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ABSTRACT

We address the problem of optical ray propagation in an inhomogeneous half-plane lattice, where each cell can be
occupied according to a known one-dimensional obstacles density distribution. A monochromatic plane wave
impinges on the random grid with a known angle and undergoes specular reflections on the occupied cells. We
present two different approaches for evaluating the propagation depth inside the lattice. The former is based on the
theory of the Martingale random processes, while in the latter ray propagation is modelled in terms of a Markov
chain. A numerical validation assesses the proposed solutions, while validation through experimental data shows that
the percolation model, in spite of its simplicity, can be applied to model real propagation problems.

1. INTRODUCTION

In principle, the electromagnetic wave propagation is fully described by the classic electromagnetic theory. However,
in several fields of applied science, such as mobile communication, remote sensing and radar engineering, we often
have to deal with very complex propagation media, whose characteristics fluctuate both in time and space.
Accordingly, providing an analytical solution by applying the Maxwell equations turns out to be an impracticable or, at
least, very time-expensive way to solve the problem and the use of approximate methods is mandatory.

In the framework of mobile communication, many site-specific numerical methods have been proposed (for a general
overview, see [1] and references cited therein). Such solvers, normally based on a ray-tracing procedure [2], exhibit
several limitations, mainly related to the required amount of processing time and information on the propagation
environment. Moreover, such models are ad-hoc tailored on a specific area.

A complementary approach consists in developing random models of the area of interest, characterized by few
meaningful parameters. Waves in such environments vary randomly in amplitude and phase and they are accordingly
described in terms of statistical averages and probability densities. As far as electromagnetic propagation in urban
areas and indoor environments is concerned, several models have been proposed (see as examples [3]-[5]). Such
models do not provide very accurate propagation predictions but they turn out to be extremely simple and allow
figuring out closed-form analytical formulas that mathematically explain how media affect propagation.

In such a framework, we consider the problem of the optical ray propagation in a half-plane percolation lattice [6].
The idea of applying such model for characterizing a medium of disordered scatterers was originally proposed in [7],
where the urban environment has been described in terms of a uniform random lattice. Now, we focus on the
inhomogeneous case, where each cell of the lattice can be occupied according to a known obstacles density
distribution, q; =1-p;, j being the row index. Assuming grid cell dimension to be large compared to the wave-

length, we model the incident plane wave impinging on the half-plane grid with an angle € in terms of a collection of
parallel rays that undergo specular reflections on occupied cells. In such a situation, our aim is estimating the
probability Pr{O - k} that a ray penetrates up to a prescribed level k inside the lattice before being reflected back in

the above empty half-plane, see Fig. 1.

We present and compare two different mathematical approaches, leading to closed-form analytical formulas. The
former, presented in Section 2 and referred to as Martingale approach (MTG), is an extension to the non-uniform case
of that proposed in [7]. Such an approach exhibits some limitations, especially when abrupt discontinuities in the
density distributions of the obstacles are taken into account. In Section 3, we propose an alternative solution, i.e., an
innovative approach based on the Markov chains theory [8] and accordingly referred to as Markov approach (MKV).
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Selected numerical results, reported in Section 4, assess the effectiveness of the proposed methods, demonstrating
that the MKV approach outperforms the MTG approach. Section 5 deals with experiments carried out in a real
controlled environment, showing that in spite of its simplicity the percolation model can be applied to real
propagation problems. Final comments and conclusions are drawn in Section 6.

Figure 1. Examples of propagating rays in a random half-plane lattice.

2. MARTINGALE APPROACH

We model the propagation of a single ray as a realization of the stochastic process

n

M= > X n>1, (1)
m=1

where " is the level where the n-th reflection takes place, completely defined by the succession of ray-jumps X

m=1...,n.

