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Abstract 

In this letter, a real-world working case of interfering signals  

coming to an antenna array with random arrivals modeled as a 

Poisson process is considered. A procedure based on a suitable 

Genetic Algorithm for adaptive array control is assessed by means of 

numerical simulations. Selected results clearly demonstrate the 

effectiveness and flexibility of the proposed procedure.  
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1. INTRODUCTION 

The use of adaptive antenna arrays in wireless communications is dated since late ‘60s. 

Applebaum’s paper [1] provided the mathematical basis for the optimization of signal-to-

interference-plus-noise-ratio (SINR) in the presence of different spatial configurations of noise 

sources, considering both background noise and jamming signals. 

Adaptive arrays are aimed at separating a desired signal from interfering ones impinging the 

array itself. Moreover, the continuous tuning of array weights [1] can theoretically face any 

variation of noise and interference occurring in the communication environment, thus ensuring 

optimal performance in any situation.  

The optimal solution to the antenna array control problem, proposed by Applebaum in [1], 

requires the full inversion of the signal covariance matrix. Generally, this is not a trivial task 

[2]. Consequently, many alternative solutions based on dynamic programming in order to 

avoid the matrix inversion [2] [3] have been proposed. Least-Mean-Square (LMS) and 

Recursive-Least-Square (RLS) algorithms are well-known examples of mathematical solutions 

to array optimization (see [3] for a thorough overview). Despite their mathematical elegance, 

such methods present some drawbacks, hindering their practical implementation [4] [5] [6]. In 

more detail, LMS and RLS require analog amplitude and phase weights at each element. 

Although very  attractive from a theoretical viewpoint the implementation of amplitude control 

turns out to be very expensive. For this reason, antenna arrays usually adopt only digital phase 

shifters for beam steering [4] [7]. The resulting weight quantization actually limits null 

placement. In general, the determination of the number of bit of the digital phase shifter 

presents a trade-off between the array performance requirements and the need of an 

economical design. The analysis presented in [7] points out that a choice of 8 bits for weight 

quantization could be satisfactory in several practical applications. On the other hand, the 

convergence of conventional approaches for array optimization strongly depends upon the 

 2



eigenvalue spread [3] and on the external noise environment. Moreover, these techniques result 

very slow in severe jamming situations [8] and do not prevent the solution be trapped in local 

minima [4] [6]. In this framework, the use of Genetic Algorithms (GAs) can be regarded as a 

valuable solution for the array optimization problem [4] [5] [9]. In [9], it has been shown that 

GA-based approaches outperform conventional solutions based on LMS strategy (being RLS 

an efficient variant of LMS providing faster convergence [3]).  

In [5], Weile and Michielssen  proposed the use of a GA with a population characterized by 

double chromosomes (diploid structure) for the adaptive control of antenna arrays. The 

effectiveness of such an approach has been assessed by considering some specific working 

conditions. Nevertheless, more general test cases should be dealt with in order to assess the 

robustness and reliability of GA-based approaches. In particular, some restrictive hypotheses 

usually made in literature about the deterministic nature of the interference should be removed. 

For instance, in [5] the arrivals of interfering signals to the antenna array are deterministic and 

synchronous in time. Moreover, the angles of arrival of received signals (both desired and 

interfering) are deterministically fixed, too. These assumptions are not realistic in actual 

wireless communication systems, where the angle of arrival is a random variable (in [10] a 

Student’s-t-distribution has been proposed as a possible statistical model), and the arrival of 

interfering signals is asynchronous and can be modeled as a random process. In order to define 

a suitable interference model, a more realistic assumption consists in modeling the arrival of 

interfering signals as a Poisson process. A Poisson process [11] [12] provides a statistical 

description of phenomena such as the counting of occurrences of specific events within a fixed 

observation time interval. It is therefore a discrete-state process characterized by a monotonic 

distribution function with discontinuity points coinciding with the discrete observation 

intervals [11]. Poisson processes are used to model many situations of interest in 

communication systems, including telegraphic signals [11], telephone calls [12], packet 

arrivals in computer networks [13], etc. Middleton’s paper about urban radio noises [14] 
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pointed out that the probability of generating an impulsive transient interference in a space 

region is subject to a Poisson law. Consequently, the arrival of an interfering signal to the 

antenna array can be modeled as a Poisson process. Following Middleton’s idea, Sacchi et al. 

