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Abstract

In this work the problem of the localization, shaping and dielectric permittiviy re-
construction of dielectric targets is addressed. The scatterers under test are inho-
mogeneous cylinders of arbitrary cross sections probed by a set of incident elec-
tromagnetic fields of TM type. The scattered field data are processed in order to
locate and roughly recover the objects’ shapes. Then the scatterers under test are
reconstructed with an increasing accuracy by means of an iterative multi-scaling
procedure until stationary reconstructions are achieved. The proposed method is
presented jointly with a modified conjugate-gradient inversion procedure in order to
minimize the arising cost function. However, this methodology is independent from
the minimization algorithm and other and more efficient algorithms can be used.
In order to assess the effectiveness of the iterative multi-scaling method, the results
of several test cases (with and without noise) are presented and discussed in more

detail.

Index Terms - Microwave imaging, inverse scattering, iterative multi-scaling method.



1 Introduction

The problem of the localization and the dielectric reconstruction of unknown targets
from the measurement of the scattered field is a topic of great interest in the framework
of microwave imaging techniques (see [13] and the references therein) based on inverse
scattering methodologies [1]-[3]. Moreover, many problems occurring in various areas of
applied science, such as biomedical engineering [5], medicine [6][7], non destructive testing
for the industrial production [8], buried objects detection and reconstruction [9]-[11] can
be mathematically formulated as inverse scattering problems (see [12]| for a complete
overview). However, severe limitations in obtaining accurate reconstructions are due to
some intrinsic drawbacks of the inverse scattering problem [14], [15] jointly with the
feasibility of efficient illumination and measurements systems.

By a mathematical point of view, three main topics must be preliminary addressed
in order to define an efficient reconstruction procedure: the uniqueness of the solution,
the ill-posedness and the intrinsic nonlinearity of the problems. As far as the uniqueness
is concerned, the dielectric profile of the object under test results uniquely defined only
if pressing requirements (very difficult to be achieved in real situations) are verified [16],
[17]. Generally speaking, the non-uniqueness and the ill-posedness drawbacks of the
inverse problem are due to the limited amount of information that can be collected. In
fact the number of independent data achievable from the measurements of the scattered
field is essentially limited [24]. It leads to the conclusion that the space of the unknown
is of finite dimension and consequently only a finite number of parameter of the unknown
contrast can be accurately retrieved.

In order to recover a solution of the inverse scattering problem, a generalized solution
is then defined by searching for approximate solutions satisfying additional constraints
coming from the physics of the problem. This additional information is necessary in order
to compensate the loss of information due to the imaging process [25]. To this end, a

suitable cost functional is defined, whose global minimum is assumed as the reconstructed



profile.

On the other hand, due to the multiple scattering phenomena, the inverse scattering
problem results nonlinear [15] as well as the arising cost function. The nonlinearity can be
avoided for a certain limited real cases for which a linear relationship between the scattered
field and the object under test can be found [18]. However, when multiple scattering effects
is not negligible as is the case for large or highly contrasted objects, the use of nonlinear
methodologies is mandatory. A lot of very effective optimization strategies have been
proposed. These techniques can be grouped into deterministic (e.g., the modified gradient
approach [19] or the distorted-Born iterative method [20]) or stochastic methods (e.g., the
simulated-annealing procedure [21] or the genetic-algorithm based approaches [22]).

This paper presents a method located in the framework of optimization techniques
and aimed at better exploiting all the available information. Analogously to standard
optimization techniques, the proposed methodology uses the additional information (ex-
pressed in form of constraints on the solution) at the start of the iterative procedure to
construct approximate solutions. But successively the procedure iterates a sort of zoom
inside the investigation domain introducing a sort of “acquired” information about the
scatterer under test (information achieved at the previous reconstruction steps). That
helps to locate the scatterer inside the investigation domain and at the same time to
reallocate all the available a-priori information in order to achieve a finer reconstruction.

In the next sections the proposed technique will be widely illustrated. After the
mathematical statement of the problem and an analytical description of the iterative
multi-scaling procedure (Section 2), some numerical experiments will be shown in Sec. 3.
Dielectric scatterers various in shapes, dimensions and permettivities will be considered
in order to accurately evaluate current potentialities of the proposed method. Finally

(Section 4) some conclusions will be drawn and possible future developments pointed out.



