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Physical limits to the capacity of wide-band

Gaussian MIMO channels

Anna Martini, Massimo Franceschetti, and Andrea Massa

Abstract

In this letter aphysicallimit to the information capacity of a multiple-input multiple-output (MIMO)

Gaussian channel is presented exploiting the theory of non-redundant sampling of scattered fields. For

a MIMO narrow-band system of arbitrarily large spatial extension, the information capacity limit is the

same as the one for a single-input single-output (SISO) ultra-wide band (UWB) system. For MIMO

systems of finite size, wide band transmission, and absence of channel state information, space and

frequency diversities can be optimally combined by allocating the signal power uniformly across space,

and increasing linearly across frequency.

Index Terms: Multiple-input multiple-output (MIMO), ultra-wide band (UWB), physical channel

modeling, frequency diversity, space diversity.

This work was in part supported in Italy by the Progettazionedi un Livello Fisico ‘Intelligente’ per Reti Mobili ad Elevata
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I. INTRODUCTION

In the last years, there has been considerable interest in MIMO wireless communication, mostly

due to the promise of capacity boost due to the the spatial diversity provided by multiple antennas

transmitting in a scattering environment, see [1], [2], [3], [4] for an overview.

In order to precisely estimate the performance of a space-time communication system, it is

necessary to accurately characterize the wireless multipath channel. A common approach consists

in defining a random matrixH of i.i.d. channel gains, of dimensionnT ×nR, nT andnR being the

number of transmitting and receiving antennas. The MIMO channel can then be decomposed into

n = min(nT , nR) parallel SISO subchannels, subject to a total power constraint [4]. However,

practical experience shows that the channel capacity does not increase proportionally ton, but

it is limited by the physical properties of the propagation channel [5]. In other words, the

effective number of degrees of freedom (ENDF), i.e., thenumber of SISO subchannels actively

participating in conveying information, can be much smaller thann. Clearly, it is worth allocating

power only to these active channels, and knowledge of their number is crucial to predict the

ultimate system performance.

One way to more realistically model the effect of the propagation environment in the computa-

tion of the capacity is to introduce correlations in the matrix H, see for example [1], [6], [7], [8],

[9], [10], however this approach fails to capture the inherent geometric features of the problem and

leads to capacity computations that depend on the specific modeling assumptions. On the other

hand, one can try to to find a direct connection between the natural process of wave propagation

and the number of independent information-theoretic channels between transmitters and receivers.

This approach that blends the physics of propagation with the theory of information, has gained

recent attention in both the electromagnetic and the communication theory community [11],

[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. In this framework, the

recent works in [11], [12], [18] present physical MIMO communication limits in the narrow-

band regime, obtained by applying the theory of non-redundant sampling of a monochromatic

electromagnetic field radiated by a bounded domain. They rely on electromagnetic theory results

that appeared in [25], [26]. These works have shown that scattered fields radiated by a domain of
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finite size areessentiallyspace-bandlimited functions, in the sense that they can be approximated

by space-bandlimited functions with an error that undergoes a sharp decay after a prescribed value

of the spatial bandwidth of the field. Such a value, which is called theeffectivespatial bandwidth

of the field, is proportional to the size of the scattering system normalized to the wavelength.

The number of spatial degrees of freedom of the electromagnetic field, i.e., theinfimum of the

number of dimensions of all the subspaces that can representthe field with the required degree

of accuracy over a given observation domain,can then be approximated by the Nyquist number,

thereby being the product of the effective bandwidth of the field times the angular extension of

the observation domain. Exploiting these previous results, the work in [18] has shown that the

number of spatial degrees of freedom of the electromagneticfield represents an upper bound for

the ENDF of a MIMO channel. Thus, the number of equivalent SISO subchannels cannot be

made arbitrarily large by increasing the number of transmitting and receiving antennas, but it is

limited by the physical properties of the electromagnetic field. Similar results, based on different

models but reaching the same conclusions also appeared in [13], [19], [21], [22], [23].

