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A Hybrid Approach for Modeling Stochastic Ray Propagation

in Stratified Random Lattices

Anna Martini, Massimo Franceschetti, and Andrea Massa

Abstract

The present contribution deals with ray propagation in semi-infinite percolation lattices

consisting of a succession of uniform density layers. The problem of analytically eval-

uating the probability that a single ray penetrates up to a prescribed level before being

reflected back into the above empty half-plane is addressed.A hybrid approach, exploiting

the complementarity of two mathematical models in dealing with uniform configurations, is

presented and assessed through numerical ray-tracing-based experiments in order to show

improvements upon previous predictions techniques.
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1 Introduction

This paper deals with wave propagation in stratified random lattices where the electromagnetic

source is external to the half-plane filled by the obstacles and it radiates a plane monochromatic

wave impinging on the lattice with a known incidence angleθ. By assuming that the dimension

of each site is large with respect to the wavelength, the waveis modeled in terms of a collection

of parallel rays that undergo specular reflections on occupied cells. The aim is analytically

estimating the probabilityPr {0 7−→ k} that a single ray reaches a prescribed levelk inside the

lattice before being reflected back in the above empty half-plane.

The problem concerned with a uniform random grid where sitesare occupied with a known

probabilityq = 1 − p was addressed in [1]. Ray propagation was modeled in terms ofa one-

dimensional stochastic process andPr {0 7−→ k} was evaluated by applying the theory of the

Martingale random processes [2] and the so-called Wald’s approximation. The extension to the

two-dimensional case, where an isotropic source is locatedinside the random lattice, has been

proposed in [3]. Moreover, the dual case of small obstacles has been dealt with in [4] and [5].

As far as the one-dimensional percolation model is concerned, the approach proposed in[1] and

referred to as Martingale approach (MTGA), has been successively extended to the nonuniform

case, where the occupancy probability changes according toa known obstacles’ densityq(j),

j being the row index [6]. In order to apply the theory of the Martingale random processes

and the Wald’s approximation, the ray jumps following the first one are assumed independent,

identically-distributed, with mean and standard deviation approaching zero. Both mathemat-

ical considerations and numerical experiments have shown that these conditions are verified

provided that (a) the incidence angle is not far from45o or a large number of reflections takes

place, (b) the percolation lattice in hand is dense and (c) the density profile does not present

abrupt changes in value between adjacent levels and a significant variation along the lattice.

With reference to the last condition, it is evident that the MTGA fails when dealing with ray

propagation in stratified random lattices, since such configurations are characterized by step-like

variations in the density profile. In order to overcome such adrawback, an ad hoc formulation,

referred to in the following as Multi-layer Martingale approach (MMTGA), has been described

in [7]. Starting from the observation that a stratified random grid is made up by a succession

of uniform density layers, the propagation inside each single layer is faithfully described by the
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MTGA [but still under conditions (a) and (b)]. Thus, mathematically binding the terms predict-

ing propagation in each single uniform layer leads to a formal description of the ray propagation

in the whole stratified lattice.

Another approach for to estimating the probabilityPr {0 7−→ k} is the so-called Markov ap-

proach (MKVA) [8], where the ray propagation is modeled by means of a Markovchain [9].

By observing that whenever a ray hits an occupied vertical face it does not change its vertical

direction of propagation, only reflections on occupied horizontal faces, whose number is inde-

pendent from the incidence angleθ, play a relevant role in evaluatingPr {0 7−→ k}. Likewise

the MTGA, the MKVA properly works provided that some conditions are verified. In particular,

it looses accuracy, when (i) the incidence angle deviates from45o and (ii ) the obstacles’ density

increases. However, there are no requirements on the density profile and thus, when stratified

random lattices are taken into account, the MKVA allows reliable predictions [under conditions

(i) and (ii )] and a customized formulation is not needed .