2 Mathematical Formulation

Let us consider a cylindrical object belonging to an investigation domain, D (Figure
1). The target is illumined by a finite set of incident electromagnetic fields of TM type

(EY,.(r) = E! . (x,y)2; v = 1,..,V). The scattered electric field is collected at M®)

mc mc

different measurement points, located in an observation domain, D, external to the

investigation domain (E2,.,(r) = Eluy(Tme,, > Yme, )2 My = 1, ..., M),
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Figure 1. Imaging configuration.

The material properties of the dielectric object are modeled by means of an object function

7(x,y) defined as follows

o) = erlo) =1 - 55 )

being €, (x,y) and o(x,y) the dielectric permittivity and the electric conductivity, respec-

tively. A lossless non-magnetic background medium, characterized by a dielectric per-



mittivity g, is assumed. The interactions between scatterer and probing electromagnetic

fields are described by means of the inverse scattering equations [26]

v kg v 2
Escatt (xm(v)’ ym(v)) =J TO f fD T(l‘lv y,)Etot (l’,, y,)H(g )(kgpm(v))dl‘ldyl (l‘m(v) ) ym(v)) S DObS

Bl (2,y) = Bl (2 y)) + 552 [ [y r (2 ) By (!, o VHS (kop)da'dy’  (w,y) € D
v=1,.,V

where kg is the background wave number, and HSZ) is the Oth second kind Hankel func-

tion being py,,, = \/(x — xm(v))2 + (y — ym(v))2 and p = \/(x —2")* + (y — ¢')*. In order
to numerically solve the addressed inverse scattering problem, equations (2)-(3) are dis-
cretized according to the well-known Richmond’s procedure [27]. The investigation do-
main D is discretized into N square subdomains. The electric field and the object function
are constant quantities in each subdomain and equal to E},(x,, y,) and 7(z,, y,), respec-
tively. Then, the following algebraic system is obtained

N
E;}catt (:Um(v)7 ym(v)) Z { xna yn tot (l'n, yn)GQd (pnm(v))} m(v) = 17 T M(U) (4)

n=1

N
B (@, yn) = Efy(Tn, yn) + Z {T(xqa yq)Efot(xqa yq)G2d(pnq)} n=1,.,N (5)

q=1

( ) [ko\/ﬂHl (ko éf) _2j] ifp=n

e V2Aq7rH0 (kopng) 1 (ko ér" otherwise

G (A"’ p”m(v)) - MH(@ (kop"mm) h (ko\/%) (7)

being HI(Q) first-order Hankel function of the second kind, J; the Bessel function of second

where

G2d (Aqa pnq) = (6)

kind, and A,, the area of nth sub-domain.

Generally, in order to obtain a solution of the arising multi-objective problem, a suitable
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cost function is defined as follows
{71 (Tp,yn), By (Tnyyn);n=1,..,N;v=1,...,V} =

{ZUV:l St | Bate (T Yy ) = Tt {7 (s 90) By (@, yn) Goa (An, pnm(v))}f} +
{ vt Lonet ‘Ezvnc (Tns Yn) — [Ez}ot (Tns Yn) + Zévzl {7 (24, Yq) Bty (74, Yq) G2a (Ag, an)}] ‘2}
(8)
and successively minimized according to an optimization strategy [29], [30], [31], [32].
The proposed methodology is independent from the definition of the cost function and
also from the minimization algorithm. The method is aimed at better resolving the
object function distribution by considering a multi-resolution iterative process. At the
first step of the of the inversion procedure (s = 1), a “coarse” profile of the object function
distribution is looked for and the same resolution level, R = 1 (being R the index of
the resolution level), is considered in any part of the investigation domain. Then, on
the basis of the first reconstruction, a “zoom” (by using the acquired a-priori information
about the scenario under test) is performed in the region where the unknown scatterer has
been detected. Iteratively the procedure is repeated until a “stationary” reconstruction is
achieved.
In more detail, at each step of the iterative process, by means of the acquired a-priori
information (achieved at the previous steps), the scatterer under test is localized and a

zoomed square investigation domain, D(;_1), centered at

N
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is defined, being (xn(r), ynm) the center of the square sub-domain (/(,y-sided). According
to a multi-resolution strategy, an higher resolution level (R = s) is adopted only for the
reduced investigation domain. D,_y) is discretized in Ng square sub-domain [,-sided
(I, < l(r,l)). The number of discretization domains is chosen equal to the essential
dimension of the scattered data. The up-graded permittivity profile is then retrieved by

minimizing the multi-resolution cost function, ®©), defined as follows:

