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Dielectric Scatterers

Massimo Donelli and Andrea Massa

Abstract

A computational approach based on an innovative stochastic algorithm, namely
the Particle Swarm Optimizer (PSO), is proposed for the solution of the inverse
scattering problem arising in microwave imaging applications. The original inverse
scattering problem is reformulated in a global nonlinear optimization one by defining
a suitable cost function, which is minimized through a customized PSO. In such a
framework, the paper is aimed at assessing the effectiveness of the proposed approach
in locating, shaping, and reconstructing the dielectric parameters of unknown two-
dimensional scatterers. Such an analysis is carried out by comparing the performance
of the PSO-based approach with others state-of-the-art methods (deterministic as
well as stochastic) in terms of retrieval accuracy as well as from a computational
point of view. Moreover, an integrated strategy (based on the combination of the
PSO and the iterative multi-scaling method (IMM)) is proposed and analyzed to
fully exploit complementary advantages of nonlinear optimization techniques and
multi-resolution approaches. Selected numerical experiments, concerning dielectric
scatterers different in shape, dimension, and dielectric profile, are performed starting

from synthetic as well as experimental inverse scattering data.
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1 Introduction

In the last years, microwave-imaging techniques have gained a considerable attention from
the research community since they can be suitably used for a number of important engi-
neering applications ranging from medical diagnostics [1][2] to non-destructive evaluation
[3][4] and subsurface detection [5]. Certainly, one of the most challenging tasks in defining
a microwave imaging method is to implement a reliable numerical procedure for the inver-
sion of scattered data. Towards this end, many effective computational techniques have
been proposed based on deterministic as well as stochastic optimizers since now-a-day, the
leading way to face an inverse scattering problem is to recast it into an optimization one,
which is successively solved by means of a minimization technique. In such a framework,
let us consider the approaches proposed in [6], [7], 8], and [9]. Unfortunately, the use of
iterative procedures often makes the reconstruction process computationally expensive.
From a computational point of view, deterministic techniques (e.g., conjugate gradient
methods [10], [11]) are very attractive. However, when local-type inversion procedures
are used, accurate and reliable results can be obtained only if the starting trial solution
is close enough to the “actual” solution. In many practical cases, such a starting point
is not available and some inaccuracies or artifacts in the reconstruction occur because of
the presence of false solutions corresponding to local minima of the cost function.

The use of Genetic Algorithms (GAs) [12], [13], [14] would in principle avoid such a
circumstance. However, various numerical parameters must be carefully calibrated and
customized to the application in hand. Moreover, several options of implementation within
evolution operators should be evaluated to select the best operator for a given application.
In order to overcome or limit such drawbacks, Kennedy and Eberhart proposed in 1995
[15] the PSO, which is a robust stochastic search procedure inspired to the social behavior

of insects swarms. In fact, the main advantages of the PSO over the GA are:

e The algorithmic simplicity - The GA considers three genetic operators and one has

to choose the best configuration among several options of implementation. On the



contrary, the PSO considers one simple operator, that is the velocity updating;

e The easy manipulation of the calibration parameters - As far as the GAs are con-
cerned, the calibration parameters to be set are: the population size I, the crossover
rate P., the mutation rate P,,, and the allele-mutation rate P, according to the
operators implementation. The PSO requires the selection of the dimension of the
swarm I, the inertial weight w, as well as the acceleration coefficients C'; and Cs.
Then, if the number of control parameters is the same, certainly it is easier to ma-
nipulate the PSO’s parameters than evaluating the optimal values among various

operators.

e The ability to prevent the stagnation - In GAs, the stagnation occurs when the
individuals assume a genetic code close to that of the fittest chromosome of the
overall population. In such a situation, the crossover operator has little effect and
only a lucky mutation could locate a new individual in another attraction basin.
On the contrary, in the PSO, a suitable control of the inertial weight and of the

acceleration coefficients allows to find new fittest locations in the solution space.

Taking into account these features, PSO has been employed with success in several prob-
lems in the framework of applied and computational electromagnetics where GAs found
great success (let’s see [16], [17], and [18] for some applications in the field of antenna
synthesis and [19] for a general overview). Therefore, it turns out profitable to evaluate
the effectiveness of the PSO in dealing with microwave imaging problems where GAs have
found a great success and widespread implementation. Towards this end, the present pa-
per proposes an innovative computational approach based on a customized PSO for the
numerical solution of the inverse scattering problem.

The paper is structured as follows. A brief description of a standard two-dimensional
microwave imaging problem will be given in Sect. 2 where a suitable cost function will be
defined in order to reformulate the original nonlinear inversion problem in an optimization

one. Then a detailed explanation of the PSO algorithm and of its customization to the
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microwave imaging framework will be presented in Sect. 3. Sect. 4 will be devoted
to the calibration of the PSO’s parameters. The parameters selection strategy will be
presented and the results of an exhaustive analysis will be discussed to point out the
degree of dependence of the minimization process on the parameters values. In Sect. 5,
a comparative numerical assessment will be performed by considering different scattering
scenarios and various environmental conditions. Moreover, the improvements achievable
from an integration of the PSO-based approach with the IMM will be detailed. Finally

some conclusions will be drawn and future developments will be proposed (Sect. 6).