A comparison between the MMTGA and the MKVA when dealing withray propagation in

stratified random lattices has been presented in [10]. Numerical experiments have pointed out

that the MMTGA outperforms the MKVA when dense lattices are considered, while the MKVA

offers more reliable predictions when the stratified grid isconstituted by sparse layers. Such

results suggest that it could be profitable to consider a hybrid procedure exploiting in a comple-

mentary fashion theMTGA [1] and the MKVA [8].

The paper is organized as follows. In Section 2, the problem is stated and the mathematical

formulation is briefly resumed. Section 3 deals with the numerical validation, showing im-

provements of the proposed approach upon previous results.Final comments and conclusions

are drawn in Section 4.

2 Problem Statement and Mathematical Formulation

Let us consider a stratified random grid (Fig. 1) made up by a succession of uniform layers

denoted by the indexn. The n-th layer is made up byLn levels characterized by the same

occupancy probabilityqn and identified by the relative indexi = 1, ..., Ln. Accordingly, each

single level inside the grid is identified byln,i = j = i +
n−1
∑

t=1

Lt and the density profile is
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mathematically described in terms of

q(ln,i) = qn; n = 1, 2, ...; i = 1, ..., Ln. (1)

Ray propagation along the whole lattice is described by means of the Markov chain depicted

in Figure 2,where statesj+ and j− denote a ray traveling inside the levelj with positive

and negative direction, respectively.Such a schema allows one to mathematically bind state-

of-the-artbuilding blocksdenoting the probability that a ray freely crosses layern (i.e., the

probability that a ray, traveling with positive direction in the levelln,1, reaches levelln,Ln
before

being reflected back in levelln,1, Pn=̂ Pr
{

l+n,1 7−→ l+n,Ln
≺ l−n,1

}

). The mutual exclusive event is

referred to asQn = 1−Pn=̂ Pr
{

l+n,1 7−→ l−n,1 ≺ l+n,Ln

}

. Moreover, it is worth noting that, due to

symmetry, the probabilityPr
{

l−n,Ln
7−→ l−n,1 ≺ l+n,Ln

}

that a ray freely crosses layern traveling

with negative direction is equal toPn, andPr
{

l−n,Ln
7−→ l+n,Ln

≺ l−n,1

}

= Qn. Now, let us focus

on the probabilities of transition between adjacent layers, i.e.,Pr
{

l+n,Ln
7−→ l+n+1,1 ≺ l−n,Ln

}

and

Pr
{

l−n+1,1 7−→ l−n,Ln
≺ l−n+1,1

}

. As far as the first term is concerned,a ray traveling with positive

direction through levelln,Ln
reaches next layer(n + 1), keeping its direction of propagation,

with probability pn+1 (i.e., the probability that the horizontal face between layer n and layer

n + 1 is free). Such an event holds true whatever the number of reflections on vertical faces

occurring at levelln,Ln
, since they do not change the vertical direction of propagation of the ray.

Similar reasoning leads toPr
{

l−n+1,1 7−→ l−n,Ln
≺ l−n+1,1

}

= pn.

Now, with reference to the Markov chain model and by assumingthat levelk belongs to the

K-th layer, i.e.,lK,1 ≤ k ≤ lK,LK
, the following closed form relation is obtained

Pr {0 7−→ k} =
p1

1
P1

+ p1

K
∑

n=2

[

1−Pn

pnPn
+ qn

pnpn−1

]

. (2)

The building blocksPn, n = 1, ..., K, can be evaluated either by means of the MKVA [8],

Pn = P (MKV A)
n =

pn

1 + (Ln − 2)qn

, (3)
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or through the MTGA [1],

Pn = P (MTGA)
n =











1, i = 1,

pn

qen

[

1−p
(Ln−1)
en

Ln−1

]

, i > 1,
(4)

wherepen
= 1 − qen

= ptan θ+1
n is the effective probability that a ray crosses a level with

occupancy probabilityqn without any reflections andLK = (k − lK,1). The core idea of this

paper is to fully exploit the complementarity of the MKVA andof the MTGA in describing ray

propagation in uniform random lattices. For each uniform layer of the grid, a choice between (3)

and (4) is performed on the basis of the incidence condition and of the obstacles’ density of the

layer at hand. To rigorously define the choice criterion (i.e., the range ofqn andθ values such

that one approach rather than the other is more suitable to beapplied) numerical experiments,

reported in the next section, have been carried out.