) {T (x"(r)’y”(r ) ) E;}ot (xn(r)7yn(7‘)) r=1,.,R=s; Ny = 1,. N(r)ﬁ v=1,.., V} =
{Z)le = ‘ESC““ («Tm(v),ym(v ) - XL T]LV((:)) 1{ (x”(rwyn(r) (‘T”wynm)

Ny

By (mn(r)v yn(r)) Gaa (An(rw pn(r)m(v))}‘Q} { -1 X E"(r):1
{w (l‘n(rﬂ yn(r)) ‘Ezvnc (l‘n(r)7 yn(r)) - [Etvot (l‘n(r)7 yn(r))
Eq( =1 {T (ququm) Ei, (xqu%)) Gaa (Aqm’p%n(r))}] ‘}2}

where, w, is a weighting function

0 if (Tng)Ung,) & Dism)

w (mnwyn(r)) - 1 if (xn(r)Jyn(r)) € D5

and A4, == (l(,n))2 is the area of the nth cell at the Rth resolution level.

n(r)

The multi-resolution procedure is iterated until a “stationary condition” for the quanti-

tative imaging of the scatterer under test is achieved (s = S,,). This condition hold

when
o [l
(s) £s+1) - y£8)
and

{‘LS+1 Ls)
77L =N\

x 100 b < 1z (15)
L(s-H)

. Figure 2 summarizes the iterative multi-resolution procedure by means of a pictorial

representation.



Figure 2. Iterative Multi-Resolution Schema.
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3 Numerical Results

In this section, in order to asses the effectiveness of the proposed method, the results
of several numerical simulations are reported. The behavior of the proposed method
is illustrated by considering three different class of scatterers: irregular homogeneous

scatterers, circular homogeneous scatterers, and inhomogeneous scatterers.

3.1 Definitions

Before presenting the set of illustrative test cases, some quantities, used in the numerical
analysis, are defined. In order to evaluate the local and global reconstruction accuracy,

let us consider the following error figures

{T(x”(”’ y"(T)) _ 7-Tef(x"(r)’ yn(r))

x100 R=8S,,  (16)
Tref (xn(r)a yn(T)) } v

where 7 and 77/ are the values of the actual and reconstructed object function, respec-
tively; N((Z)) can range over the whole investigation domain (j = tot), or over the area
where the actual scatterer is located (j = int), or over the background belonging to the
investigation domain (j = ext).

Moreover, let us define the “local error”

‘T(x“m Yniy) =T (@) y"(r))‘

‘Tref (l‘n(r) ) yn(r))

for each discretization cell of the investigation domain.
As far as the assessment of the effectiveness in the qualitative imaging of the geometry

under test is concerned, the following parameters are defined
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(18)

L - Lre
A:{M}XIOO (19)
Lref

The presence of a noisy environments is also taken into account by considering an additive

Gaussian noise characterized by a signal-to-noise ratio defined as follows

2
v M v
v=1 Zm:l ‘Escatt (xm(v)7 ym(v)) ‘

2
\%4 M
v=1 Zm:l ‘/‘L (l‘m(v) ) ym(v)) ‘

SNR = 10log (20)

being 1 a complex gaussian random variable with zero mean value.

3.2 Homogeneous Square Cylinder

In the first example, a lossless square scatterer L = 0.8 \p-sided, belonging to an inacces-
sible square investigation domain (Lp = 2.4 \), is located at 27/ = —y"®/ = 0.4 \y. The
object is characterized by an homogeneous distribution of the object function 7 = 0.5+750.0
(Fig. 3(a)). A set of V' = 4 unit TM plane waves (whose incident angles are given by
0;,. = (v—1)%, v =1,.., V) illuminated the investigation domain. For each illumination,
the scattered electric field data have been collected at M = 21 equally-spaced detectors
located on a circle p/, = 1.8 )\ in radius belonging to the observation domain. As far
as the inversion data are concerned, the values of the scattered field, E?, ,, (xm(v),ym(v)),
have been synthetically computed by using the Richmond’s procedure [27]. However, in
order to avoid the so-called “inverse crime problem” [28], a different discretization of the

investigation domain have been used for the direct procedure.

Figure 3 shows the evolution of the reconstruction obtained by means of the iterative
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multi-scaling approach. At the first step (s = 1), the investigation domain is partitioned
into N; = 36 square subdomains (I = 0.4 \¢) and the guess dielectric distribution is equal

to the background (7 = 79).

