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A Hybrid Approach for Modeling Stochastic Ray Propagation

in Stratified Random Lattices

Anna Martini, Massimo Franceschetti, and Andrea Massa

Abstract

The present contribution deals with ray propagation in sefimite percolation lattices
consisting of a succession of uniform density layers. Thablem of analytically eval-
uating the probability that a single ray penetrates up toes@ibed level before being
reflected back into the above empty half-plane is addregségbrid approach, exploiting
the complementarity of two mathematical models in dealiit wniform configurations, is
presented and assessed through numerical ray-tracimgteageriments in order to show

improvements upon previous predictions techniques.
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1 Introduction

This paper deals with wave propagation in stratified randattices where the electromagnetic
source is external to the half-plane filled by the obstaahekitradiates a plane monochromatic
wave impinging on the lattice with a known incidence argl8y assuming that the dimension
of each site is large with respect to the wavelength, the weanedeled in terms of a collection
of parallel rays that undergo specular reflections on oauigells. The aim is analytically
estimating the probabilitr {0 — £} that a single ray reaches a prescribed lévieiside the
lattice before being reflected back in the above empty Halfig

The problem concerned with a uniform random grid where satesoccupied with a known
probabilityqg = 1 — p was addressed in [1]. Ray propagation was modeled in terrasook-
dimensional stochastic process dnd{0 — &k} was evaluated by applying the theory of the
Martingale random processes [2] and the so-called Walgsegimation. The extension to the
two-dimensional case, where an isotropic source is locatgde the random lattice, has been
proposed in [3]. Moreover, the dual case of small obstacaddeen dealt with in [4] and [5].
As far as the one-dimensional percolation model is conckrthe approach proposed|i] and
referred to as Martingale approach (MTGA), has been sunedgextended to the nonuniform
case, where the occupancy probability changes accordiagktmown obstacles’ density(j),

j being the row index [6]. In order to apply the theory of the ktagale random processes
and the Wald’s approximation, the ray jumps following thstfione are assumed independent,
identically-distributed, with mean and standard deviatpproaching zero. Both mathemat-
ical considerations and numerical experiments have shbanthese conditions are verified
provided that &) the incidence angle is not far frodd° or a large number of reflections takes
place, b) the percolation lattice in hand is dense anfithe density profile does not present
abrupt changes in value between adjacent levels and a sagtifvariation along the lattice.
With reference to the last condition, it is evident that th@ ®A fails when dealing with ray
propagation in stratified random lattices, since such carditions are characterized by step-like
variations in the density profile. In order to overcome suchavback, an ad hoc formulation,
referred to in the following as Multi-layer Martingale appaich (MMTGA), has been described
in [7]. Starting from the observation that a stratified ramdgrid is made up by a succession

of uniform density layers, the propagation inside eachlsitayer is faithfully described by the



MTGA [but still under conditionsg) and @)]. Thus, mathematically binding the terms predict-
ing propagation in each single uniform layer leads to a foaeacription of the ray propagation
in the whole stratified lattice.

Another approach for to estimating the probability {0 — £} is the so-called Markov ap-
proach (MKVA) [8], where the ray propagation is modeled by means of a Madkain [9].
By observing that whenever a ray hits an occupied vertica fadoes not change its vertical
direction of propagation, only reflections on occupied honital faces, whose number is inde-
pendent from the incidence andleplay a relevant role in evaluatifigy {0 — k}. Likewise
the MTGA, the MKVA properly works provided that some condits are verified. In particular,
it looses accuracy, when) ¢he incidence angle deviates fratd and (i) the obstacles’ density
increases. However, there are no requirements on the gegmeiile and thus, when stratified
random lattices are taken into account, the MKVA allowsatglie predictions [under conditions
(i) and {i)] and a customized formulation is not needed .

A comparison between the MMTGA and the MKVA when dealing wily propagation in
stratified random lattices has been presented in [10]. Nigaldezxperiments have pointed out
that the MMTGA outperforms the MKVA when dense lattices ayesidered, while the MKVA
offers more reliable predictions when the stratified gridamstituted by sparse layers. Such
results suggest that it could be profitable to consider aitlyfsocedure exploiting in a comple-
mentary fashion thMITGA [1] and the MKVA [8].