In passing, we observe that a-priori applyingeither (3) or (4) along the whole lattice (i.e.,∀n,

n = 1, ..., K), independently fromqn andθ, leads to the approaches compared in [10], i.e., the

MKVA and the MMTGA, respectively.

3 Numerical Validation

In this section, selected numerical results, assessing theeffectiveness of the hybrid solution

compared with the MMTGA and the MKVA, are reported. As a reference solution, the penetra-

tion probabilityPr {0 7−→ k} has been numerically estimatedby means of computer-based ray

tracing experiments performed according to the procedure described in [1]. In order to quantify

the prediction accuracy,let us define theprediction error

εk ,
|PrS {0 7−→ k} − Pr {0 7−→ k}|

max
k

[PrS {0 7−→ k}]
× 100, (5)

where the sub-scriptS indicates numerically-computed values, and themean error

〈ε〉 ,

kMAX
∑

k=1

εk

kMAX

, (6)
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kMAX being the total number of levels in the numerical experimentat hand. Moreover, in order

to analyze the mean behavior whenN density profiles are considered, let us define theglobal

mean error

〈φ〉 ,

N
∑

i=1

〈ε〉i

N
, (7)

where〈ε〉i is the mean error relative to thei-th profile.

3.1 Calibration

The aim of this section is to figure out a choice criterion according to that either the MKVA

(3) or the MTGA (4) is selected as building blockPn, n = 1, ..., K, in (2). Towards this

end, the uniform density profiles obtained by varyingq between 0.05 and 0.4(1) with a step

of 0.05, have been considered. Moreover, different incidence conditions have been taken into

account, namelyθ = {15o, 30o, 45o, 60o, 75o} andPr {0 7−→ k} has been evaluated in the first

kMAX = 10 levels.

With reference to the obtained mean error values (Fig. 3), the following rule has been stated:

• if qn < 0.2 [Figs. 3(a)-(c)], thenPn = P
(MKV A)
n whateverθ;

• if 0.2 ≤ qn ≤ 0.3 [Figs. 3(d)-(f )], thenPn = P
(MTGA)
n if θ = 30o andPn = P

(MKV A)
n

elsewhere;

• if qn > 0.3 [Figs. 3(g)-(h)], then Pn = P
(MKV A)
n if θ = 15o and Pn = P

(MTGA)
n

otherwise.

3.2 Numerical Assessment and Comparisons

This section is aimed at assessing the proposed approach, referred to in the following as hybrid

approach (HYBA), by means of an exhaustive numerical validation. In particular, an analysis on

the role of the problem parameters in affecting the estimation accuracy, along with a comparison

with the MKVA and the MMTGA, will be presented by consideringdifferent test cases.Three-

and four-layers profiles havingLn = 8, n = 1, ..., K − 1 andLK = kMAX − 8(K − 1),

(1)Higher q values have been not taken into account, since for values higher than the so-called percolation
thresholdqc (qc ≈ 0.40725 for the two-dimensional case) the propagation is inhibited[11].
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obtained by taking into account all the possible combinations of the occupancy probability

valuesqn = {0.05, 0.15, 0.25, 0.35}, n = 1, ..., K, have been considered. Moreover, different

impinging directions,θ = {15o, 30o, 45o, 60o, 75o}, have been assumed and the penetration

probability has been estimated in the firstkMAX = 32 levels.

Firstly, let us analyzethe behavior of theglobal mean error〈φ〉 for different θ values. With

reference to Figure 4, by comparing the plots concerned withthree- and four-layers profiles,

it can be observed that the number of layersK does not affect the prediction accuracy of the

considered approaches. In particular, concerning the HYBA, |〈φ〉4L − 〈φ〉3L| ≤ 0.04 whatever

θ, where subscripts “4L” and “3L” refer to three- and the four-layers profiles, respectively.