EE 2

0.536 Re{r (z,y)} 0.0 0.536 Re {7 (x,y)} 0.0
(a) (0)

EE 2

0.536 Re{r (z,y)} 0.0 0.536 Re {7 (x,y)} 0.0
(c) (d)

Figure 3. Reconstruction of an off-centered square homogeneous cylinder. (a) Reference distribution.

Reconstruction at intermediate steps: (b) s =1, (¢) s = 2. (¢) Final convergent profile (s = Sopt = 3).

At the end of the minimization process relative to the first step (performed by means of

a conjugate-gradient based procedure and stopped when a “stationary condition” in the



decrease of the cost function is achieved (see Fig. 4)), the scatterer is roughly localized

() = —y() = —0.22 \y) and shaped (Fig. 3(b)).
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Iteration nunmber (k)

Figure 4. Reconstruction of an off-centered square homogeneous cylinder. Behavior of the multi-

resolution cost function.

Then a reduced investigation domain L(;y = 1.76 A in side (Tab. I) is defined.

Step No. (s) 0 1 2 3 4
D 0.0 | —0.220 | —0.380 | —0.397 | —0.397
L 0.0 0.220 | 0.380 | 0.397 | 0.397
e 1.2 0.880 | 0.540 | 0.430 | 0.420

Table I. Reconstruction of an off-centered square homogeneous cylinder. Location and shape parameters.

At the second step two different subgridding are used, the finer resolution is used for

the reduced investigation domain found at the previous step. The reduced area is again
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discretized into N, = 36 square subdomains [, = 0.29 \; in side. Fig 3(c) shows the
object profile retrieved at the end of the minimization process of the second step. The
multi-scaling iterative procedure is repeated until s = S,,; = 3 when fixed thresholds
(empirically stated and equal to n, = 1%, n, = 1%, and n;, = 5%) are reached. The
unknown target results correctly located () = —0.397 )y, ¥ = 0.397 \¢) and the
occupation area of the actual object estimated with a good accuracy (Ls = 0.86 \g). The
method provides also a good reconstruction as confirmed from the values of the error

figures (Tab. II) which, at the final step, result no greater than 1.5%.

Step No. (s) 1 2 3
Vtot 4.37 0.82 0.12
Yint 11.25 .80 1.10
Vext 3.52 0.20 0.01

Table II. Reconstruction of an off-centered square homogeneous cylinder. Error figures.

For the same configuration, the effects of the noise have been taken into account. To
this end, a gaussian noise has been added to the data. The noise level ranges from 30 dB
up to 5dB. Figure 5 gives a representation of the reconstructed contrast for different
signal-to-noise ratio. The final convergent solutions for SNR from 30dB to 10dB are
reached after 3 scaling steps. Two steps are necessary when SNR = 5dB. As can be
observed, the multi-scaling method appears to be reasonably stable with respect to the
noise. It results that only extremely high noise levels yield some anomalies (Figs. 5(c)-
5(d)), but the location and the shape of the scatterer are still visible in the reconstructed
profile.

As far as the quantitative and qualitative imaging of the scatterer is concerned, some in-
formation about the error distribution can be inferred from Figure 6 where the histograms

of the behavior of the local error are reported.
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(c) (d)

Figure 5. Reconstruction of an off-centered square homogeneous cylinder. Retrieved profiles at s = St

when SNR is equal to (a) 30dB, (b) 20dB, (¢) 10dB, and (d) 5dB.

Each bar of the histogram gives the percentage of cells for which the local error y (being
Xtot, Xint » and Yez¢ related to the whole scattering domain, inside and outside the object
support, respectively) is negligible, between 3 and 10 percent, 10 and 20 percent, and
so on. For low noise levels (SNR > 20dB), about 100% of the cells are without error

(Xtot < 3%) and the internal local error results lower than 10%. When the signal-to-noise

15



ratio decreases the local error increases. The quantitative imaging does not result so

accurate as confirmed from the gray-level representation given in Fig. 5(¢) and 5(d).
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Figure 6. Reconstruction of an off-centered square homogeneous cylinder (Noisy data). Local error

behavior when (a) SNR = 100dB, (b) SNR = 20dB, (¢) SNR = 10dB, (d) SNR = 5dB.