2 Microwave Imaging Problem - Mathematical Formu-
lation

Let us consider an inaccessible investigation domain D; containing a cylindrical scatterer

of arbitrary bounded cross-section and modeled by the following object function

o(z,y)

“onf (2,y) € Dopject C Dy (1)

T(z,y) = [er(z,y) = 1] = J

er(z,y) and o(zx,y) being the relative dielectric permittivity and the electric conductivity,
respectively; f is the working frequency. Such an investigation region is successively illumi-
nated by a set of V incident transverse-magnetic waves characterized by z-directed electric
fields EY (r) = EY, (z,y)Z, v = 1, ..., V. The scattered fields E?, ,,(r) = E?, ,.(z,y)Z,
(z,y) ¢ Dy arising from multiple-scattering interactions between incident waves and the
unknown object are collected in m,) = 1,..., M(,y, v = 1,...,V, measurement points lo-
cated in an area, called observation domain Dy, external to the investigation domain D).
The background medium is assumed to be homogeneous, non-magnetic, and lossless with
dielectric permittivity &.

The imaging process is aimed at retrieving the distribution of the object function (1) and

of the electric field E},(x,y) (z,y) € D; starting from the knowledge of the scattering



data (E;}catt(xm(v)’ ym(’u))’ M)y = 1,..., M), v .V and Ej, (z,y), (z,y) € Dr), by
modeling the nonlinear electromagnetic interactions through the well-known Lippmann-

Schwinger integral equations [20]

E:catt(xmw)a yTn(v)) = k(% /D GO(mmw)a yTn(v); xla yI)Efot(xlﬂyl)T(xla yl) d$ldyl (mmw), ym(v))
T
(2)
Ejne(w,y) = Bigy(,y) — kg /D Go(x,y; 2,y ) Ey (@', o )r(a', ) da'dy’ (z,y) € Dr (3)
I

where Gy is the two-dimensional free-space Green function given by Gy(z,y;2',y’) =

%HSZ) (ko \/(x — ")+ (y — y’)Q), H{? being the Hankel function of 0-th order and second
kind.

To numerically deal with Eqs. (2) and (3), the Richmond’s method [21] is applied and
the discretized counterparts of the inverse scattering integral equations are obtained.
Consequently, the problem unknowns are represented through a linear combination of

rectangular basis functions (R, (z,y), n =1,..., N) as follows

y) = E_:lTan (z,y) (v,y)€D (4)
By (z,y) = i (z,y) € D (5)

Then, the inverse problem is recast into the global minimization of the cost function ¢

My)
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scatt (-’Em(v) ) ym(v) )

where f = {r, v{in=1_ Niv=1,.V} = {fi=1..5; J=NxV}; Spua
and Sgyae being the discretized form of the right-hand-side terms of equations (2) and
(3), respectively.

Finally, the solution of (6) is obtained by constructing a sequence { f ®. p=1,.. K }, k

6

€ Do



being the iteration number, which converges to f’pt =arg {mini [gb( i)] } Towards this

end, a suitable PSO-based technique is adopted.

3 Application of the Particle swarm algorithm

PSO is a multiple-agent optimization procedure in which individuals, called particles,
change their positions (or state) with time. In a PSO system, particles fly around in
the multidimensional solution space and adjust their positions according own experience
and the experience of neighboring particles, by exploiting the knowledge of best positions
encountered by their-self and their neighbors.

In order to describe the particle swarm algorithm, let us consider a swarm of I individuals
Q= {g;i=1, .., 1} (I being the dimension of the set of trial solutions) where each
particle g; is characterized by a position L in the solution space (i.e., the ith trial solution

of the microwave imaging problem)

fi=fi;;i=1,.,J} (7)

and a velocity s;

S; = {Si,j; ] = 17 ceey J} (8)

, which models the capability of the ith particle to fly from the current position igk) (i.e.,
its position at the kth iteration of the minimization process) to another successive position
L(.Hl) in the solution space.

Then, the developed iterative procedure consists of the following steps.

e Step 0 - Initialization. Initialize the iteration counter £ = 0. Randomly generate

a swarm of I particles Q*) = {gi(k)
(k)

%

ci=1, .., I} and associated positions ﬁk) and
velocities s; 7/, 1 = 1, ..., I. fi(,’;) is set by randomly selecting a value with uniform
probability over the search space of the jth parameter ( fi(”;-) € [fjmm, f;"‘“”]) defined

according to the available a-prior: information. Similarly, a random value in the
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range [—S;, Sj|, S; being a threshold value, is assigned to sz(kj) Set the value of the

inertial weight w(®).

o Step 1 - Fitness Evaluation. Rank each particle according to its fitness value

computed trough the cost function (6), ¢§’“) = gb{ﬁk)}, 1 =1, .., 1. For each

particle, compare the fitness value of gi(k) to the best fitness that the particle has ever

attained at any iteration up to current one, (/5{}_9(’“_1)} = MINp=1,. k-1 (qﬁ {Eh)})

1

and update the “pbest” trial solution p(*) = L(k) if ¢ {L(k)} < ¢ {ng_l)}. Search
for the optimal particle of the current iteration, %(2, which position is defined as
f(k) =arg [mmi (QS {ifk)})] and update the “gbest” particle of the swarm g(k) = f(k)

< opt < opt

if ¢ {f) < @{" "}
e Step 2 - Iteration Updating. Update the iteration index k < k + 1.

e Step 3 - Convergence Check. If the termination criterion, based on a maximum
number of iterations K (i.e., & > K) or on a threshold for the fitness value (i.e.,
gb{g(’“)} < n), is satisfied then set f = g(*) and stop the minimization process.