The paper is organized as follows. In Section 2, the problestated and the mathematical
formulation is briefly resumed. Section 3 deals with the nrcag validation, showing im-
provements of the proposed approach upon previous restiital comments and conclusions

are drawn in Section 4.

2 Problem Statement and Mathematical Formulation

Let us consider a stratified random grid (Fig. 1) made up byaession of uniform layers
denoted by the index. Then-th layer is made up by, levels characterized by the same

occupancy probability,, and identified by the relative index= 1, ..., L,,. Accordingly, each

n—1
single level inside the grid is identified by ; = j = ¢ + ZLt and the density profile is
t=1



mathematically described in terms of

Qi) =qn; n=1,2,..50=1,.. L,. Q)

Ray propagation along the whole lattice is described by medithe Markov chain depicted
in Figure 2,where stateg™ andj~ denote a ray traveling inside the levglwith positive
and negative direction, respectivelguch a schema allows one to mathematically bind state-
of-the-artbuilding blocksdenoting the probability that a ray freely crosses layd.e., the
probability that a ray, traveling with positive directiomthe level,, ;, reaches levédl, ;,, before
being reflected backin levég],, P,=Pr {i}, — b, < l1}). The mutual exclusive eventis
referred to ag),, = 1-P,=Pr {l}, — I, < Z,J;Ln}. Moreover, it is worth noting that, due to
symmetry, the probabilityr {l; L, g < lj; Ln} that a ray freely crosses layertraveling
with negative direction is equal t8,, andPr {I, , ~— I, <[ ,} = Q.. Now, let us focus
on the probabilities of transition between adjacent layiees Pr {1, | — I}, , <1, , }and
Pr {l;+1,1 — o, = lr_z—l—l,l}' As far as the first term is concernediay traveling with positive
direction through level, ;, reaches next laygin + 1), keeping its direction of propagation,
with probability p,,.1 (i.e., the probability that the horizontal face betweeretay and layer
n + 1 is free). Such an event holds true whatever the number ofcteftes on vertical faces
occurring at level,, 1, since they do not change the vertical direction of propagaif the ray.
Similar reasoning leads tr {/, , ; — bor, < L1} = Do

Now, with reference to the Markov chain model and by assurttiag) level% belongs to the

K-th layer, i.e.[x1 < k <k 1,, the following closed form relation is obtained

Pr{0+— k} = h : (2)

K
1 1-P, dn
Py +plz [;nn n + PnPn—1
n=2

The building blocksP,, n = 1, ..., K, can be evaluated either by means of the MKVA [8],

Pn — P(MKVA) — DPn 3
( S @)




or through the MTGA [1],

P. = P(MTGA) —

(4)

(Ln—1)
1—p¢ .
Ln [ Pen ], 1> 1,

Gen

wherep.,, = 1 — ¢, = p*%+1 is the effective probability that a ray crosses a level with
occupancy probability,, without any reflections and, = (k — lx1). The core idea of this
paper is to fully exploit the complementarity of the MKVA anfithe MTGA in describing ray
propagation in uniform random lattices. For each uniforgetaof the grid, a choice between (3)
and (4) is performed on the basis of the incidence conditehad the obstacles’ density of the
layer at hand. To rigorously define the choice criterion. (itlee range of;,, andf values such
that one approach rather than the other is more suitable &ppked) numerical experiments,
reported in the next section, have been carried out.

In passing, we observe that a-priori applyiither (3) or (4) along the whole lattice (i.&,

n = 1,..., K), independently frong,, andd, leads to the approaches compared in [10], i.e., the

MKVA and the MMTGA, respectively.

