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Abstract

Genetic algorithms (GAs) are well known optimization strategies able to deal
with nonlinear functions as those arising in inverse scattering problems. However,
they are computationally expensive thus offering poor performances in terms of gen-
eral efficiency when compared with inversion techniques based on deterministic opti-
mization methods. In this paper, a parallel implementation of an inverse scattering
procedure based on a suitable hybrid genetic algorithm is presented. The proposed
strategy is aimed at reducing the overall computational burden in order to make the
approach competitive with gradient-based methods (GCs) in terms of runtime by
preserving the capabilities of escaping from local minima. This results is achieved by
fully exploiting the natural parallelism of evolutionary techniques and the searching
capabilities of the hybrid approach. The effectiveness of the proposed implemen-
tation is demonstrated by considering a selected numerical benchmark related to a

two-dimensional scattering geometry.

Index Terms - Microwave imaging, inverse scattering, genetic algorithms, parallel im-

plementation.



1 Introduction

The solution of inverse scattering problems is usually very difficult due to their inherent
non linear nature and ill-posedness. Now-a-day, the leading way to face them is to recast
the original problem into an optimization one, which is successively solved by means of
a minimization technique (see for example [1], [2], [3], [4] and references cited therein).
Unfortunately, the use of iterative procedures often makes the reconstruction process
computationally expensive or inaccurate.

From a computational point of view, deterministic techniques (e.g., conjugate gradient
procedures [5], [6]) result very attractive. However, when local-type inversion procedures
are adopted, accurate and reliable results can be obtained only if the starting trial solution
is close enough to the “actual” solution. In many practical cases, such a starting point
is not available and some inaccuracies or artifacts in the resulting reconstruction occur
due to the presence of false solutions corresponding to local minimum points of the cost
function.

The use of global optimization techniques [7], [8], [9], [10] would in principle avoid
such a circumstance. However, the overall computational burden can become easily unac-
ceptable in serial implementations. This could prevent their use in real-time or quasi-real
time applications.

In order to limit these drawbacks, the following strategies can be taken into account:

e the reduction of the number of problem unknowns by recurring to a suitable param-
eterization of the unknown scatterer [12]| or by considering a multi-zooming strategy

[11];

e the hybridization of the global optimization procedure with deterministic procedures

[13], [14], [15];

o the use of fast solver for the iterative computation of electric field solution [16] in

order to limit the number of unknowns handled by the global optimization procedure



to the parameter describing the physical properties of the scatterer under test;

e the exploitation of the intrinsic parallelism of global optimization procedures by

considering a parallel implementation.

As far as serial implementations are concerned and since the birth of computers, the com-
putational speed of even the most advanced and expensive computer systems has been
regarded as a limiting factor even though state-of-the-art computers have played a signif-
icant role in many scientific and technical areas. The gigantic increase in computational
performances of computer systems is mostly related to advances in electronic devices. In
this way, the microprocessors of today are getting more and more powerful while retain-
ing a reasonable cost-to-performance ratio. On the other hand, to produce processors
with considerably higher speeds by using special-purpose fast electronics is extremely ex-
pensive. As a consequence, one way to increase the speed of computer systems without
extreme costs is to connect many standard, off-the-shelf processing units to form a parallel
computer system. This solution seems to offer the best trade-off between computational
speed and cost of the system.

Moreover, one of the most attractive feature of the optimization procedures based on
GAs is their parallelism that allows a so effective sampling of the solution space. The
GA presents an implicit and an explicit parallelism. On the one hand, the term “implicit
parallelism” (and the closely related term “building block”) refers to the fact that the
effective number of schemata [17] processed by the GA is greater than the number of
individuals processed at each iteration (i.e., the population dimension I'). This property
guarantees that, also in a serial implementation, several characteristics of the solution
are processed in a parallel way. A well known result is the Holland’s inequality stating
a lower bound of the order of #\3/2 to the number of schemata processed in a population
of I = ¢;2¢ strings, being ¢; a small integer [18]. This result has been generalized in [19]
where it has been showed that, for a population of I = 28¢ individuals, this bound is

a monotonically decreasing function of g and that for § > 1 its value is optimal up to



a constant and that with probability (1 — 264) the number of schemata propagated is
greater than one half of the value of the lower bound.

On the other hand, the parallelism of the GA is guaranteed also by the multiple-agent
nature of the optimization procedure. At each iteration, a number of sample points, equal
to the population dimension, is processed to effectively look for the optimal solution. In
order to fully exploit also this characteristic, a parallel implementation of the procedure
is mandatory. Consequently, the expected advantages coming from the parallelization of

a GA can be summarized as follows:

parallel search from multiple points in the solution space;

more efficient search, even when no parallel hardware is available;

higher efficiency than sequential implementation;

easy hybridization with other search procedures (deterministic as well as stochastic);

speedup due to the use of multiple CPUs.