Otherwise, go to Step 4.

o Step 4 - Velocity Updating. By using the knowledge of the global best and of
(k)

the individual best particles, g(’“) and QZ(’“), s; ; is updated according to the following

equation [22]:
sg,kfl) = wsgk]) + Ciry {ngg) - fz(k;)} + Cars {gj(k) - fz(kg)} )

where r; and 7 are uniform random numbers between 0 and 1; C; and C5 are two
positive constants called acceleration coefficients. They represent the weight of the
“cognition” and “social” part that pulls ¢; from igk) towards the “pbest” ng) and the

k)

“gbest” g( positions [23], respectively.

e Step 5 - Boundary Conditions Check. To reduce excessively large step sizes in



the particle’s fly, clamp

s to a specified maximum value S; (according to the
i,J j
reference literature [24], [25], [19], S; is set to the dynamic range of the jth dimen-

sion). Moreover, to limit the search space of the swarm to the physically admissible

(k)

“reflecting wall” boundary condition [19
0]

solution space, change the sign of s

when fi(,kj) turns out to be out of the physical range.

e Step 6 - Position Updating. According to the updated velocity value (Step 4 and

Step 5), change the position of gz-(k) as follows
(k+1) _ (k) |, _(k+1)
i = fij T 5i; (10)

then go to Step 1.

A flowchart of the algorithm is shown in Fig. 2.

4 Numerical Analysis

The aim of this section is twofold. Firstly, the results of an extensive analysis of the
impact of the PSO parameters on the approach performance are reported to determine the
ideal configuration for microwave imaging problems. Then, by considering the so-defined
optimal setting, the effectiveness and robustness of the PSO-based approach are assessed
in reconstructing different scattering scenarios starting from synthetically-generated as

well experimental inverse scattering data.

4.1 Sensitivity Analysis

In the interests of presenting a reliable general purpose PSO-based approach for microwave
imaging, a sensitivity study has been performed. Towards this end, three experiments have

been carried out:



e Ezxperiment 1 - The swarm size I has been varied to determine its role in achieving

the global optimum of the cost function (6);

e Ezxperiment 2 - The value of the inertial weight w has been varied according to the
suggestions in the reference literature to achieve a good balance between global and

local exploration during the minimization;

e FExperiment 3 - The values of the acceleration coefficients, Ciand C5, have been

varied in the range of admissible values.

As reference scenario, the following geometry has been considered. A square investigation
domain, Lp; = Ag in side, illuminated by a set of V' = 4 TM-polarized plane waves and
partitioned in N = 15 x 15 equal square sub-domains (U = 2250 being the number of
problem unknowns). A circular observation domain Rp = 0.9 A¢ in radius where M,y = 21
measurement points equally-spaced are located. In such a scenario, various scatterers,
different in shape and dimensions, have been probed. A circular cylinder, centered at
. = Y. = 0.3 ), of diameter d = 0.8)\; and characterized by a homogeneous object
function value 7(x,y) = 0.5 (Test Case 1) and 7(z,y) = 2.0 (Test Case 2), respectively. A
square (L = 0.4 A\¢-sided) cylinder characterized by a homogeneous object function value
7(z,y) = 0.5 and centered at z. = y. = 0.0 Ay (Test Case 3) and z, = y. = 0.4 \¢ (Test
Case 4), respectively.

In the numerical experiments, to take into account the stochastic nature of the algo-
rithm, each test case has been repeated L = 100 times with the same PSO-parameters

combination and the average optimal function value ® defined as

@ =avi,.1 [¢ {fpt}] (11)

has been recorder. The obtained results will be summarized in graphical form and dis-

cussed in the following sub-sections.
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4.1.1 Swarm dimension, /

As a general rule for population-based methods, it is evident that a small dimension will
produce a notable reduction of the computational burden, but the possibility that the
solution be trapped in a local minimum could increase. On the contrary, large populations
will tend to lessen the required swarm iterations at the cost of more fitness evaluations
and computation time.

As far as the PSO is concerned, the effect of the swarm size has been extensively studied
(see [26] [27] for a detailed description) and it is quite common in PSO-research to limit
the number of particles to the range between I = 20 and I = 60 [24], which seems a
reasonable compromise between cost and reliability. van den Berg and Engelbrecht [28]
suggested that even though there is a slight improvement of the optimal value by enlarging
the swarm size, it increases the number of function evaluations to reach the convergence
threshold.

However, it should be pointed out that above indications have been generally drawn for
low-dimension solution spaces. Consequently, concerning a high-dimensional space as for
microwave imaging, I needs a careful analysis to assess if suggested numerical values are
again suitable. Then an experiment has been carried out by ranging the swarm dimension
from I = 1 (corresponding to a percentage of 0.04 % of the total amount of problem
unknowns U) up to I = 800 (equal to a percentage of 35 % of U). Other PSO-parameters
have been set following common practice in the literature: C; = Cy = 2.0 [25] and a
constant inertial weight equal to w = 0.4 [29]. Since it is not the objective of this analysis
to test the performance of different stopping criteria, but rather the PSO algorithm itself,
a simple a-prior: stopping criterion is used. The minimization has been terminated at
the maximum number of iterations (K = 10000).