Now, let us express Pr{0—> k} in terms of the probability mass function of the first jump Pr{r1 = i} and the

m’

probability Pr{i - k|i} that the ray reaches level k before escaping from the grid given that it starts moving from level

i. We get

pri, = ijPrfi > Ki}. 2)

Pr{O - k}:
i=0
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As far as Pr{r, =i} is concerned, we easily obtain
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In Eq. 3 pe*j = p}‘*”gpj+l =1—qe+j is the effective probability that a ray, travelling with positive direction, freely

crosses level j and reaches next level j+1.
As far as the second term in Eq. 2 is concerned, in the trivial cases 1, =0 and r; >k we get Pr{i - k|i}: 0 and

Pr{i - k|i}= 1, respectively. When the first reflection takes place at a generic level between 0 and k a deeper analysis

is needed. In [7], the authors applied the theory of the Martingale random processes [9] and the so-called Wald
approximation, showing that under the assumptions of independent, identically distributed and zero-mean jumps,

Prii - K|i}=i/k, 0<i<k. (4)

A little thought shows that this means evaluating the unknown by using a distance criterion. As a matter of fact,
Pr{i — k|i} is assumed to be directly proportional to the distance between the level i where the first reflection takes



place and the absorbing level k. On the other hand, Pr{i - O|i}, i.e., the probability that the ray escapes from the

grid, is assumed to be directly proportional to i, the distance between the first reflection row and the above empty
half-plane. Thanks to the mutual exclusivity of the two events, Eq. 4 follows.
Now, we observe that in the problem at hand if the ray is travelling with negative direction inside level 1, then it surely
escapes from the grid, since there are not occupied horizontal faces between level 1 and level O (see left-hand side of
Fig. 1). Accordingly, Eq. 4 is modified as follows

Pr{i—>k|i}:';1, 1<i<k. (5)

Clearly, Eq. 5 does not hold for the case r; =1, that must be handled separately. We introduce the process

n
r= > Xm' nx>1, (6)
m=1

n='s4n’ Se [0, tan @ +1] being the number of ray jumps occurring in the first level, and we write

where

PriisK1l= ¥ Pr{Fl =il =1}Pr{i Skl (7)
i=2

To evaluate the first term of Eq. 7, we observe that the ray reaches level 2 with at least one reflection in the first level
if the vertical face between level 1 and 2 is free (event with probability p,) and at least one of thetan & vertical cells

in level 1 is occupied (event with probability 1— plta“‘g ). According to such considerations, we can write

tan@ i
Prif; =il =1}=plp2(14_+pl)q; 'Hlp;-- (8)
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Figure 2. Markov Chain modeling ray propagation inside a non-uniform random lattice.

By substituting Egs. 3, 5, and 7-8 into Eq. 2, after similar algebra as in [10] we obtain as final result

Pr{o - k} =
Py k=1
=1 (imayict okt ©)
pyp Zq,(—jnp_+np,, >
2o ik-15227% 22 ¢



In the particular case of a uniform random grid, Eq. 9 takes the form

P, k=1

Prioskj={ o1~ p'e‘_l (10)

e k2
dg (k1)

that is a slightly different result than that in [7].
Some key-issues on the range of validity of Egs. 9 and 10 must be pointed out. As stated before, in order to apply the
Martingale random processes theory, ray jumps following the first one must be independent, identically distributed

and zero-mean. By analyzing the probability mass function of the jumps X N > 2, it can be shown that this

assumption holds true when either (a.1) 8 =45° or (a.2) n —  and (b) if the occupancy profile does not present
abrupt changes and significant variation in the levels of the lattice [10].

However, we can intuitively get the same conclusions by observing that ray jumps following the first one are
considered as a unique mathematical entity, see Eq. 2, and by remembering that this quantity is evaluated by using a
distance criterion. It is easy to guess that these assumptions do not allow to detect abrupt discontinuities and changes
in the obstacles density profile and they satisfactorily perform when we consider symmetric configurations, where the

ray hits vertical and horizontal faces with the same probability (& = 45° ) or the grid is so dense that a large number of
reflections is required before the ray reaches level k or it escapes from the grid.