[15] modeled the ingress-noise affecting coaxial cable lines as a sum of time-limited CW 

sinusoidal pulses, whose arrival times are Poisson-distributed. This allowed testing the 

performance of different cable modem transmission techniques in remote video-based 

surveillance applications, regarding ingress-noise as the main capacity limitation factor in 

digital transmission over cable channels. In this paper the effectiveness of a suitable GA (called 

Learned Real-Time Genetic Algorithm (LRTGA) [16]) targeted to solve the optimal array 

control problem is assessed by considering a realistic simulation scenario. In particular: 

i) a Poisson statistical model is used to describe the random arrival of time-limited 

interfering signals, thus emulating the usual behavior of data transmission in civil 

applications (burst transmission [12]); 

ii) a random uniform distribution is assumed to describe the angles of arrival of jamming 

signals. 

In addition, some deterministic hypotheses are maintained, namely: 

iii) each stochastic arrival is assumed synchronous with the generation period of the GA; 

iv) the duration of interfering signals is assumed here as a deterministic multiple integer of 

the GA generation period. 

The use of the GA generation period as a time reference for the overall transmission system is 

not realistic, since burst transmissions of external users are in general fully asynchronous. 

Nevertheless such an assumption can be considered reasonable in the specific context of 

performance evaluation of GA-based array control strategy, as clearly stated in [5]. As far as a 

deterministic duration of interfering signals is concerned, the study of a more sophisticated 

model taking into account a random duration will be matter for future works.  
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The paper is structured as follows: Section 2 is devoted to describe the antenna system. Section 

3 briefly outlines the GA-based strategy for adaptive array control. Section 4 describes the 

statistical modeling of the interference and Section 5 presents selected simulation results. 

Finally, Section 6 draws the conclusions. 

 

2. ANTENNA SYSTEM DESCRIPTION 

Let us consider an array antenna of S isotropic equally-spaced elements (being d the inter-

element distance). According to [1], the m-th signal received at the i-th array element  

 can be expressed as follows: 

)(, tS im

{ Mm ,...1∈ }

( ){ }tjttS cmimim ωθγ exp)()(Re)(, Θ=   Si ,..,1=                                (1) 

where )(tmγ  is the signal envelope, regarded as a slowly time-varying, ergodic random 

process, and cω  is the carrier radian frequency (common to each signal, thus considering the 

case of co-channel interference).  

Furthermore, )( mi θΘ  is a term taking into account the signal phase shift: 

Sisinidj mmi ,...,1)(2expˆ)( =⎟
⎠
⎞

⎜
⎝
⎛=Θ θ

λ
πθ                                   (2) 

 
where λ  is the free-space wavelength, and mθ  is the arrival angle with respect to the broadside 

direction. For the sake of simplicity, let us assume the first signal of the set (m = 1) as the 

desired signal. Consequently, the other 1−= MN  signals are regarded to as interfering ones. 

Commonly, N is assumed to be a deterministic value. In this paper, a more realistic assumption 

is made by considering the number of interfering signals as a random process . Details on 

the statistical properties of  will be reported in the next section. 

( )tN

( )tN

The desired and interfering signals are represented by their complex envelopes )(tmγ  

, which modulate the carrier. The signal envelopes never appear explicitly in the Mm ,...,1=
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optimum array control problem solution (as clearly stated in [1]) so they can be regarded as 

irrelevant in the proposed analysis. This is not true for what concerns signal phase terms, for 

they depend on arrival angles. The power of the desired signal is assumed to be lower than the 

power of interfering sources. Moreover, the background noise is modeled as a gaussian process 

, added to the signals at the receiver (AWGN). ( )tn

The problem consists in the optimal choice of array weights in order to maximize the signal-to-

interference-plus-noise ratio at the receiver, defined as [1] [5]: 

( )
wCw

w
SINR

u
T

T

*

2

12
θ

α
Θ

=                       (3) 

where  is the squared mean value of the signal envelope 2α )(tmγ , w  is the complex vector of 

weights , , { }iii jaw ψ= exp Si ,...,1= ( )⋅Θ  is the vector of phase-related terms, and Cu is the 

undesired signal covariance matrix related to both Gaussian background noise and undesired 

(interfering) signals. The knowledge of the matrix Cu is troublesome, nevertheless it can be 

proven [5] that the cost function ( )wf  reported in (4) has a maximum for the same vector of 

weights optw  that maximizes (3): 

( )
( )

wCw

w
wf

y
T

T

*

2

1θΘ
=           (4) 

The matrix Cy appearing in (4) is the covariance matrix related to the observation vector y  