Figure 4 shows the plot of the average optimal function value ® versus the swarm size
I for each test case. As can be observed, a threshold of —40dB is already reached for

swarm dimensions of about I ~ 30 + 55 particles ({; ~ 1.33 =+ 2.44, being (; = é x 100 ).
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For larger populations (I > 400 = (; ~ 17), the value of ® further decreases and it turns
out to be equal to —50dB. Then, as a general rule, a number of particles between I = 45
(¢ = 3) and I = 200 ({; = 15) seems to be a suitable choice to allow a good balance

among minimization properties and amount of required computer time.

4.1.2 Inertial weight

The right-hand side of (9) consists of three terms. The first term (sometimes referred as
inertia), introduced in [29] by Shi and Eberhart, is proportional to the old velocity of
the particle sgk]) through a scalar component w. Higher values for w produce relatively
straight particle trajectories resulting in a good global search characteristic. Small values
for w encourage a local searching. Consequently, some researchers find advantage that w
decreases during the minimization process to allow a refined local search at the end of
the optimization [26][27] or randomly varies during the iterative procedure [30]. For this
study, w is taken to be a constant throughout the iterative process.

Certainly, a key issue in the introduction of a constant inertia is the definition of its
optimal value. Towards this end, w has been ranged between 0.0 and 1.4. Concerning the
PSO-parameters configuration, the following values have been chosen: C; = Cy = 2.0,
K =10000, and I = 20.

Figure 4 shows the behavior of ® versus the inertial weight w. As can be observed, the

plot of the average optimal cost function value presents a minimum when w =~ 0.4, which

will be assumed in the following as the optimal value.

4.1.3 Acceleration Terms

The second and third term of (9) are used to avoid that the particle ¢; keeps on “flying”
the same direction until it hints the boundary of the search space. They correspond to
an intensification in the search procedure. C) is referred as memory and it regulates
the attraction of the particle towards its personal best position ng). The term called

cooperation Cy weights the stochastic acceleration that pulls ¢; towards g(k).
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Usually, Cy and Cj are set to 2.0 as recommended by PSO literature |15][22][29] and found
through experimentation in several optimization fields [18]. To assess the effectiveness of
such a setting also in the microwave imaging framework, a sensitivity study has been
carried out by varying the values of C; and Cy from 0.0 up to 5.0 (by assuming that
I =20, K =10000, and w = 0.4).

As an example, Fig. 5 shows a pictorial representation of ® versus the acceleration
parameters C; and Cy for the Test Case 1 (similar behaviors have been obtained for the
other test cases, as well). The two-dimensional surface presents two minima corresponding
to the following parametric configurations: C; = Cy = 2.0 and C; = 0.3 and Cy = 2.5.
According to these observations and following common practice in the literature, the

acceleration parameters have been set to C; = Cy = 2.0.

In conclusion, after the calibration phase, the following values seems to be appropriate
for a microwave imaging problem: (; = 5.5, w = 0.4, and C; = Cy = 2.0. If it is not

specified, such a configuration will be used in the numerical assessment.

4.2 Numerical Assessment

In this section, the potentialities of the proposed PSO-based microwave imaging method
will be assessed by presenting a selected set of results from several numerical experi-
ments. The behavior of the proposed method will be illustrated by considering three
different classes of scatterers: reference objects for which analytical scattering solutions
are available (Sect. 4.2.1), homogeneous scatterers (Sect. 4.2.2), and inhomogeneous scat-
terers (Sect. 4.2.3 and Sect. 4.2.4) in noiseless as well as noisy conditions. Moreover, the
numerical validation will consider experimentally-acquired data (Sect. 4.3) for an check
in a real framework.

The obtained results will be compared with those of state-of-the art numerical procedures
(namely, the CG-based approach and the GA-based method). Moreover, the improvement
allowed by the PSO when integrated with the IMM [31] will be shown.

13



During the numerical validation, the following parameters and error figures will be used
e Signal-to-Noise Ratio (SNR):

v M) v
v=1 Zm(v)zl ‘Escatt(xm(u)’ ym(v))

2MV o?

noise

‘ 2

SNR = 10logy, (12)

2

where o7 ;..

is the variance of the additive Gaussian noise (with zero mean value);

e Reconstruction Errors (i1, Eint, and Eeyyt)

(13)

N, ~
1 ™M (T(@nyys Yney) — T(@ngyys YUn
Ew) = { Wy, Yniw) = 7o ¥ “”)} x 100

(u) n(u)zl T(xn(u)’ yn(u))

where N(,) can range over the whole investigation domain (u = tot), or over the area
where the actual scatterer is located (u = int), or over the background belonging to
the investigation domain (u = ext); the super-script ~is related to the reconstructed

values;

e Qualitative Imaging Errors (p and 0)

\/[%c - xc]Q + [gc - yc]2
Ao

p= (Localization Error) (14)

L-L
d= {T} x 100  (Rol Estimation Error) (15)

4.2.1 Off Centered Circular Cylinder

The first test case deals with a homogeneous (7(x,y) = 2.0) circular cylinder of diameter
d = 0.3y and centered at . = y. = 0.15)y. Since the simple object, for which a
closed solution of the scattered field can be found [32], the values of the scattering data

E’U

seatt (Tmyy» Ym,,,) have been analytically computed.

Such an example is firstly aimed at comparing the capabilities of the proposed PSO-

based approach to those of similar iterative procedures based on CG [33] and GA [34].
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For comparison purposes, the same population of I = 100 individuals has been considered
for the PSO as well as for the GA-based approach. Moreover, concerning the other GA
parameters, the following configuration (as suggested in the literature [35]) has been used:
P, = 0.8 (crossover probability) and P,, = 0.04 (mutation probability).