We observe that all of the above results hold under the assumption of narrow-band signals. In

the present work, we address the general case of wide-band signals. The main difficulty in doing

so is the mutual coupling that arises between the time and space spectra of the field. Accordingly,

we decompose the transmitted signal into a combination of narrow-band frequency bins for which

it is possible to apply the electromagnetic theory of [25], [26]. Then, by applying superposition

and letting the bin width tend to zero, we obtain a physical limit to the capacity of an AWGN

MIMO channel with arbitrary frequency bandwidth, along with a strategy for the optimal power

allocation in the frequency domain. While the obtained capacity formula relies on the assumption

that the channel is flat in space and frequency, the obtained power allocation strategy holds more

generally in the absence of channel state information. It shows an optimal uniform allocation

of power across space and linearly increasing across frequencies, due to the larger number of

spatial modes occurring at high frequencies. This result isnot based on stochastic modeling, but

only on physical considerations on wave diversity limits.

The remainder of this letter is organized as follows. In Section II the geometry of the problem
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is described and the main results of previous works that are used throughout the letter are briefly

recalled. Section III presents the mathematical formulation of the problem. In Section IV some

considerations on the optimal signal power allocation in the frequency domain are drawn, while

Section V provides an analysis of the channel capacity for different system configurations. Final

comments and conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

Let us consider the scattering system depicted in Figure 1. All the electromagnetic sources,

along with the environmental obstacles, are enclosed in a two-dimensional ballB of radius

a. The receiving antennas are located on an observation domain M external to the ballB. The

observation domainM is an arc of circumference concentric with the radiating ball B and it spans

the range[−S/2, S/2]. This ideal geometric configuration is chosen for ease of presentation, but

a generalization to three-dimensional radiating systems and two-dimensional receiving domains

of arbitrary shape can also be obtained, see [25], [26], [27].

We now briefly recall some main results of electromagnetic theory and their application in the

framework of MIMO systems. All of these results hold under the assumption of narrow-band

signals.

In [25], it has been formally established that the field radiated by the ballB has effective

spatial bandwidth

Ws = βa, (1)

wherea is the radius ofB , andβ is the wavenumber defined as

β =
2π

λ
, (2)

λ being the wavelength.

Starting from this result, the number of spatial degrees of freedom of the scattered field can

be approximated from below, asa/λ → ∞, by the Nyquist number [26],

ηs ≈ 2

(

S

rm

) (

Ws

2π

)

= 2Ω
(a

λ

)

, (3)
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where rm is the distance ofM from the center ofB and Ω is the angle subtended by the

observation domainM to the center ofB, see Figure 1.

The concepts above have been recently successfully appliedto MIMO communication theory.

Migliore [18] has shown thatηs represents an upper bound to the ENDF of the MIMO channel.

Such a result is obtained by expressing the channel matrixH in terms of the physical radiation

operator (Green’s function) that relates all the electromagnetic sources insideB to the scattered

field measured onM. Then, due to the compactness of the radiation operator, it is possible to

perform a singular value decomposition (SVD) of the channelmatrix H and view the continuous

space MIMO channel as a finite number of independent SISO subchannels which cannot exceed

ηs. The evaluation of the channel capacity then follows from standard information-theoretic

arguments [2], and assuming that the number of receiving andtransmitting antennas is large

enough to convey the whole information content that the electromagnetic field can carry, we

have

C =

ηs
∑

i=1

log

(

1 +
P ∗

i l2i
NN

)

[bits/s/Hz], (4)

whereNN is the power spectral density of the additive white Gaussiannoise in the time evolution,

P ∗

i , i = 1, ..., ηs, are the water-filling power allocations [28], andl2i , i = 1, ..., ηs, are the singular

values of the channel matrixH, i.e., the power gains of each of theηs SISO subchannels. We

let the overall transmit power constraint be
ηs

∑

i=1

P ∗

i ≤ P. (5)

Now, if the communication modes are the same, i.e.,l2i = l2j , i, j = 1, ..., ηs, then the water-

filling power allocation requires that equal power is allocated to all SISO subchannels and (4)

becomes,

C = ηs log

(

1 +
P

ηsNN

)

[bits/s/Hz]. (6)

Above equation shows that the increase in capacity in MIMO communication is due to the

exploitation of the electromagnetic spatial wave diversity: it is clear that even if one adds more

and more receiving and transmitting antennas, at a given frequency and for the prescribed system

geometry, i.e., for a givenηs = 2Ωa/λ, equation (6) represents a physical limit.
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The above results hold under the assumption of narrow-band signals. The aim of this work is

to deal with the more general case where the electromagneticfield radiated byB is defined on

a non-zero frequency range,Wt = fmax − fmin.