(whose i-th component is equal to ( ) ( ) ( ) ( )tntItsty iiii ++= ,1 , being  and ( ) ( )∑
=

=
M

m
imi tstI

2
, ( )tni  

the background-noise at the i-th array element). It can be computed on-the-fly on the basis of 

the received signals. For this reason, the cost function (4) will be used as fitness function [17] 

in the iterative GA-based optimization procedure aimed at computing optw . 
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3.  ADAPTIVE OPTIMIZATION STRATEGY 

A suitable Genetic Algorithm is used to solve the optimization problem so far defined. GAs 

are multi-agent methods inspired on the principles of natural evolution [17]. Standard GA 

implementations (SGA) [18] represent feasible solutions as a set of individuals (called 

population), each of which is usually encoded with chromosome-like bit strings. At each 

iteration k, the genetic operators of crossover and mutation are applied on selected 

chromosomes with probability PC, and PM respectively, in order to generate new solutions 

belonging to the search space. The population generation terminates when a satisfactory 

solution has been produced or when a fixed number of iterations, , has been completed. maxK

Although GAs have been applied with success to a wide variety of electromagnetic problems 

(see [18] for a list of applications), their application to wireless-communications is quite 

recent. A reason of this accounts for the fact that while standard GAs are powerful tools in 

off-line applications like antenna design, they are not well suited for real-time applications 

such as adaptive array control. As a matter of facts, the re-adaptation of the numerical 

procedure (i.e., convergence of population towards one or more solutions fitting the new 

environment conditions) is usually very slow, thus penalizing the performance of the system. 

In order to provide a more efficient scheme for real-time control, SGAs basic strategy has to 

be enhanced. To this end, a suitably-defined GA has been proposed in [16]. The main features 

characterizing the LRTGA with respect to a Standard Genetic Algorithm are: 

• the chromosome ( Ψ ) codes only discrete phase coefficients, { }Sii ,...,1; =ψ , whereas 

amplitude coefficients, { }S , are fixed according to the Dolph-Chebyschev 

criterion [19]; 

iai ,...,1; =

• the application of genetic operators is determined according to the following population 

variance measure: 
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computed at each iteration of the genetic procedure, being P the dimension of the 

population. Consequently, probability values (  and ) and 

discard rate of the GA ( , where 

)( 2
kMM PP σ= )( 2

kCC PP σ=

)( 2
kRR PP σ= PPR ×  is the number of worst fit 

chromosomes that are replaced by random ones at each iteration) are heuristically tuned 

according to the patterns shown in Fig. 1; 

• Two new genetic mechanisms are defined in order to improve the “reaction” of the 

algorithm to environmental changes. At each iteration, on the basis of the following 

improvement measure: 

( )
L

wf
k

Lkl

opt
l

k

∑
−−==Ω )1(

                                                     (6) 

being L a fixed number of iterations, the best chromosome, 
opt
kΨ , is marked as “inactive” 

(and temporarily excluded from the iterative process) with a probability )( kII PP Ω=  

proportional to the improvement of the fitness function, as indicated in Fig. 1. On the 

other hand, when ( )opt
lwf  decreases, the fitness of inactive chromosomes is evaluated 

with probability (Fig. 1). If the fitness of an inactive chromosome results 

greater than

)( kEE PP Ω=

( )opt
lwf , such a chromosome is activated in the next generations. 

 

4.  STATISTICAL MODELING OF INTERFERENCE ARRIVALS 

Let us focus now on the statistical modeling of interference arrivals. The number of arrivals 

during a time interval ( )τ,0  is modeled with a discrete-state Poisson process [11], ( )τQ , with 

cumulative distribution function given by: 
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{ } ( )
!

)(
q

eqQP
qττ

τ Λ
==

Λ−

                 (7) 

For a fixed , τ ( )τQ  is a Poisson-distributed random variable, with mean value given by [11]: 

{ } ττ Λ=)(QE                          (8) 

being  the Poisson rate, or Poisson frequency. In our specific context, the observation time 

interval is a multiple of the generation period of GA, so that at each generation a different 

random number of interfering signals may arrive to the array. By indicating with TG the 

generation period of the GA, the parameter τ results equal to 

Λ

GjT=τ ,  (a finite-

length observation time interval is assumed). Consequently, the total interference that affects 

the i-th array element is given by: 