Almost each cell belonging the area of the actual scatterer is affected by an error. However,
the local error is less than 3% in a large amount of the cells outside the scatterer. This
further confirms the effectiveness of the multi-resolution procedure in locating and shaping

the target under test.
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In order to evaluate the effect of the scatterer’s dielectric permittivity on the recon-

struction process, some simulations have also been performed. To this end, the dimensions

and the characteristics of the observation domain have been assumed as those used in the

first simulation, while the value of the relative dielectric permittivity of the object has

been varied between ¢, = 1.2 and ¢, = 3.0.
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0 1 1 1 1 1 1 1 1 1 1
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Figure 7. Reconstruction of an off-centered square homogeneous cylinder. Dependence of the (a)

reconstruction accuracy, (b) scatterer location, and (¢) object shaping from the scatterer’s dielectric

permittivity.
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The quantitative and qualitative imaging capabilities of the proposed procedure can be
inferred by observing Fig. 7 where the plots of 7, p, and A are given. As far as
the reconstruction of the dielectric profile is concerned, a good accuracy (Vi < 8) is
achieved in the whole range of variations of ¢, and for each signal-to-noise ratio (Fig.
8(a)). Starting from Re (1) = 1.2, the location error strongly depends on the value of
SNR, but in any case p results lower than 6 % (Fig. 8(b)). On the other hand, the error
in estimating the occupation area of the scatterer is limited to the range between 5%
and 20 %. It assumes a constant value (A =2 9%) when the measurement environment is
characterized by a low noise level (SNR = 50dB) (Fig. 8(c)).

To further assess the capabilities of a microwave imaging procedure, it should be taken
into account that the size of the object under test could affect the validity of the inversion
procedure. Consequently, another set of simulations has been carried out in order to
evaluate the suitability of the multi-scaling methodology to deal with smaller as well larger
(compared to the background wavelength) scatterers. The area of the square scatterer
(¢, = 1.5) has been varied continuously in the range between A = 0.1 )2 to A = 2.8 \2 and
various measurement conditions have been taken into account (SNR = 0.5 + 100 dB).
Figure 8 shows a pictorial representation of the error figures for different values of the
scatterer area and for various signal-to-noise ratios. Starting from Fig. 8(a), we can
observe that when SNR > 25dB, the reconstruction error is lower than 2% whatever
the object dimensions. On the contrary, when the signal-to-noise increases, v;,; strongly
depends to the scatterer area. As an example, assuming SN R = 10 dB, the reconstruction
error ranges from 2% to 10%. As far as the behavior of p is concerned, Fig. 8(b)
clearly indicates that the method is able to accurately locate the position of the scatterer
(p < 0.010 when SNR > 10dB). Generally, also the dimensions of the target are correctly
estimated. The occupation area error results equal to ~ 7.5 % independently of scatterer’s

dimensions and noisy conditions.
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Figure 8. Reconstruction of an off-centered square homogeneous cylinder (e, = 1.5). Dependence of the

(@) reconstruction accuracy, (b) scatterer location, and (c¢) object shaping from the scatterer’s dimensions.

3.3 Circular Cylinder

In this section, a dielectric profile, for which an analytical solution for the computation of
scattered field is available, is considered. An off-centered (z7¢ = y’¢/ = 0.3 \¢) circular

dielectric cylinder with a relative dielectric permittivity e,(z,y) = 2.0, 0.3 X in radius

19



has been located in the investigation domain. In the first set of numerical simulations, a
noiseless environment has been assumed. During the reconstruction process, Re {7 (z,y)}
can range between 0.0 and 2.0. Figure 9 shows a grey-level representation of the dielectric
distribution of the scatterer under test retrieved at the final step (S, = 3) of the multi-
resolution procedure. Also the actual distribution is shown (Fig. 9(a)). As can be

observed, the object is correctly located ( , = 0.301 A\g and Ye(sop) = 0.298 \g), shaped

xc(sopt

(@ = 0.324 )\y), and reconstructed (Vi = 9.022).

EEE

1.0 Re {7 (x,y)} 0.0 1.0 Re{r (z,y)} 0.0
(a) (b)

Figure 9. Reconstruction of a circular homogeneous cylinder (Noiseless conditions). (a) Reference

profile and (b) retrieved profile (s = Sope = 3).