Before proceeding further, let us write the power constraint in the frequency domain. The

primary field sources, along with the polarization currents, are uniformly bounded. It follows

that the power associated to the electromagnetic wave radiated by the ballB is bounded as well,

and we can write:
∫ fmax

fmin

NS(f)df ≤ P, (7)

NS(f) being the power spectral density of the radiated field, i.e.,the signal conveying the

information in the MIMO channel.

III. COMPUTATION OF THE CHANNEL CAPACITY

In order to estimate the channel capacity, let us decompose the signal outgoing the ballB as

a sum of narrowband frequency bins. Thei-th component is defined on a range∆f = fi+1 − fi

and carries powerPi = NS(fi)∆f according to the following constraint:

lim
∆f→0

n(∆f)
∑

i=1

NS(fi)∆f ≤ P, (8)

wheren(∆f) = Wt/∆f , f1 = fmin, andfn(∆f) = fmax − 1.

We now process each one of these narrowband components separately according to the outline

provided in the previous section. The capacity ofi-th frequency bin according to (6) is

Ci = ηi∆f log

(

1 +
Pi

ηi∆fNN

)

[bits/s], (9)

ηi being the number of spatial degrees of freedom of thei-th frequency bin. We explicitly observe

that ηi depends on the given frequency bin we are considering,

ηi = 2Ω

(

a

λi

)

= 2Ω
(a

c

)

fi, (10)

c being the velocity of propagation of the wave. Accordingly,it is convenient to rewrite (9) as

follows,

Ci = αfi∆f log

(

1 +
Pi

αfi∆fNN

)

[bits/s], (11)
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where

α = 2Ω
(a

c

)

(12)

is a system parameter that takes into account the size of the radiating ballB and of the observation

domainM.

We now want to find the optimal power allocation that maximizes the sum of the capacities

of each frequency bin, when the bin-width tends to zero. Accordingly, assuming the channel to

be flat in frequency, we have

C = max
NS(f)







lim
∆f→0

n(∆f)
∑

i=1

Ci







= max
NS(f)







lim
∆f→0

n(∆f)
∑

i=1

αfi∆f log

(

1 +
Pi

αfi∆fNN

)







[bits/s], (13)

NS(f) being constrained by (7). Now, in order to write (13) as an integral, we can writePi =

NS(fi)∆f , leading to

C = max
NS(f)







lim
∆f→0

n(∆f)
∑

i=1

αfi∆f log

(

1 +
NS(fi)

αfiNN

)







= max
NS(f)

∫ fmax

fmin

αf log

(

1 +
NS(f)

αfNN

)

df [bits/s]. (14)

Thus, taking into account the power constraint (7), the original problem of computing the

channel capacity can be recast as the following constrainedoptimization problem:


















































C = max
NS(f)

∫ fmax

fmin

αf log

(

1 +
NS(f)

αfNN

)

df,

s.t.

∫ fmax

fmin

NS(f)df = P, NS(f) ≥ 0.

(15)

The above problem can be solved by applying standard variational calculus methods [29]. We

defineηs andW s as the number of degrees of freedom and the spatial bandwidthat the average

DRAFT



8

frequencyfav = (fmax + fmin)/2 respectively, i.e.,

ηs ≡ αfav = 2Ω
(a

c

)

fav, (16)

and

W s ≡
2πa

λav

=

(

2πa

c

)

fav. (17)

The optimal power allocation is given by

Nopt
S (f) =

(

2P

f 2
max − f 2

min

)

f

=

(

P

favWt

)

f, (18)

wherefmin ≤ f ≤ fmax, which results in the capacity

C = ηsWt log

(

1 +
P

ηsWtNN

)

=
ΩW sWt

π
log

(

1 +
πP

ΩW sWtNN

)

[bits/sec]. (19)

IV. PHYSICAL CONSIDERATIONS ON THE POWER ALLOCATION STRATEGY

Let us first fix the bandwidthWt, i.e., the time diversity of the system, and study the behavior

of Nopt
S (f) for different values of the average frequencyfav. We want to analyze how a change

in the spatial diversity affects the optimal power allocation. The situation is depicted in subfigure

(a) of Figure 2, where we observe that the slope ofNopt
S (f) decreases asfav increases, becoming

flat in the limit of fav → ∞. In order to provide some intuition for this behavior, we canquantify

the gap between the number of degrees of freedom associated to the frequenciesfmin andfmax

as,

∆η ≡
ηs(fmax) − ηs(fmin)

ηs

=
Wt

fav

. (20)

By (20) it is clear that for low values offav, the gap is larger and it is convenient to favor the

high frequencies within the band, so that the power is allocated linearly in frequency and with

a very high slope. On the other hand, whenfav increases,∆η decreases, so the gain obtained

by allocating more power to the frequencies approachingfmax decreases and the signal power

allocation becomes flat in frequency.
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Next, we fix the frequencyfmin and analyze the behavior ofNopt
S (f) when fmax increases.