3. THE MARKOV APPROACH

We proceed by transforming the two-dimensional ray propagation problem in a simple one-dimensional random walk
problem that does not depend on the incidence angle 6.

Firstly, we observe that whenever a ray hits an occupied vertical face, its vertical direction of propagation does not
change. Thus, since our aim is estimating the propagation depth, we just consider reflections on horizontal faces.
Now, we assume that the ray never crosses cells that it has already gone through. Accordingly, propagation in the
vertical direction occurs with steps that are independent of each other. In particular, a ray travelling into a generic
level j either remains in the same level, changing its direction of propagation, or it reaches a new level, keeping the
same direction of propagation. If the ray is travelling with positive (negative) direction, such events occur with
probability qj+1 (qj_l) and pj +1 ( pj _1), respectively. This situation is formally described by the Markov

Chain [8] depicted in Fig. 2, where states j’L and j~ denote a ray travelling in level j with positive and negative

direction, respectively.
We state our main result (see [11] for a detailed proof) as follows,

P1P2

Pri0 > k= 11
-k} s g a (11)
Y2 Zampi_g
In the case of a uniform grid, Eq. 11 reduces to
p2
Pri0 > kj=—t—. (12)
(k-2)q+1

We note that Egs. 11 and 12 are much simpler than the corresponding Egs. 9 and 10, being independent on the
incident angle 4.

As far as the range of validity of Eqs. 11 and 12 is concerned, some observations are appropriate. In order to describe
ray-propagation by means of the Markov Chain depicted in Fig. 2, we have assumed that the ray does not go through
already encountered cells. Cleary, such an assumption does not always hold true. In particular, we expect that Eq. 11

is more accurate as the obstacles are more sparse and the incident angle @ is closer to 45°. As a matter of fact, when



6 is far from 45°, the ray is more likely to cross the same cells whenever a reflection occurs, while if the lattice is
dense, repeated reflections over the same few cells occur with a high probability.

4. NUMERICAL VALIDATION

In order to validate and compare the proposed solutions, an exhaustive set of numerical experiments has been carried
out. As a reference, the propagation depth has been estimated in the first K =32 levels by computer-based ray-
tracing experiments [7].

We define prediction error 5k and mean error <5> as

) ‘PrR {o —>rk}— Prp {o > k}{

max|Pre, {0 — k|| x100,
k

(13)

Sy

1
<®_?k (14)

where the sub-scripts R and P indicate the values estimated with the reference approach and by means of either Eq. 9
or Eq. 11, respectively.

The first test case is aimed at analyzing the role of the incidence angle and of the scatterers density in determining the
solution accuracy. Towards this end, we consider two homogenous occupancy profiles, the first modelling very sparse
media (g =0.05) and the other very dense ones (q=0.35). With reference to Figs. 3 and 4, we observe that the
accuracy of the MTG approach increases when we consider occupancy probability values approaching the percolation

threshold [6] (for instance, when @ =45° and @=75°, we get <5>q _0.05 =3:87% vs. <5>q _ 035 =0.56% and

<5>q —005 = 19.57% vs. <5> 5 =1.45%, respectively). As a matter of fact, in high dense media a ray tends to

g=03
be reflected many times before reaching level k or escaping from the grid. On the other hand, the MKV approach
describes very well the propagation when g=0.05 (for 8 =45° and 6=75° we get <5> =0.23% and <5> =0.8%,

respectively), while performances get worse for g=0.35 ((5) =2.2% for 6 =45° and <5> =3.99% for 6=75°).
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Figure 3. Uniform random lattice with q=0.05: prediction error 5k versus k for different 8 values.
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Figure 4. Uniform random lattice with q=0.35: prediction error 5k versus k for different 6 values.

Other relevant observations are the following. Both approaches get the best results when € = 45°. For g=0.05 the
MTG approach evidently outperforms the MKV approach, while when g=0.35 the performances are comparable.
Finally, the MKV approach is more stable with respect to both the incidence angle # and the lattice depth k, especially
for low g values.