Figure 6 shows grey-level images(”) of the reconstructed object functions. In particular,
Figs. 6(a)-(c) give the reconstructed images obtained by applying the PSO-approach, the
CG-based method, and the GA-based approach. The ideal reconstruction (with respect to
the adopted discretization, N = 15x 15) is also reported (Fig. 6(d)). As can be noted, the
unknown scatterer is correctly localized whatever method is used (p < 10~2). However, a
more accurate representation of the actual profile is reached with the PSO-based approach
as confirmed and supported by the values of the error figures given in Tab. I. More in

detail, it turns out that the PSO-based approach considerably outperforms the CG-based

approach in cleaning the external background (sg’f 9 = 1.52 vs. sgth ) =97 1) and
reconstructing the actual dielectric profile (61(71350) = 3.91 vs. 5%@ = 18.39). Moreover,

it better estimates the object shape than the GA-based method by obtaining an error in
defining the region-of-interest (Rol)® equal to §(759) = 5.38 ('vs. 6(¢%) =9.91).

For completeness, Fig. 7 shows the behavior of the optimal value of the cost function
%) = ¢ { g(k)} during the iterative process for each of the optimization approaches.

The second experiment is devoted to evaluate the robustness of the PSO-based approach to
the noise. Towards this aim, an additive Gaussian noise has been added to the scattering
data by considering different SN Rs in the range between 20dB and 5dB. As expected,
the presence of the noise causes a deterioration of the reconstruction and localization
accuracy as indicated by the errors figures pictorially represented in Fig. 8. However, this
example demonstrates that even under noisy circumstances, the PSO-based approach is
able to reach a satisfactory retrieval in terms of qualitative as well as quantitative imaging

(except for the situation characterized by a SNR = 5dB for which p > 107"). In fact, it

(1) Please note that the black pixel in the lower right border is used for reference and the dashed
line indicates the region occupied by the actual scatterer.
(2) The Rol is defined as that minimal square region to which the scatterer belongs.
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should be noted that the values of the quantitative error figures do not exceed 11 % (a
value of the same order in magnitude of the reconstruction error 4,; achieved with the
CG-based approach, but for noiseless conditions, s§f;’f) = 10.21 - Tab. I).

However, as pointed out in [31], to achieve an improvement in the resolution accuracy, even
though in presence of a limited amount of information in the scattering data [36], it could
be profitable to consider a multi-resolution strategy in place of a “bare” (or single step)
approach. Such a strategy, called Iterative Multi-resolution Method, allows a synthetic
zoom of the Rol and it is not dependent on the minimization approach. For simplicity,
a conjugate-gradient optimizer, based on the alternating direction implicit method [33],
has been used in [37]. Then, it could be interesting to evaluate the feasibility and the
effectiveness of an integration of the PSO-approach in the IMM strategy. Towards this
end, the third experiment has been carried out by considering again the circular scatterer
but with an IMM-PSO reconstruction strategy.

Fig. 9 shows the evolution of the reconstruction during the multi-step process. As a ref-
erence, the ideal reconstruction is shown in Fig. 9(a). At the end of the first step (s = 1,
s being the step index) [Fig. 9(b)], the Rol of the unknown scatterer is accurately located
(IMMfPSO)J

(p =1.10 x 1073 - Tab. II) with a degree of accuracy greater than that ob-

tained by the bare PSO-approach at the convergence (p("5?) = 6.0x1073 - Tab. I), but the

circular shape is not correctly retrieved. Successively (s = 2 - [Fig. 9(c¢)]), the reconstruc-

tion improves and at the convergence (s = S = 3 - [Fig. 9(d)]) a faithful reconstruction

is achieved (sg,fMM_PSO)J = 1.01 vs. s§£so’ = 2.49, sE,ﬁMM_PSO)J = 1.14 vs.
s=SGopt s=gopt
7 =391, and elgy™ | =045 vs. £l = 3.03).

4.2.2 Centered Square Cylinder

To further analyze the behavior of the integrated IMM-PSO strategy and to evalu-
ate the improvement guaranteed by such an approach, another scattering scenario has
been considered. More in detail, the second example refers to a centered homogeneous

(1(z,y) = 0.5) square (L = 0.8 \g) cylinder located in a larger investigation domain
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Lpr = 2.4 )\ in side. Inversion data have been numerically-computed by using the well
known Richmond’s procedure [21] and, to prevent the so-called “inverse crime” problem,
a proper discretization of the investigation domain (different from the one which has been
employed at each step of the IMM) has been chosen. Concerning the PSO, a swarm
dimension of I = 20 particles has been set since the problems unknowns turned out to be

U = 360 (N(IMM_PSO)J . = 6 % 6). Moreover, the maximum number of iterations for

5=
each scaling step has been fixed to K = 2000.

Figure 10 shows the evolution of the reconstruction during the multi-step process. More-
over, the error figures are depicted in Fig. 11. The obtained results show the effec-
tiveness of the IMM-PSO strategy in dealing with such a different geometry, as well.
Again, when s = 1, the algorithm is able to locate the Rol with a great accuracy
(,o(”‘“/[*PSO)Js:1 = 1.10 x 1072 - Fig. 11). The capability of the algorithm to exactly

shape the scatterer significantly improves as the step index increases and, at the final step

(s = S' = 3 - |Fig. 10(d)]), the retrieved profile fits very well the actual one in terms

- IMM—PSO _ -5 : IMM—PSO —
of localization (p )Js:swt = 1.20 x 107°), shaping (4 )J ot = 1.22)
e . (IMM—PSO) _ (IMM—PSO) _
, and quantitative imaging (&;, Js:s«wt = 049, ¢, JS:SOm = 2.21, and
IMM—PSO ~
(a ) o =5:0x107%).