In this paper, a parallel implementation of the inversion procedure based on a hybrid
GA is proposed. To the best of our knowledge, this implementation represents a novelty
in the framework of microwave imaging GA-based procedures and in general for inverse
scattering methods (except the paper presented by J. Mallorqui et al. [20]). The paper
is organized as follows. In Section II, the mathematical statement and the considered
two-dimensional geometry are presented. In Section III, a detailed description of the GA-
based procedure and its parallel implementation is proposed, while in Section IV selected
numerical results of an exhaustive numerical assessment are presented in order to show the
computational effectiveness and the reconstruction capabilities of the parallel GA-based

approach.



2 Mathematical Formulation

Let us consider the 2D scalar configuration where an incident TM-polarized time-harmonic
wave at angular frequency w (the time factor ezp (jwt) is omitted in the following) illu-
minates a cylindrical target with arbitrary cross-section ©. The target is supposed to lie

in an investigation domain D whose object function is defined as follows

To(z, z,y) € O
oy = o(z,y) (z,9) 0
To otherwise

where 79 = 0 and 7¢ (z,y) = &,(x,y)—1— j%’i—’é’l, er and o being the dielectric permittivity
and conductivity of the target, respectively.

The inverse problem consists in retrieving the object function in the investigation
domain starting from the resulting electric field, F'(z,y), measured by a set of receivers

displaced around D in the observation domain O. In the spatial domain, this problem

can be described by means of the following integral equations. For the v-th incidence

Fidu(x,y) = k3 /D Go(e,y; 7',y ) FO (@', )7 (7', ) da'dy’  (z,y) € O (Data Equation)
(2)
Fi@,y) = Fid@,m)—kS | Golw,y;@',y) FO (!, y)r(o/ o) da'dy’  (w,y) € D (State Equation)
D
(3)

where F, gztt = F® — F) is the scattered field, E(,fc) being the incident field; G is the two-

inc

dimensional free-space Green function given by Go(z, y; 2',y') = %Hém (ko \/ (z—2)+ (y—y )2),
H(§2> being the Hankel function of zero order and second kind.

In order to solve egs. (2) and (3), a complete nonlinear approach is needed. By
applying Richmond’s method [21], discretized counterparts of the inverse scattering in-
tegral equations are obtained. The problem unknowns (i.e., the object function 7 and

F® in D) are represented through a linear combination of rectangular basis functions



(Ry(z,y), n=1,...,N) as follows

T(z,y) = ZlTan (z,y) (z,y)eD (4)
FO(z,y) = > YR, (z,y)  (z,y) €D (5)

Then, the inverse problem is cast into the global minimization of the cost function ®

2
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where f = {Tn,@b,(f); n=1,.,N;v= 1,...,V} and M is the number of points of the
observation domain where F' is measured; Spgie and gz indicate the discretized form
of the right-hand-side terms of equations (2) and (3), respectively. The solution of (6)
is obtained by constructing a sequence {Lc, k=1,.., K}, k being the iteration number,

which converges to iOpt = arg {mzn [Cb(i)]} To this end, a suitable parallel GA-based

procedure is used.

3 GA-Based Solution Strategy and Its Parallel Imple-
mentation

Evolutionary algorithms are known as robust optimization techniques able to effectively
explore very large nonlinear parameter spaces. However, they generally present a low
convergence rate and require a large number of cost function evaluations to achieve a
satisfactory convergence threshold. Consequently, they result computationally expensive
especially when compared to deterministic optimization methods. From a computational

point of view, in order to make GA-based procedures competitive with deterministic



methods (while maintaining their favorable features), the following key points should be

addressed:

e to improve the convergence rate of the iterative procedure;

e to reduce the computational time for the cost function evaluation.