3 Numerical Validation

In this section, selected numerical results, assessingftbetiveness of the hybrid solution
compared with the MMTGA and the MKVA, are reported. As a refeze solution, the penetra-
tion probabilityPr {0 — £} has been numerically estimatey means of computer-based ray
tracing experiments performed according to the procedeserbed in [1]. In order to quantify
the prediction accuraciet us define th@rediction error

a |Prs {0 — k} — Pr{0 — k}|
max [Prs {0 +— k}]

£k x 100, (5)

where the sub-scripf indicates numerically-computed values, andrtiean error

() & = —, (6)



karax being the total number of levels in the numerical experinagtiand. Moreover, in order
to analyze the mean behavior whandensity profiles are considered, let us defineghubal
mean error

Z (€);

A i=1
(¢) & =, ™)

where(e), is the mean error relative to thieh profile.

3.1 Calibration

The aim of this section is to figure out a choice criterion adow to that either the MKVA
(3) or the MTGA (4) is selected as building blodk,, n = 1,..., K, in (2). Towards this
end, the uniform density profiles obtained by varyipntpetween 0.05 and 04 with a step
of 0.05, have been considered. Moreover, different inaéeronditions have been taken into
account, namely = {15°, 30°, 45°, 60°, 75°} andPr {0 — k} has been evaluated in the first
kyrax = 10 levels.

With reference to the obtained mean error values (Fig. &fdHowing rule has been stated:

o if ¢, < 0.2 [Figs. 3@)-()], thenP, = P V4 whatever;

o if 0.2 < g, < 0.3[Figs. 3@)-(f)], thenp, = PMTY if g = 30° and P, = PLMEVY

elsewhere;

e if g, > 0.3 [Figs. 3@)-(h)], then P, = PM*Vif 9 = 15° and B, = PN

otherwise.

3.2 Numerical Assessment and Comparisons

This section is aimed at assessing the proposed approéefecketo in the following as hybrid
approach (HYBA), by means of an exhaustive numerical vabdaln particular, an analysis on
the role of the problem parameters in affecting the estiomediccuracy, along with a comparison
with the MKVA and the MMTGA, will be presented by considerididferent test cased hree-

and four-layers profiles having,, = 8, n = 1,...,. K — 1l and Lx = kyax — 8(K — 1),

(WHigher ¢ values have been not taken into account, since for valudsehitpan the so-called percolation
thresholdy. (¢. ~ 0.40725 for the two-dimensional cayéhe propagation is inhibited 1].



obtained by taking into account all the possible combimatiof the occupancy probability
valuesg,, = {0.05, 0.15, 0.25, 0.35}, n = 1, ..., K, have been considered. Moreover, different
impinging directionsf = {15°, 30°, 45°, 60°, 75°}, have been assumed and the penetration
probability has been estimated in the fikgf 4 x = 32 levels.

Firstly, let us analyzehe behavior of thglobal mean errof¢) for differentd values. With
reference to Figure 4, by comparing the plots concerned thitke- and four-layers profiles,

it can be observed that the number of lay&rgloes not affect the prediction accuracy of the
considered approaches. In particular, concerning the HYBA ,, — (¢),,| < 0.04 whatever

0, where subscripts47” and “3L" refer to three- and the four-layers profiles, respectively.
As far as the dependence on the incidence angle is concetngavident that the accuracy
of the HYBA (as well as that of the other approaches) increas® tends to45°. This is
fully predictable, since both the building block?®) and (4) ensure the best performances when
0 = 45° [8]. Finally, it turns out that on average the HYBA outperfas both the MKVA and
the MMTGA whatever and in a more significant fashion whén= 75° ([%»M%] =25

HYBA

and [m&} =1.8).

YBA

The second test case deals with two four-layers profiles. fdimer, indicated as4Lys”, is
made up by sparse layers (i.e;,= ¢3 = 0.05, ¢ = ¢q4+ = 0.15), while the latter, 4L 5", is
dense (i.e.q; = ¢3 = 0.25, ¢ = ¢4 = 0.35). By analyzing Table I, where the mean error

values whert = 45° are reported, it can be observed that, as expected, the HéBgactorily

performs in both case(s[[g‘*#}
4Ls 1HYBA

the obstacles’ density, allowing more reliable predicsiaomcorrespondence with profilé . ¢”

[ié} —2)and “4Lp" ( [fis}
S IMKVA ALp I MMTGA

The last test case deals with a four-layers profile congjsifrvery sparse and very dense layers