For comparison purposes, Fig. 12 displays the images of the reconstructed profile at
s = S by considering the IMM-CG strategy [Fig. 12(a)] and the IMM-GA strategy
[Fig. 12(b)], respectively. As can be seen, the reconstruction achieved with the IMM-
PSO [Fig. 10(d)]| outperforms the others (as confirmed by the values of the error figures
reported in Tab. III) even though such an improvement turns out to be lower in magnitude
with respect to that shown in Tab. I and related to the “bare” approach. However,
concerning the minimization process and by observing the behavior of ¢(*) during the
iterative process (Fig. 13), it should be noted that the PSO allows a significant decrease
of the fitness function of about two order in magnitude. Such a result seems to indicate
a better exploitation of the complementary advantages of a nonlinear optimization and a

multi-resolution approach when the PSO-based approach is used. Moreover, by comparing
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Fig. 7 and Fig. 13, it follows also that the PSO benefits of the multi-resolution strategy
(and consequently of a suitable reduction of the solution space) in the minimization of
the cost function.

Finally, to assess the stability of the IMM-PSO strategy, an additive gaussian noise
has been added to the measured data. Tab. IV shows the achieved results in terms
of error figures and for different signal-to-noise-ratio values. Confirming the indica-
tions drawn in Tab. I and related to the bare PSO-approach, the PSO-based method

(IMM—PS0)

turns out to be a reliable technique. More in detail, &, < 9.0 and

J s=Sopt

sUMM=P SO)J < 7.0 whatever the SNR value. Moreover, the localization is very

s=Sopt

(IMM—PSO)J

accurate (p < 1.2x 107%) when (SNR > 5dB).

s=Sopt

4.2.3 Off Centered Hollow Square Cylinder

In the framework of the comparative assessment, a configuration earlier treated in [31] with
the IMM integrated with the CG-optimizer has been considered. The unknown scatterer is
an off-centered hollow square cylinder located at z. = y. = —0.2 Ay |Fig. 14(a)| of a noisy
scenario (SN R = 30dB). The outer cylinder, Ly, = 1.2) in side, is characterized by a
homogeneous object function 7(x,y) = 0.5. The inner square, characterized by dielectric
characteristics equal to that of the background, is Ljpner = 0.4)\p-sided.

As far as the IMM is concerned, the following configuration of the control parameters has
been used: N|,_, =6 x 6, K =2000, n, =1%, n, = 1%, and n;, = 5%. Moreover, for
the PSO, a swarm of I = 20 particles has been considered.

The reconstructions at the convergence step (Tab. V) are shown in [Fig. 14(b)] and in
[Fig. 14(c)| when the IMM-PSO and the IMM-GC strategy are used, respectively. The
advantage of using the IMM-PSO strategy is evident. The accuracy in the resolution of the

inner boundary of the scatterer is increased as well as the shaping of the object under test.
E(IMM—CG)J
int s=goPt

Consequently, the values of the error figures significantly decreases (

(IMM—PSO)J

int s—gopt
(IMM—-CQG)

Eeat

J(IMM—CG)J

1.80, s=5% ~ 9 60, and

s=50pt

s=sert ~ 1.50)

_ IMM—PSO
UMM PSO)J 5( )J —sopt

ext
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4.2.4 Centered Multilayer Square Cylinder

In the last test case of the numerical assessment with synthetic scattering data, a more
complex configuration has been taken into account as well as noisy conditions (SNR =
20dB). In such a case, the scattering object consists of centered concentric square cylin-
ders. An inner cylinder of dimension 0.4 A X 0.4 \g with contrast 7(x, y) = 2.0, surrounded
by an outer layer, 1.2 \g X 1.2 \g, characterized by an object function 7(z,y) = 0.5.

For comparison purposes, the results obtained by means of the IMM integrated with the
GA will be reported, as well [Fig. 15(b)].

Whatever the method, the shape of the cylinder is recovered with high accuracy and the
two layers are clearly distinguishable (Fig. 15). However, the reconstruction effectiveness
of the IMM-PSO strategy is highlighted by comparing the horizontal cross-section of the
reconstructed profiles [Fig. 15(d)|. As can be observed, the profile retrieved with the
IMM-PSO method shows an evident symmetry, which is only partially recovered by the
IMM-GA strategy. Such a behavior is also confirmed by the value of the localization
IMMfPSO)J

=1.8x 10 ys. pMM-GA)| =3.0x 102

error, which reduces ( pf ot
s§=

s=gopt
- Tab. VI).

Finally, to further investigate the noise suppression ability of the IMM-PSO strategy,
other experiments have been carried out. Towards this end, the inversion results, when
the synthetic data are corrupted by increasing the amount of random additive gaus-
sian noise, are shown in Fig. 16. As can be noted by comparing the error values re-
ported in Fig. 16 with those in Tab. IV (related to a homogeneous scatterer), the

performance of the IMM-PSO gets worse because of the more complex scatterer under

test. The most relevant effect of the increase of the noise level appears to be a signifi-

IMM—-PSO
§nt )J , = 4.78 vs.
Noiseless

IMMfPSO)J _

cant reduction of the quantitative imaging capabilities (e

(IMM—PSO0) J
int SNR=5dB

180 X 10_3 VS. p(IMM—PSO)J

that e{\MM~FS50)

= 19.12), which causes a worse localization ( p ,
Noiseless

= 1.30 x 107!). However, it should be pointed out
SNR=5dB

J _gont < 10.0 whatever the SN R value.
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4.3 Experimental Validation

In order to complete the validation of the imaging procedure based on the PSO, let us
consider the inversion of experimental data as measured by the Institute Fresnel, Marseille,
France [38].