3.1 Hybrid GA Strategy: Step-by-Step Procedure

Concerning the first issue, an effective strategy is the hybridization aiming at fully ex-
ploiting the complementary advantages of deterministic and stochastic techniques. The
simplest way to implement a hybridized version of a GA is that of considering a two-
stage optimization. Firstly, the minimization is carried out with a GA (or a deterministic
technique). Subsequently, a deterministic procedure (or a stochastic technique) is em-
ployed. In this framework, different strategies have been proposed. In [22], a y-GA has
been coupled with a deterministic method proposing a criterion for switching from the
stochastic to the deterministic optimizer and vice versa. Moreover, Ra et al. [13] pro-
posed a hybrid method in which the Levenberg-Marquardt algorithm (LMA) is used to
localize a minimum and the minimization process switches to the GA in order to climb
local minima until the global minimum of the cost function is reached. On the contrary,
in [14], the iterative process operates as a real-coded GA (RGA) in order to locate the
attraction basin of the global optimum. When a satisfactory “order of closeness” to the
global minimum is attained then a standard Polak-Ribiére conjugate gradient algorithm
is applied in order to refine and improve the current solution.

The main drawback of these approaches is the need of evaluating the “quality” of
a minimum and/or the “closeness” of the solution to the attraction basin of the global
minimum. This requires either an accurate knowledge of the cost function, which generally
is not available, or an heuristic definition of the “degree” of accuracy of the current solution.
Moreover, a closer coupling between stochastic and deterministic optimizers could provide

better reconstruction results. In this framework, the coupling can be obtained by means

8



of the step-by-step optimization (SbSGA) described in the following.

As a reference, let us consider the real-coded version of the GA presented in [14] where
a gene is the optimization parameter itself and the chromosome ¢, directly codes the un-
known array (¢, = f,). The RGA requires the definition of a population of trial solutions
P = {i(i); 1=1, ...,I} and a rank of the solutions according to their fitness (defined
as the corresponding cost function value). Then, new populations of trial solutions are
iteratively obtained by applying the standard genetic operators (namely the selection,
the mutation and the crossover) and by introducing a genetic operator which performs a

gradient-like based minimization. More in detail, for each iteration, firstly a mating pool

is chosen through a stochastic binary tournament selection ¢ [23]
Pyoy =s{ P} C By (7)

Then, by considering a generational model (in which a whole new population of I indi-
viduals replaces the old one), a new temporary population P, is generated applying the

arithmetical crossover C' and the RGA-mutation M [4]:

By, = Py U Pyany

(8)
Py =C {Pk@} Peoy =M {Pk<<)}

Moreover, in order to insure a monotonic decrease of the best fitness in the popula-

tion during the iterative process, the elitism [24] is activated. The best solution of the

79

temporary population (i.e., f; = arg {mini—l’"’[ [@(E:))] }, f, € 13k) undergoes to the

deterministic-minimization operator. More in detail, a sequence of successive approxima-
tions is generated as follows

iZ:i;71+g0hdh h=0,... H (9)

where L’; = Lt The step length ¢, and the search direction d, are chosen according to



the alternating direction implicit method [25]. The sequence length H is adaptively tuned

iteration-by-iteration. H is increased (H <— H + 1) when the stationary condition holds

‘Kwindowq),(:pt) — Z]K;ulindow (D§Opt)‘ 3 1
@gjpt) — 75?5 ( 0)
where CD,(COpt) = MiNi=1,.T {q’(i,(g))}, Kyindow and v are a fixed number of iterations and

a fixed numerical threshold, respectively. On the contrary, H is decreased (H <+ H — 1)

when the static conditions are satisfied

opt opt
(I)(p) _ _q)l(ep)

k_Kwindow - (11)
Vo] <
Finally, the individuals of the old population P, are replaced according to the following

criterion
* _ px
ik - iH

12
o 50 (12)
Lc+1 o Lc

3.2 SbSGA Parallel Implementation

The basic motivation to implement an evolutionary algorithm in parallel is the reduction
of the computational time for cost function evaluations. There are several approaches to
GA’s parallelization [26]. In the following, the SbSGA parallel implementation will be
presented by addressing two specific issues: (a) structuring the parallel implementation

and (b) making parallel implementation.

3.2.1 Structuring the Parallel Implementation

From an algorithmic point of view, a relatively easy approach to be implemented is the
global parallelization [27]. In this type of implementation, a panmitic structure is con-
sidered. The whole population is dealt with a single pool of individuals as in the serial

algorithm. The selection takes place globally and any individual can potentially mate
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with any other. Therefore, the behavior of the algorithm (from the serial implementation
to the parallel one) remains unchanged, but the fitness evaluation CIJ(E:)) is explicitly
parallelized. According to the master-slave paradigm [27], the master processor stores
the entire population Pj and applies the SbSGA operations (selection, crossover, muta-
tion, and the deterministic-minimization operator) to produce the next generation Py .
The slave processors are used to evaluate in parallel the cost function of a fraction of the
trial-solution population. The communication between master and slave processors oc-
curs only when different subsets of individuals are sent to different processors or when the
processors send back the fitness values. The master processor, after sending the subsets
of individuals, waits until it receives the fitness values for all individuals of the population

before proceeding into the genetic loop (synchronous global parallelization).