= 1), while the MKVA and the MMTGA are sensitive to

> 1.7), respectively.

in alternated succession (i.e;,= g3 = 0.05, ¢ = ¢4 = 0.35). The plots in Figure 5, as well as
the (¢) values reported in Tab. II, point out that the HYBA outpenfisrboth the MKVA and the
MMTGA whateverf. The effectiveness of the HYBA is more evidavitend = 75° [Fig. 7(€)
and last row of Tab. Il] as confirmed by the following inde% =4.11 and% =
4.22. A final observation is concerned with the role thie variation size in the occupation
probability value between adjacent layers, i&,,,+1 = |¢.+1 — ¢»| - By considering the case

§ = 45° and comparing thes) values of the test case in ha@d,, ,,;; = 0.3) with those of



the previous test casg\,, ,+1 = 0.1, Tab. [), it can be observed that performances are not
affected byA,, 1. Such an event points out the reliability of the Markov chaindel in
correctly predicting the change in the slopegof{0 — £} that occurs in correspondence with

the border between adjacent layers.

4 Conclusions

In this paper, a hybrid formulation for predicting the rappagation in stratified random lattices
has been presented. The proposed solution exploits théveofatures of the Martingale

approach and the Markov approach in dealing with uniforntdcan grids, compensating at the
same time their drawbacks. Numerical experiments have dstraied the effectiveness and the
reliability of the proposed solution as well as the improesnts with respect to other stochastic

approaches. Summarizing, the following consideratiomsbeadrawn:

e Both the number of layers and tlariation in the occupation probability value between
adjacent layers do not affect performances. Such a behassasses the effectiveness of
the Markov chain model (Fig. 2) and the relative solutioni@nodeling propagation in

the whole stratified lattice.

e Unlike the MMTGA and the MKVA, the performances of the hybritkthod are not

affected by the obstacles’ density.

e The hybrid technique outperforms the other methods, wieaténe incidence angland

the obstacles’ density.

e Whatever the approach, the most reliable predictions at@mmdd wherd = 45°.
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Figure Captions

e Figure 1. Example of a propagating ray in a stratified lattice. The ggid realization of

the obstacles’ density distribution reported on the |eiivh side.
e Figure 2. Markov chain modeling the ray propagation inside a stratifendom lattice.

e Figure 3. Uniform profiles - Mean errofs) versusy when(a) ¢ = 0.05, (b) ¢ = 0.10,
(c) ¢ = 0.15, (d) ¢ = 0.20, (€) ¢ = 0.25, (f) ¢ = 0.30, (g) ¢ = 0.35, and f) ¢ = 0.40.

e Figure 4. Multi-layers profiles - Global mean err@p) versus) for (a) the three-layers

profiles and i§) the four-layers profiles.

e Figure 5. Multi-layers profiles -Pr {0 — k} versusk for a four-layers profile with
g = q3 = 0.05 andQQ =q4 = 0.35 when @) 0 = 15°, (b) 0 = 30°, (C) 0 = 45°, (d)
0 = 60°, and €) 0 = 75°.

Table Captions

e Table I. Mean error(e) for four-layers profiles 4Ls” (1 = g3 = 0.05 andg, = ¢4 =

015) and“4Lp” (ql =q3=0.25 andq2 =q4 = 035) wheng = 45°.

e Table Il. Mean error(c) for a four-layers profile characterized lgy = g3 = 0.05 and

Q2 = (4 = 0.35.
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Fig. 1 - A. Martini et al., ”’A Hybrid Approach for Modeling Stochastic ...
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HYBA | MKVA | MMTGA

A4Lg || 0.71 0.71 1.55
ALp || 0.74 1.42 0.92

Tab. I - A. Martini et al., "A Hybrid Approach for Modeling Stochastic ...”
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6 || HYBA | MKVA | MMTGA

152 3.95 3.95 5.34
30| 2.59 3.20 3.04
45° | 0.55 1.28 0.62
60° | 0.94 3.43 1.72
75| 0.89 3.66 3.76

Tab. Il - A. Martini etal., ”’A Hybrid Approach for Modeling Stochastic ...
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