The experimental set-up consists of a fixed emitter (a double-ridged horn transmitting
antenna) and a receiver rotating, with a mechanical support, around the vertical axis of
scatterer under test. The probing antenna illuminates the object from V = 36 different
locations equally-spaced in a circle Rp = 720mm + 3 mm in radius. Due to the physical
limitations, the scattered field is measured in M) = 49 points for each illumination
angle. Since the longitudinal dimension of the targets, a two-dimensional electromagnetic
imaging model is allowed. A detailed description of the underlying experimental setup
together with the complete dataset can be found in the introduction of [39] (pp. 1565-
1572) by Belkebir and Saillard.

The considered experimental dataset (“dielTM _dec8f.exp“) is related to an off-centered
homogeneous circular cylinder d = 30 mm in diameter. Such an object is characterized
by a nominal value of the object function equal to 7(z,y) = 2.0 & 0.3 and it is located
at . = 0.0, y. = —30mm. As far as the investigation domain D; is concerned, a
square domain 30 x 30cm? is assumed. Because of the aspect-limited nature of the
experimental setup, the complete set of measures has been used, but only mono-frequency
data (f = 4 GHz) have been considered.

For the reconstruction, the IMM-PSO strategy has been applied (I = 100) and the ob-
tained results have been compared with those achieved in [40] where the IMM was used
in combination with the CG-based approach.

Figs. 17(a)-17(c) show the evolution of the reconstructed profile during the multi-
step procedure starting from the free-space configuration (7,|,_, = 7 and 1/1,(;’)J =

s=0

E} (Tn,yn)). At the end of the optimization process s = S, = 3, the cylinder is

mc

correctly located and reconstructed. Moreover, the retrieved values of the scatterer pa-
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rameters, if compared to those obtained when the IMM-CG strategy is used [17(d)],

(FIMM=PSO) — 110 mm vs.

point out an improvement in the reconstruction accuracy
FUMM=CG) — 1 78 mm and g{/MM-PSO0) = _30.20mm vs. gIMM-CC) = _26.15mm -

c

Tab. VII).

5 Conclusions

In this paper, a new approach to microwave imaging in the spatial domain has been
presented. The approach has been formulated as a global nonlinear optimization problem
and a customized PSO has been applied. In such a framework, the use of a PSO has
allowed an effective treatment of a complete nonlinear formulation exhibiting a number
of interesting features (discussed in Section 1). Consequently, the method has proven
to be more efficient for microwave imaging purposes than CG and GA-based methods
since it combines the capabilities of a global optimizer in escaping local minima and the
convergence speed of a deterministic procedure. The limits of the PSO-based approach in
reconstructing a two-dimensional scenario probed by an electromagnetic field have been
explored and the results have been very promising. They have shown that the algorithm
is robust, handling noisy as well as limited data very well without a significant increase
of the computational burden. Moreover, during an exhaustive numerical analysis, it has
been pointed out how the integration of the nonlinear optimizer with the IMM strategy
could have a remarkable effect on the reconstruction.

However, the proposed scheme can be further improved and future works will be carried
out in three different directions and at different levels of the imaging procedure. As far
as the minimization is concerned, the convergence rate of the numerical process could
strongly benefit of an accurate study of the scheduling of the inertial weight during the
iterative procedure to fully exploit the hybrid (i.e., local and global optimization proper-
ties) nature of the PSO. In the light of an increase of the convergence rate, the capability

of including a-priori information in the computational technique is also of fundamental
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importance and the definition of a suitable threshold in the swarm velocity seems to be
particularly suited for this purpose. Moreover, the simplicity and reduced computational
requirements offer hope that the IMM-PSO strategy will provide a feasible approach to
three-dimensional inversion problems. Toward this aim, an extension of the proposed

method to a full three-dimensional scenario is currently under development.
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Figure Captions

e Figure 1. Reference problem geometry.
e Figure 2. PS0-based procedure - Block diagram.

e Figure 3. Calibration process - Behavior of the average optimal cost function value

versus the swarm dimension, /.

e Figure 4. Calibration process - Behavior of the average optimal cost function value

versus the value of the inertial weight w.

e Figure 5. Calibration process - Behavior of the average optimal cost function value

versus the cognitive and social scaling (or accelerations) parameters, C; and Cy.

e Figure 6. Reconstruction of an off-centered homogeneous (7 = 2.0) circular (d =
0.3 \g) cylinder by means of (a) PSO-based procedure, (b) CG-based procedure, and

(¢) GA-based procedure. Ideal reconstruction (d).

e Figure 7. Reconstruction of an off-centered homogeneous (7 = 2.0) circular (d =
0.3 \g) cylinder - Behavior of the cost function &%) versus the iteration number k

during the minimization process.

e Figure 8. Reconstruction of an off-centered homogeneous (7 = 2.0) circular (d =
0.3 X\g) cylinder (Noisy Data) - PSO-based procedure: values of the error figures
related to (a) the qualitative imaging accuracy and to (b) the quantitative imaging

accuracy versus SNR.

e Figure 9. Reconstruction of an off-centered homogeneous (7 = 2.0) circular (d =
0.3 X\g) cylinder - Reference profile (a). IM method and PSO-based procedure (IMM-
PSO): reconstructed profile at (b) s =1, (¢) s =2, and (d) s = S%" = 3.

e Figure 10. Reconstruction of a centered homogeneous (7 = 0.5) square (L = 0.8 \)

cylinder - Reference profile (a). IM method and PSO-based procedure (IMM-PSO):
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reconstructed profile at (b) s =1, (¢) s =2, and (d) s = S = 3.