Jj ,...,2,1,0=

( ) ( ) ( ) ,..,SijTtjTtstI
J

j

M

m
GTGimi

j

I
1   

0

0

2
, =−Π−= ∑ ∑

=

≠

=

               (9) 

where  is the rectangular pulse function [12] of unit amplitude and duration , and is 

the effective number of signals arriving to the i-th array element at the beginning of the j-th 

generation period.   can be written as: 

( )tΠ IT jM

jM

( ) ( )GGj jTRjTQM −=̂               (10) 

being  the number of time-limited interfering signals arrived during past iterations and 

switched-off at the current one. Due to causality and finite duration assumed for all 

signals, . In the proposed approximated model the interference arrival results 

synchronous in time with respect to GA generation period. In real-word applications, the 

arrival of interfering signals to a receiving station is asynchronous. Nevertheless, the proposed 

time-synchronous model is reasonable, because the GA-based array control algorithm can react 

and adapt itself to a new scenario only in correspondence with a new GA generation. 

Moreover, the duration of the interfering signals has been fixed equal to TI, being TI an integer 

multiple of TG. As an example, Figure 2 shows a sample of the random process that represents 

( GjTR )

jM j ∀≥  0
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the arrivals of interfering signal, obtained by setting the following parameters:  and 

. The observation interval has been set to 900 GA-generations. 

GT/1=Λ

GI TT 5=

As far as the impinging direction of jamming signals is concerned, arrival angles are randomly 

generated with a uniform distribution in the range ( )°°− 90,90 . In Figure 3, a simulated sample 

of arrival angles of interfering signals at each iteration of the genetic algorithm is depicted. 

 

5.  SIMULATION RESULTS 

In this section, selected simulation results are provided in order to demonstrate the robustness 

of LRTGA-based array control procedure when jamming signals characterized by stochastic 

arrivals and stochastic arrival angles occur. For comparison purposes, a state-of-the-art SGA-

based control strategy, the optimal Applebaum’s weighting strategy [1] (applied to a 

continuously-weighted array as a reference on the optimal solution), and a modification of 

Applebaum’s method (which considers continuous module and discrete phase coefficients as in 

the genetic process) are used as touchstone methods. Following the approach in [1], it is 

possible to obtain very accurate nulls in the radiation diagram, whose depth reflects into high 

values of SINR. Unfortunately, as already pointed out in Section 1, this control method is very 

efficient but difficult to be implemented for real-world applications. Fig. 4 shows the running 

averages of the SINR over 100 past iterations (being 900max =K ) considering a signal-to-

single interference power ratio C/I =  30− dB (the signal-to-background noise ratio has been 

set to 30dB in overall simulations). For such a simulation, an 8-bit phase shifter (corresponding 

to L=256 phase quantization levels) has been considered. It can be observed that LRTGA 

significantly improves the capability of adaptation of SGA-based control algorithm, resulting 

in an effective processing of stochastic arrivals of interfering signals. It is to be pointed out that 

although the achieved SINR decreases for an increasing number of interfering signals, the SINR 

values provided by LRTGA are almost positive even when the number of interfering users is 

 10



quite high. This is not true for SGA-based procedure, which often provides negative SINR 

values. Moreover, despite the optimality of the method in [1], the SINR attained by LRTGA is 

almost equivalent to the one achieved by Applebaum’s method with discrete phases, even if the 

latter considers continuous modules. The statistics deriving from some hundreds of LRTGA 

and SGA executions are reported in Table 1 in correspondence of three different scenarios (C/I 

ratio equal to ,  and  dB). The LRTGA-based method again confirms its 

effectiveness with respect to the SGA-based method, slightly overcoming the performances (in 

terms of mean value of SINR) of Applebaum’s method with discrete phases.  

10− 20− 30−

For completeness, Table 2 reports the results of a numerical assessment aimed at evaluating the 

dependence of LRTGA performances on the numbers of phase quantization levels. It is worth 

noting that LRTGA outperforms discrete-phases Applebaum’s method when digital phase 

shifters using few bits for phase quantization (i.e., from 4 to 9 bits) are employed. As expected, 

discrete-phases Applebaum’s method provides better results when digital phase shifters using 

more than 10 bits are considered. Nevertheless, as clearly stated in [7], phase shifters with an 

increased number of quantization levels can involve higher hardware costs, strongly limiting 

the practical implementation.  

Finally, let’s introduce some notes about convergence rate and computational load of the 

proposed algorithm. The convergence rate of GA-based array control strategies only depends 

on the population dimension P, [17], being independent of the specific parameters of the 

optimization problem to be faced. This is not true for LMS algorithm, whose convergence rate 

directly depends on the eigenvalue spread of the covariance matrix [3]. Better performances 

can be achieved by RLS, as clearly stated in [3].  