As far as the dependence on the incidence angle is concerned,it is evident that the accuracy

of the HYBA (as well as that of the other approaches) increases asθ tends to45o. This is

fully predictable, since both the building blocks(3) and (4) ensure the best performances when

θ = 45o [8]. Finally, it turns out that on average the HYBA outperforms both the MKVA and

the MMTGA whateverθ and in a more significant fashion whenθ = 75o (
[

〈φ〉
MMTGA

〈φ〉
HY BA

]

∼= 2.5

and
[

〈φ〉
MKV A

〈φ〉
HY BA

]

∼= 1.8 ).

The second test case deals with two four-layers profiles. Theformer, indicated as “4LS”, is

made up by sparse layers (i.e.,q1 = q3 = 0.05, q2 = q4 = 0.15), while the latter, “4LD”, is

dense (i.e.,q1 = q3 = 0.25, q2 = q4 = 0.35). By analyzing Table I, where the mean error

values whenθ = 45o are reported, it can be observed that, as expected, the HYBA satisfactorily

performs in both cases(
[

〈ε〉4LD

〈ε〉4LS

]

HY BA

∼= 1), while the MKVA and the MMTGA are sensitive to

the obstacles’ density, allowing more reliable predictions in correspondence with profile “4LS”

(
[

〈ε〉4LD

〈ε〉4LS

]

MKV A
= 2) and “4LD” (

[

〈ε〉4LS

〈ε〉4LD

]

MMTGA

∼= 1.7), respectively.

The last test case deals with a four-layers profile consisting of very sparse and very dense layers

in alternated succession (i.e.,q1 = q3 = 0.05, q2 = q4 = 0.35). The plots in Figure 5, as well as

the〈ε〉 values reported in Tab. II, point out that the HYBA outperforms both the MKVA and the

MMTGA whateverθ. The effectiveness of the HYBA is more evidentwhenθ = 75o [Fig. 7(e)

and last row of Tab. II] as confirmed by the following indexes〈ε〉
MKV A

〈ε〉
HY BA

= 4.11 and 〈ε〉
MMTGA

〈ε〉
HY BA

=

4.22. A final observation is concerned with the role ofthe variation size in the occupation

probability value between adjacent layers, i.e.,∆n,n+1 = |qn+1 − qn| . By considering the case

θ = 45o and comparing the〈ε〉 values of the test case in hand(∆n,n+1 = 0.3) with those of
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the previous test case(∆n,n+1 = 0.1, Tab. I), it can be observed that performances are not

affected by∆n,n+1. Such an event points out the reliability of the Markov chainmodel in

correctly predicting the change in the slope ofPr {0 7−→ k} that occurs in correspondence with

the border between adjacent layers.

4 Conclusions

In this paper, a hybrid formulation for predicting the ray propagation in stratified random lattices

has been presented. The proposed solution exploits the positive features of the Martingale

approach and the Markov approach in dealing with uniform random grids, compensating at the

same time their drawbacks. Numerical experiments have demonstrated the effectiveness and the

reliability of the proposed solution as well as the improvements with respect to other stochastic

approaches. Summarizing, the following considerations can be drawn:

• Both the number of layers and thevariation in the occupation probability value between

adjacent layers do not affect performances. Such a behaviorassesses the effectiveness of

the Markov chain model (Fig. 2) and the relative solution (2)in modeling propagation in

the whole stratified lattice.

• Unlike the MMTGA and the MKVA, the performances of the hybridmethod are not

affected by the obstacles’ density.

• The hybrid technique outperforms the other methods, whatever the incidence angleand

the obstacles’ density.

• Whatever the approach, the most reliable predictions are obtained whenθ = 45o.

9



Acknowledgments

This work has been supported in Italy by the “Progettazione di un Livello Fisico ’Intelligente’

per Reti Mobili ad Elevata Riconfigurabilità,” Progetto di Ricerca di Interesse Nazionale -

MIUR Project COFIN 2005099984.