A second test case is devoted at showing the role of the slope intensity and discontinuities in the obstacles density
profile. Towards this end, we fix the incidence angle to @ = 45° and we consider two representative profiles. The first
one is a double-exponential profile

O.4exp[(j ~16)-13.86-10~ 2} j<16

q; = (15)

J O.4exp[(16—j)~13.86-10_2} j>16

with parameters chosen in order to get with a significant variation along the lattice depth, i.e, 4y =031 = 0.05 and

U1 = 0.4 . The second one is a step-like profile that presents an abrupt discontinuity,

_ {0.05, j<8 16

9 Y035, j>8

The plots of the obtained results are shown in Figs. 5 and 6. It is evident that the MKV approach performances do not
depend on significant variations of the density profile along the lattice levels and they are not even affected by

discontinuities. As a matter of fact, the mean errors obtained in correspondence with the step profile (<5> =1.64%)
and the exponential profile (<5> =1.09% ) are lower than that of the uniform profile with q=0.35 (<§> =22%). On
the contrary, the MTG approach completely fails (<5> =11.28% and <§> =17.86% for the exponential and the step,

respectively), since in such a case the ray jumps following the first one are considered as a single mathematical entity,
while in the MKV approach each single vertical jump is taken into account.
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Figure 5. Double-exponential profile: Pr{O - k} versus k for § = 45° .



1= T T T '
\\ MTG a[;proach
TR MKV approach -
e Experiments  +
& 05F L
o \ T~
& Y —
* T —
LN ——
e
e
0 ‘ ‘ ‘ R b
0 4 8 12 16 20 24 28 32

Figure 6. Step-like profile: Pr{O - k} versus k for 6 = 45° .

5. EXPERIMENTAL VALIDATION

In order to assess the applicability of the percolation model to real propagation problems, our results have been
compared to experimental data collected in an anechoic chamber. We have placed polystyrene cylinders filled with a
metallic film in a grid of K=10 rows and /=10 columns, realizing S=20 different grid configurations described by the
following linear obstacles’ density profile

q; =01+ 3.125.1073 (17)

and we have illuminated the scenario with a horn antenna. Detailed description of the experimental setup is provided
in [10]. We explicitly note that Eq. 17 is representative of a slowly variable profile neither too dense nor too sparse,
and thus, both MTG and MKV are expected to satisfactorily perform.

For comparison purposes, we fit our probability distributions to actual measurements data as follows

1 <PF{S (k)>Pr{0—> k}] [B8] (18)

(PL(K)) = —10|og10[P—
.

where PT is the transmitted power and <PRfS (k)> is the free space received power at row k averaged with respect

to /. On the other hand, we can estimate the expected path loss from the collection of measurements performed
when the cylinders are placed in the grid

I S
(PLO) = -10l0g | == T 3 PT(kiss) |[0B]  (19)
PrIS;Zq._
T i=1s=1
Pr' (k,i;s) being the power measured at site (k,i) in the s-th grid realization.
The results obtained by applying Eqgs. 18 and 19 are plotted in Fig. 7. Whatever the approach, we observe a good

fitting between theoretical and reference data, despite inevitable measurements inaccuracies and the experimental
setup that turns out to be very different from the ideal geometry assumed in deriving Egs. 9 and 11 [10].
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Figure 7. Estimated and reference path loss values.



6.

CONCLUSIONS

We have studied ray propagation in inhomogeneous half-plane random lattices by presenting two different analytical
approaches, the first one based on the theory of the Martingale random processes and the second one modeling ray
propagation in terms of a Markov chain. Both mathematical considerations and numerical Monte-Carlo-like
experiments have shown that the MKV approach outperforms the MTG approach, the latter one working better only
in correspondence with highly dense and slowly variable profiles. Finally, a validation through experimental data
collected in a real controlled environment has assessed the applicability of the percolation model and of the assumed
propagation mechanisms to real propagation problems.
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