On the other hand, the computational complexity of GA-based methods is rather similar to that 

of conventional approaches. The number of elementary operations, opυ , required by RLS and 
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LMS algorithms is approximately equal to [20]. As far as GAs are concerned , maxMK opυ , 

results equal to [17]:   

( ) maxPKPP MCop +=υ       (11) 

where PC and PM are crossover and mutation probability respectively, and usually 

. ( ) MPPP MC ≤+

 

6.  CONCLUSIONS 

In this letter, the effectiveness of a suitable GA-based strategy for adaptive antenna array 

control was assessed, in the presence of stochastic arrivals of time-limited interfering signals. 

The arrival time of interfering signals was modeled as a discrete-time Poisson process, whereas 

a deterministic duration for the interfering sources (multiple of the generation period of the 

genetic algorithm) was considered. Also the angles of arrival of interfering signals were 

modeled as random variables. In this framework, the robustness of LRTGA has been compared 

with the optimal solution, by enforcing randomly time-varying working conditions quite 

similar to real world environment. Future developments of the proposed analysis should assess 

the efficiency of LRTGA in the presence of interfering signals with random duration (i.e.: a 

random multiple of the generation period), different for each interfering signal. 
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FIGURE CAPTIONS 
 

• Figure 1 

Patterns of LRTGA probabilities. 

• Figure 2 

Example of stochastic realization of Poisson-distributed interference arrivals ( , 

). 

GT/1=Λ

GI TT 5=

• Figure 3 

Distribution of the arrival angles of the interfering signals versus GA iteration number. 

• Figure 4 

Running average SINR in presence of stochastic interference arrivals ( 900max =K ), 

computed by considering 100 past iterations. Comparison among results provided by: 

LRTGA (solid line), SGA (dashed line), optimal method reported in [1] (dash-dotted line), 

and the same method with phase-coefficients constrained to discrete values (dotted line). A 

digital phase shifter with L=256 phase quantization levels has been considered in overall 

simulations. 

 15



 
 
 
 
 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ 2
k/Ω k

PC(σ 2
k)

PM(σ 2
k)

PR(σ 2
k)

PE(Ω 2
k)

PI(Ω
2
k)

 
 
 
 

Fig. 1 – C. Sacchi et al., “Adaptive Antenna Array Control ...”. 
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Fig. 2 – C. Sacchi et al., “Adaptive Antenna Array Control ...”. 
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Fig. 3 – C. Sacchi et al., “Adaptive Antenna Array Control ...” 
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Fig. 4 – C. Sacchi et al., “Adaptive Antenna Array Control ...” 
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TABLE CAPTIONS 
 

• Table 1. 

SINR statistics deriving from hundreds of executions of LRTGA and SGA, compared with 

the optimal method in [1], and the same method with phase coefficients constrained to 

discrete values for different C/I ratios, and L=256 phase quantization levels. 

 

• Table 2 

Average SINR deriving from hundreds of executions of LRTGA and SGA, compared with 

the optimal method in [1], and the same method with phase coefficients constrained to 

discrete values for C/I = -30dB and L=16, L=64, L=128, L=256, L=512, and L=1024 phase 

quantization levels. 
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 C/I = - 10dB C/I = - 20dB C/I = - 30dB 

Method Mean σ Mean σ Mean σ 
LRTGA 34.86 15.25 29.93 18.42 19.92 21.66 

SGA 16.62 16.81 13.65 19.16 10.91 20.16 
Applebaum [1] 43.17 10.23 42.84 11.97 42.50 13.73 

Applebaum [1] with 
discrete phases  35.38 15.09 27.16 15.73 17.94 16.47 

 

 

 

Table 1 – C. Sacchi et al., “Adaptive Antenna Array Control ...”. 

 

 

 

 

 

 

 Average SINR (dB) 
Phase quantization 

levels 
Applebaum [1] with 

discrete phases LRTGA SGA 

16 1.81 10.52 4.92 
32 4.26 13.97 6.73 
64 7.57 15.37 6.78 
128 12.38 17.39 8.33 
256 17.94 19.92 10.91 
512 24.28 24.54 12.84 
1024 29.26 25.85 14.02 

 

 

 

Tab. 2 – C. Sacchi et al., “Adaptive Antenna Array Control ...”.  
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