10



References

[1] G. Franceschetti, S. Marano, and F. Palmieri, “Propagationwithout wave equation toward

an urban area model,” IEEE Trans. Antennas Propag., Vol. 47, No. 9, 1393-1404, 1999.

[2] R. M. Ross,Stochastic Processes. J. Wiley, New York, 1983.

[3] S. Marano and M. Franceschetti, “Ray propagation in a randomlattice: a maximum en-

tropy, anomalous diffusion process,”IEEE Trans. Antennas Propag., Vol. 53, No. 6, 1888-

1896, 2005.

[4] M. Franceschetti, J. Bruck, and L.Schulman, “A random walk model of wave propaga-

tion,” IEEE Trans. Antennas Propagat., Vol. 52, No. 5, 1304-1317, 2004.

[5] M. Franceschetti, “Stochastic rays pulse propagation,” IEEE Trans. Antennas Propagat.,

Vol. 52, No. 10, 2742-2752, 2004.

[6] A. Martini, R. Azaro, M. Franceschetti, and A. Massa, “Ray propagation in nonuniform

random lattices - Part II,”J. Opt. Soc. Am. A, in press.

[7] A. Martini, M. Franceschetti, and A. Massa, “Stochastic ray propagation in stratified ran-

dom lattices,”IEEE Antennas Wireless Propagat. Letters, accepted for publication.

[8] A. Martini, M. Franceschetti, and A. Massa, “Ray propagation in a non-uniform random

lattice,” J. Opt. Soc. Am. A, Vol. 23, No. 9, 2251-2261, 2006.

[9] J. R. Norris,Markov Chains. Cambridge University Press, 1998.

[10] A. Martini, L. Marchi, M. Franceschetti, andA. Massa, “Stochastic ray propagation in

stratified random lattices - Comparative assessment of two mathematical approaches,”

Progress in Electromagnetics Research, PIER 71, 159-171, 2007.

[11] G. Grimmett,Percolation. Springer-Verlag, New York, 1989.

11



Figure Captions

• Figure 1. Example of a propagating ray in a stratified lattice. The gridis a realization of

the obstacles’ density distribution reported on the left-hand side.

• Figure 2. Markov chain modeling the ray propagation inside a stratified random lattice.

• Figure 3. Uniform profiles - Mean error〈ε〉 versusθ when(a) q = 0.05, (b) q = 0.10,

(c) q = 0.15, (d) q = 0.20, (e) q = 0.25, (f ) q = 0.30, (g) q = 0.35, and (h) q = 0.40.

• Figure 4. Multi-layers profiles - Global mean error〈φ〉 versusθ for (a) the three-layers

profiles and (b) the four-layers profiles.

• Figure 5. Multi-layers profiles -Pr {0 7−→ k} versusk for a four-layers profile with

q1 = q3 = 0.05 andq2 = q4 = 0.35 when (a) θ = 15o, (b) θ = 30o, (c) θ = 45o, (d)

θ = 60o, and (e) θ = 75o.

Table Captions

• Table I. Mean error〈ε〉 for four-layers profiles “4LS” (q1 = q3 = 0.05 andq2 = q4 =

0.15) and“4LD” (q1 = q3 = 0.25 andq2 = q4 = 0.35) whenθ = 45o.

• Table II. Mean error〈ε〉 for a four-layers profile characterized byq1 = q3 = 0.05 and

q2 = q4 = 0.35.
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HYBA MKVA MMTGA

4LS 0.71 0.71 1.55

4LD 0.74 1.42 0.92

Tab. I - A. Martini et al., ”A Hybrid Approach for Modeling Stochastic ...”
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θ HYBA MKVA MMTGA

15o 3.95 3.95 5.34

30o 2.59 3.20 3.04

45o 0.55 1.28 0.62

60o 0.94 3.43 1.72

75o 0.89 3.66 3.76

Tab. II - A. Martini et al., ”A Hybrid Approach for Modeling Stochastic ...”
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