3.2.2 Making Parallel Implementation

Since the global parallelization model does not assume anything about the computer hard-
ware architecture or software communication tools, it is very natural to consider an imple-
mentation strategy able to profit of most usual instrumentation available in universities
and research institutes.

Concerning the hardware architecture, a networked computer cluster is considered.
This distributed memory architecture requires an exchange of information between mas-
ter and slave processors. Such a communication is implemented through a message passing
procedure which represents the main bottleneck limiting the parallel computing perfor-
mances. However, the use of high-performance communication networks and the transfer
of messages with extremely concise information (e.g., relative to the trial solution and
the value of the corresponding cost function) among the processors can overcome these
problems.

The message-passing and the process management are realized with the parallel vir-
tual machine (PVM) software library [28] which allows the utilization of a heterogeneous

network of parallel and serial computers as a single general and flexible concurrent com-
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putational resource. Another advantage of PVM is its wide acceptability.

4 Numerical Validation and Effectiveness Assessment

The parallel implementation of the SbSGA computer code has been evaluated on a 25-
node Intel Pentium-based cluster. The nodes of the cluster are 1.7 GH z Intel Pentium IV
with 2566 M B of RAM. The operating system is the Linux Red Hat 8.0. The processors
are connected to a 100 % Ethernet communication network and the implementation
3.4.4 of the PVM software library is used as communication protocol.

In order to evaluate the computational effectiveness of the proposed implementation,
three test cases of different sizes are considered. The scattering problem scenario is the
so-called dielectric inhomogeneous “Osterreich” configuration [4] where three different ho-
mogeneous objects (7(1) = 1.0, 7(2) = 2.5, and 7(3) = 2.0) belong to a square investigation
domain D of side L = 1.0 \. Four different (V' = 4) incident plane waves with unit
amplitudes are employed. The electric field is collected in O along a circle (L in radius)
at M = 80 measurement points. This geometry has been partitioned differently for each
test case: N = 10 x 10 (test case #1), N = 15 x 15 (test case #2), and N = 19 x 19 (test
case #3).

It should be pointed out that only one scattering geometry will be taken into account
since the main emphasis of this research work is the evaluation of the computational ef-
fectiveness of the parallel implementation of the SbSGA-based approach. Consequently,
there is no need to present different scattering geometries. On the contrary, different
problem dimensions must be considered in order to show the key features and the current
limitations of the approach from a computational point of view. As far as the evalua-
tion of the reconstruction accuracy of the SbSGA-based approach is concerned (also in
comparison with other deterministic or stochastic techniques), we will provide just some
preliminary indications. An accurate and detailed analysis will be proposed in a future

paper as a result of an exhaustive research work currently under development.
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In the following, the parallel implementation of the SbSGA will be evaluated with

respect to several computational-performances indices [29], namely
e the speedup S,

e the efficiency n = £, U being the number of cluster nodes (or workers) excluding

the master processor, and
o the efficacy e =n x S.

Since we are dealing with a parallel stochastic iterative procedure, let us consider the

speed-up orthodor weak definition:

- 2P e}
0= z{na W)}

(13)

where Ty, and T,, are the execution time of the serial and the parallel code ver-
sion, respectively; E is the number of statistically independent runs of the stochas-
tic algorithm. For the comparison, the number of cluster nodes has been varied from
U =5, 10, 15, 20, 25 and E = 20 independent executions have been carried out in order
to have representative time values. Moreover, the following GA’s parameters have been
adopted: I = 81, K = 10%, P.,,ss = 0.7 (crossover probability), P, = 0.8 (mutation

probability), Kyindow = %, and -y, = 10~ (convergence threshold).

The change of the three key indicators as a function of the number of workers used
and for different problem dimensions is presented in Figure 1. The top diagram shows
the behavior of the speedup. The ideal speedup (Sigeq = U) is also reported. As it can
be observed, the peak overall speedup occurs when running the parallel code on U = 25
processors, but the distance between the ideal-speedup curve and S increases with the
number of cluster nodes due to the fast-growing communications overhead. As expected
[26][30], by implementing a global parallelization, the speedup is sub-linear (S (U) < U).

Moreover, due to the communication overhead and load imbalance among the pro-

cessors, it results a reduction of the efficiency n with the dimension of the cluster (Fig.

13



1(b)). A more significant decrease takes place in correspondence with the largest problem
dimension caused from the augmented information passing among the master and slaves
Processors.