Successively, a gaussian noise characterized by a SN R = 10 dB has been added to the
simulated scattered field at the measurement points. Figure 10 shows the reconstructed
results at the end of each step of the multi-resolution procedure. The final (S, = 4 being
it < ng, n{® < ny, and n(L4) < ng) retrieved dielectric profile is reported in Fig. 10(d).

As expected, the presence of the noise causes a deterioration of the reconstruction ac-

curacy (the maximum value of the dielectric permittivity is estimated to be equal to

20



max(zep 16-(7,y)} = 2.1), however the values of the error figures (Tab. III) result

acceptable also taking into account the high noise level.

B

1.2 Re {7 (z,y)} 0.0 1.2 Re {7 (z,y)} 0.0
(¢) (d)

Figure 10. Reconstruction of a circular homogeneous cylinder (Noisy conditions). Reconstruction at

intermediate steps: (a) s =1, (b) s =2, (¢) s = 3. (c¢) Final convergent profile (s = Sopt = 4).
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Step No. (s) 1 2 3 4
nts) 8.07 | 4.48 | 0.098 | 0.062
n) 14.81 | 0.38 | 5.84 |0.989
0 40.56 | 21.35 | 11.33 | 3.18
Vot 10.692 | 4.258 | 3.477 | 2.218
Vint 15.295 | 7.076 | 13.491 | 9.202
Vet 10.535 | 4.162 | 3.134 | 1.979

Table III. Reconstruction of a circular homogeneous cylinder. Behavior of the stationary indexes and

error figures.

3.4 Hollow square scatterer

Finally, the reconstruction of a slightly complex cylindrical object is taken into account.
The target is an off-centered square two-layered cylinder (27¢/ = y"*/ —0.2)\y). The inner
square, characterized by a permittivity equal to that of the background, is 0.4 \y-sided.
The side of the outer cylinder (7(z,y) = 0.5) is equal to 1.2 Ag. As far as the noisy
environment is concerned, a signal-to-noise ration SN R = 30 dB has been assumed.
Figure 11 shows the reference and reconstructed object function distribution inside the
investigation domain, respectively. As can be noted, the scatterer is accurately localized
and quite correctly shaped. However, the side of the square scatterer is slightly overesti-
mated as well as the value of Re (7) of the inner cylinder. These conclusions are confirmed
from the values of the error figures reported in Tab. IV.

On the other hand, when the dimensions of the inner cylinder (L,,; = 1.6 Ay and
Li, = 0.8 )\g) increases also the quality of the reconstruction of the scatterer under test

improves (Fig. 12) as confirmed from the error figures (Tab. IV).
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0.0 Re {7 (z,y)} 0.52 0.0 Re {7 (z,y)} 0.52
(a) (b)

Figure 11. Reconstruction of a two-layered square cylinder (L,,: = 1.2Xg and L, = 0.4)). (a)

Reference profile and (b) retrieved profile (s = Sop = 3).

Figure 12. Reconstruction of a two-layered square cylinder (L,,: = 1.6 Ao and L;, = 0.8Xg). (a)

Reference profile and (b) retrieved profile (s = Sopr = 4).
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Two-layered Square Cylinder

Loyt =1.2Xg - Lipy, =04 Xy | Loy = 1.6 A\g - Ly, = 0.8 )9

Viot 5.961 4.640
Yint 12.150 5.017
Veat 4.316 1.39

Table I'V. Reconstruction of two-layered square cylinders. Error figures.

4 Conclusions

An innovative methodology for reconstructing the dielectric permittivity distribution of
cylindrical scatterers has been presented. The procedure, based on a multi-level resolution
algorithm, is aimed at better exploit the limited amount of the information achievable
from the scattering measurement. To this end, a suitable iteratively defined (according
to the information about the scatterer collected at the previous steps) cost function is
successively minimized by means of an optimization method. A conjugate-gradient based
method has been used, but, in principle, any kind of optimization technique could be
successfully adopted.

The proposed approach, developed in the spatial domain and under TM illumination
conditions, has been assessed by means of some test cases and the obtained results have
shown its capabilities in imaging simple objects, even in strongly noisy environments.
In more detail, numerical simulations have been carried out to test the behavior of the
multi-resolution procedure when some parameters (e. g., scatterer dimensions, dielectric
permittivity, scatterer shapes, etc .) of the scenario under test are changed. Results are
quite promising, however, the proposed scheme must be further improved by overcoming
some current limitations. In particular, at the present, a modified version is under devel-

opment in order to improve the imaging performance by including in an efficient way all
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the available a-priori information.
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