0 —— k < 0}. Therefore,
Pr{0 —— k < 0} is evaluated as the product of two terms, the probability p; to enter the
first level and the probability P, = Pr{z — y < x}|,_, ,_, computed as in [1].

In passing and as expected, it can be noticed that (3) does not reduce to (4) in the limit
case when p, = p, n =1, ..., K since (3) is not an extension of the result in [1| (where the
ray jumps following the first one are evaluated through an approximation on the basis of
a distance criterion), but it is obtained by mathematically binding in the Markov chain

depicted in Figure 2 the results concerned with the uniform case.

3 Numerical Validation

In order to validate the proposed solution, an exhaustive set of numerical experiments
has been carried out taking into account two-, three- and four-layers scenarios. In the
following, the results of selected representative test cases are reported. For comparison
purposes, the propagation depth has been estimated in the first K = 32 levels by Monte-
Carlo-like ray-tracing experiments by following the procedure detailed in [1].

In order to estimate the effectiveness of the proposed model, let us define the following

error indexes, namely the prediction error o

a |Prp{0+—— k} —Prp{0— k}|

1
O max [Prp{0+— k}| x 100, (5)
and the mean error (0)
K
1 max
(6) & > o, (6)
KmCLZE k=1

where the sub-scripts R and P indicate the values estimated with the reference approach
and through (3), respectively.

Firstly, we fix the incidence angle, § = 45°, and we analyze how the obstacles density
at each layer and the size of the variation in the occupation probability value between
adjacent layers, namely S, ,+1 = |¢n — @ny1], affect the performances. With reference
to Table I, where mean error values relative to single-step profiles are reported, it can

be observed that the effectiveness of the proposed solution does not depend on S . As



an example, let us consider single-step profiles having ¢; = 0.35 (last row in Tab. I).
The matching between reference data and the reconstruction obtained by means of (3) is
good whatever S;, and it is comparable with that of the uniform case. The capability
of the proposed approach in carefully modeling the behavior of Pr{0+~— k < 0} is also
evident for other single-step profiles as confirmed by the values of the error index (Tab.
I). For a fixed value of ¢, the mean error decreases when ¢, increases, independently
from S;,. Such an event points out that the prediction accuracy is affected only by
the obstacles density at each layer. In particular, more dense the layers are, lower the
mean error is. This behaviour is fully predictable, since the accuracy of (2) - the building
block in deriving the final result - increases when the occupancy probability value tends
to the percolation threshold |9]. Such a trend, verified for single-step profiles, is further
confirmed when random lattices with a higher number of layers are taken into account.
With reference to Figure 3, where plots of Pr{0 —— k < 0} for three-layers profiles with
fixed ¢ = q3 = 0.15 are reported, it can be observed that matching between reference
and estimated data gets better for higher go, although S, 41 increases (S12 = Sy3 = 0.1
and S12 = Sz3 = 0.2 when ¢ = 0.05 and g, = 0.35, respectively). This is confirmed by
the mean error values ((5),,_q 05 = 3.13% vs. (9),,_¢ 35 = 0.8%). In Figure 4, we compare
the results relative to two four-layers profiles, the former very sparse (¢ = g3 = 0.15
and ¢ = g4 = 0.05) and the latter very dense (¢ = ¢3 = 0.35 and ¢ = ¢4 = 0.25).
As expected, we get better performances for the more dense profile, as confirmed by the
mean error values ((J) = 2.98% vs. (0) = 0.7%).

Now, the effects of the incidence angle 6 on the performances of (3) are analyzed. Towards

this end, let us define the global mean error A,

A2

Ml =

>0, (7)

I' being the total number of scenarios and (0), the mean error relative to the s—th
distribution. Figure 5 plots A obtained by considering the whole set of three- and four-
layers configurations that can be built by varying the occupation probability of each
layer {g,; n=1,..., K} between 0.05 and 0.35 with a step of 0.1. As expected [9], we

observe that in both cases results get worse as 6 diverges from 45°. In particular, A



ranges from {A},_,.. = 1.35% up to {A},_;zc = 5.52% and from {A},_,.. = 1.28%
up to {A}, 5o = 5.54% for three- and four-layers profiles, respectively. Moreover, it
is interesting to observe that the plots concerned with three- and four-layers scenarios
almost overlap. Such an event indicates that, on average, the accuracy of the approach is

not affected by the number of layers taken into account.

4 Conclusions

Ray propagation in stratified half-plane random lattices illuminated by a monochromatic
plane wave that undergoes specular reflections on the occupied sites has been studied.
We have estimated the penetration depth by mathematically binding in a Markov chain
results relative to uniform lattices [1], thus overcoming the limits of the solution presented
in 7] when dealing with stratified profiles |9].