Figure 11. Reconstruction of a centered homogeneous (7 = 0.5) square (L = 0.8 \¢)
cylinder - IMM-PSO0 strategy: values of the error figures related to (a) the qualitative
imaging accuracy and to (b) the quantitative imaging accuracy versus step number

s(s=1, .., So.

Figure 12. Reconstruction of a centered homogeneous (7 = 0.5) square (L = 0.8 \g)
cylinder - Retrieved profile with the IM approach integrated with (a) the CG-based

procedure (IMM-CG strategy) and (b) the GA-based procedure (IMM-GA strategy).

Figure 13. Reconstruction of a centered homogeneous (7 = 0.5) square (L = 0.8 \g)
cylinder - IMM-PSO strategy: behavior of the cost function ¢*) versus the iteration

number k£ during the iterative multi-step process.

Figure 14. Reconstruction of an off-centered hollow square cylinder (Lipner = 0.4,
Loyter = 1.2)¢, and 7 = 0.5) cylinder (Noisy conditions, SNR = 30dB) - Reference
profile (a). Retrieved profile with the IM approach integrated with (b) the PSO-
based procedure (IMM-PSO strategy) and (c) the CG-based procedure (IMM-CG

strategy) [31].

Figure 15. Reconstruction of a centered stratified square cylinder (Lj,per = 0.4,
Tinner = 2.0 and Loyger = 1.2X0, Touter = 0.5) cylinder (Noisy conditions, SNR =
20dB) - Reference profile (a). Retrieved profile with the /M approach integrated
with (b) the PSO-based procedure (IMM-PSO strategy) and (c) the GA-based pro-

cedure (IMM-GA strategy). Horizontal cross-section view (d).

Figure 16. Reconstruction of a centered stratified square cylinder (Liuper = 0.4,
Tinmer = 2.0 and Lyyger = 1.2X0, Touter = 0.5) cylinder (Noisy conditions, SNR =
20dB) - IMM-PSO strategy: values of the error figures related to (a) the qualitative

imaging accuracy and to (b) the quantitative imaging accuracy versus SNR.
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e Figure 17. Reconstruction of an off-centered homogeneous circular cylinder (Real
dataset “Marseille” [39] - “dielTM dec8f.exp” - f = 4GHz). IMM-PSO strategy:
reconstructed profile at (a) s = 1, (b) s = 2, and (¢) s = S% = 3. IMM-CG

strategy: reconstructed profile at the convergence step (d) s = S = 2 [40].
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Table Captions

e Table I. Reconstruction of an off-centered homogeneous (7 = 2.0) circular (d =
0.3 o) cylinder. Values of the qualitative (p and §) and quantitative (g4, €4ne, and
Eext) error figures for PSO, CG, and GA-based procedures.

e Table II. Reconstruction of an off-centered homogeneous (7 = 2.0) circular (d =
0.3 \g) cylinder. Error figures and iterative-process parameters for the the IM ap-
proach integrated with the PSO-based procedure at different steps s (s = 1, ..., S°?)

of the multi-scaling procedure.

e Table III. Reconstruction of a centered homogeneous (7 = 0.5) square (L = 0.8 \)
cylinder. Error figures and iterative-process parameters for the the IM approach
integrated with the PSO-based procedure (IMM-PSO strategy), the CG-based pro-
cedure (IMM-CG strategy), and (c¢) the GA-based procedure (IMM-GA strategy).

e Table IV. Reconstruction of a centered homogeneous (7 = 0.5) square (L = 0.8 \)
cylinder (Noisy conditions) - IMM-PSO strategy: error figures and iterative-process

parameters for various SN R values.

e Table V. Reconstruction of an off-centered hollow square cylinder (Liyner = 0.4,
Loyter = 1.2), and 7 = 0.5) cylinder (Noisy conditions, SNR = 30dB) [31] - Error
figures and iterative-process parameters for the the IM approach integrated with the
PS0O-based procedure (IMM-PSO strategy) and the CG-based procedure (IMM-CG

strategy) .

e Table VI. Reconstruction of a centered stratified square cylinder (Lipner = 0.4,
Tinmer = 2.0 and Loyger = 1.2X0, Touter = 0.5) cylinder (Noisy conditions, SNR =
20dB) - Error figures and iterative-process parameters for the the IM approach
integrated with the PSO-based procedure (IMM-PSO strategy) and the GA-based
procedure (IMM-GA strategy).
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e Table VII. Reconstruction of an off-centered homogeneous circular cylinder (Real
dataset “Marseille” [39] - “dielTM _dec8f.exp” - f = 4GHz). Estimated geometric

parameters and iterative-process parameters ( Zei, s Yegs, 11 LiSop) [MM])-
op op
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