This situation is depicted in subfigure (b) of Figure 2. The slope of Nopt
S (f) decreases asWt

becomes larger. Such behavior is due to the need of spreadingthe limited power over the whole

channel’s frequency spectrum. While for lowWt values we are still able to exploit the space

diversity of the system by allocating more power at the higher frequencies, asWt increases it

becomes more and more difficult to simultaneously exploit time and space diversities. In the

limit case ofWt → ∞ we obtain a uniform power allocation, spread over the whole bandwidth,

as in the case of UWB SISO systems [30].

V. PHYSICAL CONSIDERATIONS ON THE CHANNEL CAPACITY

It is easy to see that when either the average space (W s) or the frequency (Wt) band tends to

infinity, (19) is bounded by

C∞ =
P

NN ln(2)
, (21)

whereC∞ also corresponds to the capacity of a SISO UWB channel [28].

We now focus on the role of the average spatial bandwidth in (19). With reference to Figure 3,

let us fix a given frequency bandwidthWt. We observe that the capacity increases compared to

the corresponding SISO system by increasingW s, i.e., by increasing the size of the radiating

ball with respect toλav = c/fav. In the limit W s → ∞, the spatial information content of the

transmitted signal is maximized and the capacity tends toC∞. This is the corresponding of the

UWB channel in the spatial domain.

It is worth pointing out that asW s → ∞ the capacity tends toC∞ for any fixed frequency

bandwidthWt, meaning that in the limit of large spatial band there is no additional gain in

exploiting a wide frequency bandWt.

We finally want to spend a few words on the role of the angular size of the observation domain

M. SinceΩ can not exceed2π, we have

C ≤ 2W sWt log

(

1 +
P

2W sWtNN

)

[bits/sec]. (22)

This inequality also holds for observation domains of arbitrary shape. Indeed, with reference

to narrowband signals, the work of [27] introduced the notion of local bandwidth measured in
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terms of the angular coordinate of the observation domain tothe center ofB, and has shown

that a variable sampling rate, which changes according to the value of the local bandwidth on

the observation domain, leads to a minimum total number of significative samples which is

independent of the shape of the observation domain and cannot exceed2π(2a/c)f . This upper

bound on the number of degrees of freedom is achieved by any closed line embracing the whole

scattering system, confirming the intuition that a closed line allows to intercept all the information

flow outgoing the radiating ballB.

VI. CONCLUSIONS

In this letter, the physical limit of the information capacity of a MIMO system transmitting

over an arbitrary frequency band has been studied. Our results rely on the electromagnetic wave

diversity limits of [25], [26], and build upon the recent works [11], [18], [21], [22] dealing with

the narrowband case.

It has been shown that the maximum physically achievable information rate is bounded by

C∞ and can be achieved in two limiting cases. In the first case, time diversity is maximized as

the frequency bandwidth used for transmission tends to infinity. This is the UWB SISO case, for

which there is no additional gain in using more than one transmitting and one receiving antenna.

On the other hand,C∞ can also be achieved by increasing the spatial bandwidth, i.e., the size

of the scattering system with respect to the wavelength at the average signal frequency. Such

channel configuration can be seen as a spatial UWB channel, for which no further increase in

the capacity can be obtained by increasing the frequency bandwidth.

In contrast, when neither the spatial bandwidth nor the frequency bandwidth tend to infinity,

information transmission can rely on both spatial and temporal diversity, and there is an advantage

with respect to channels exploiting only one kind of diversity.
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Fig. 1. Problem geometry. Transmitters (denoted as points) and the scatterers are enclosed in the radiating ballB, while

receivers are located on the observation domainM, external toB.
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Fig. 2. Optimal signal power allocation. Subfigure (a): the frequency bandwidthWt is fixed and the plot is parametrized by

different values offav, increasing from left to right. Subfigure (b):fmin is fixed and the plot is parametrized by different values

of fmax increasing from left to right.
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