The proposed approach has been validated by means of computer-based ray-tracing ex-
periments showing that the proposed solution satisfactorily performs in describing the
behavior of Pr{0 — k& < 0} when abrupt variations in the obstacles density profiles oc-
cur. As a matter of fact, the prediction accuracy is affected neither by the size of the
density variation nor by the number of such variations (i.e., the number of layers of the
lattice). On the other hand, the same limitations of the solution relative to the uniform
case [9], still remain (i.e., better predictions turn out in correspondence with dense media

and incidence angles near to 45°).



Appendix A

In this Section, we prove (3) by induction.
The case K = 1 has been discussed at the end of Section 2. Thus, we need to show that
(3) holds true if it holds for (K" —1). Towards this end, by making reference to the Markov

chain depicted in Figure 2, we express Pr {0 — k& < 0} as the product of three terms

Pr{0+— k <0} =Pr{A} Pr{B}Pr{C} (8)
where
Pr{A} =Pr{0f — I} _, <07}, (9)
Pr{B} =Pr{lf_,— (lxk_1+1)" <07}, (10)
Pr{C} =Pr{(lxg-1+1)T— k=<0"}. (11)

Let us consider Pr{C'}. By observing the Markov chain, we have

PI{C} = Prx 4+ Qg Pl"{(l](_l + 1)_ — (lK—l + 1)+ < O_} Pr {C}, (12)

and accordingly,

Pr{C} = e

1-Qk Pr{(lK,1+l)7!—>(lK,1+l)+-<07} (13)

_ Pk
T Pr+Qi Pr{(lxk—1+1) —0"<(lg_1+1)T}’

the last equality following from mutual exclusivity. Now, it can be proved [8| that, what-

ever level j inside the lattice we are considering,

Pr{0t +— 5+ <07}

Pr{j 0 <j"} = : (14)
{ } p(J)
p(j) being the probability a site is free at level j, and accordingly
_ P
Pr {C} T prPrk+QK Pr{oaK'—l’((lK71+1)+'<07} (15)
_ pr Pk
" prx Pr+Qk Pr{A}Pr{B}"




As far as Pr{B} = Pr{l}i_, — (g1 +1)T < 07} is concerned, by following similar

reasoning as in getting Pr{C'}, we obtain

Pr{B} =px +qx Pr{lz_ +— i, <0} Pr{B} =
i+ qx [1 - %} Pr{B}

and thus,

PK-1PK
Pr-1PK + qx Pr{A}

Pr{B} =

By applying to (8), (15), and (17), after some algebra we have

1

Pr{0+—k <0} =

1 _I_ 1-Pg 9K
Pr{A} px Pr PK—1PK

(17)

(18)

Now, our main result (3) holds true for whatever k belonging to layer Ly 1. Thus, it

holds true also for k = [x_; and accordingly we can write

D1
Pr{A} = — :
_Pn n
P%l +plz |:17nPn + pngnfl]
n=2

By substituting (19) into (18), we simply get our final result (3).

10
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Figure Captions

e Figure 1. Sketch of ray propagation in a three layers random lattice (left-hand

side) and the obstacles density distribution relative to the grid (right-hand side).
e Figure 2. Markov chain modeling ray propagation towards level &.

e Figure 3. Three-layers obstacles density profile with [; = 8, [ = 16 and ¢; =
g3 = 0.15 - Estimated values of Pr{0+— k < 0} versus k& when 6 = 45° for (a)
¢2 = 0.05 and (b) g2 = 0.35. Crosses denote reference data, while solid line describes

the prediction obtained by (3).

e Figure 4. Four-layers obstacles density profiles with [y = 8, s = 16 and I3 = 24
- Estimated values of Pr{0—— k < 0} versus k when 6 = 45° for (a) a sparse
profile (¢ = g3 = 0.15 and ¢2 = g4 = 0.05) and (b) a dense profile (¢; = g3 = 0.35
and go = g4 = 0.25). Crosses denote reference data, while solid line describes the

prediction obtained by (3).

e Figure 5. Three-layers obstacles density profiles (I; = 8 and Iy = 16) and four-
layers obstacles density profiles (I; =8, I = 16 and [3 = 24) - Global mean error A

versus the incidence angle 6.
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Table Captions

e Table I. Step profile - Mean error (p) for different values of ¢; and ¢ when 0 =
45°. For completeness, values relative to uniform configurations obtained by (4) are

reported in square brackets on the diagonal.
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¢ \q | 0.05]0.15]0.25] 035
0.05 |[[3.87]] 2.83 | 1.64 | 0.53
0.15 | 3.06 | [4.09]| 1.86 | 0.88
0.25 | 2.31 | 2.10 |[1.93] | 0.81
0.35 | 0.47 | 0.50 | 0.31 | [0.56]
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