Relating speedup and efficiency, it is possible to determine the optimum number of
nodes which is the maximum of the efficacy curve (Fig. 1(c)). The slope of the efficacy
curve for the different size problems indicates that a number of about U = 10— 15 workers
might be efficiently used to solve the problem.

On the other hand, to assess the effectiveness of the proposed parallel approach within
the framework of microwave imaging techniques, it is mandatory to compare the computa-
tional cost of the SbS parallel implementation both with its sequential implementation and
with a standard serial deterministic procedure. It is well known that the main bottleneck
preventing a quasi/real-time application of a GA-based procedure is the computational
complexity greater than that of a conjugate-gradient-based procedure. The proposed
parallel implementation is aimed at making the GA-based approach competitive with
deterministic techniques, maintaining the GA key-features in term of reconstruction ac-
curacy. For comparison purposes, Fig. 2 gives an indication of the amount of the average
computational time needed for the parallel SbSGA code, for its sequential implementa-
tion, and for a standard conjugate-gradient method [31] when the largest size problem is
considered (test case #3). The computational cost increases with the increasing of the
problem dimension and the parallel implementation allows a dramatic runtime reduction
(of about 9 times for the largest case N = 19 x 19) as compared with the serial code.
Because of the significant speedup of 6.9 (U = 10) (Fig. 1(a)), the overall runtime of the
parallel code turns out to be almost equivalent to that of the deterministic procedure.

As expected, the parallel evolutionary technique maintains its effectiveness in the pro-
file reconstruction as briefly summarized in Fig. 3 where the behavior of the error figures
defined in [4] versus the problem size is reported. In general, the genetic-based imaging
procedure (i.e., both the RGA-based approach and the hybrid GA method) overcomes the

CG method in term of reconstruction accuracy. More in detail, the SbSGA shows a more

14



significant improvement (if compared with that of the RGA method) as compared with
the deterministic technique especially when larger problem sizes are taken into account.
However, the last sentence should be considered as a preliminary indication to be further
validated with a specific (and out of the scope of the present paper) study.

For completeness, a pictorially representation of the reconstructed profile (N = 19 x 19
- test case #3) is shown in Fig. 4 by considering different methodologies (the dielectric
distribution estimated with the hybrid GA based on the “two-stage optimization” [14] is

also reported - Fig. 4(c)).

5 Conclusions and Future Works

In this paper, the parallel implementation of a GA-based microwave imaging approach
has been presented. A strong reduction of the computational burden has been obtained
by fully exploiting the natural parallelism of the genetic process. Moreover, the compu-
tational saving has been also obtained by improving the convergence rate of the iterative
process and by reducing the overall runtime of the GA’s ranking procedure. However, it
should be pointed out that the use of this parallelized hybrid GA is not different from
other parallel methodologies. Its execution efficiency largely depends upon the system
architecture, the parallel execution overhead, the number of new population members
created at each generation, the population structure, and the parallel granularity (i.e.,
the computational cost of the steps being executed in parallel). Consequently, future
advances could be reached by taking into account these factors. In particular, from a
computational point of view (which is the main issue of this paper), the following ques-
tion should be answered: “it is really possible to get super-linear speedup with a parallelized

hybrid GA?”. Probably, the answer is yes only if:

e a structured population [26] is taken into account in order to obtain not only a faster
algorithm but also a superior numerical optimization fully exploiting the multi-agent

nature of the genetic algorithm;

15



e some individuals do a different local search (decentralized local optimization) in order

to improve the convergence rate of the iterative process;

e the genetic process explicitly keeps memory of the chromosomes evolution in order

to reduce/avoid the runtime of the fitness evaluation for similar/equal individuals;

e the genetic operators are applied in parallel.

Future researches will be devoted to this aim in order to help for an application of GA-

based strategies to real-time industrial applications.
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FIGURE CAPTIONS

e Figure 1. Parallel GA - Evaluation of the computational performances: (a) Speedup

S, (b) Efficiency 7, and (c¢) Efficacy «.
e Figure 2. Parallel GA - Normalized runtime versus problem size N.

e Figure 3. Parallel GA - Reconstruction accuracy versus problem size N: (a) external

percentage error .., (b) internal percentage error &;,;, and (c¢) total percentage error

gtot .

e Figure 4. Retrieved dielectric profile with the (a) Conjugate-Gradient Method, (b)
the RGA-based Approach, (¢) the Hybrid GA-based Approach (Two-Stage Opti-
mization), and (d) the Hybrid GA-based Approach (Step-by-Step Optimization -
SbSGA). Problem size: N =19 x 19.
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