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Abstract

In the framework of microwave imaging applications, an innovative strategy aimed
at addressing the multi-objective inverse scattering problem is proposed. Starting
from the spatial-domain integral formulation, the original multi-objective problem
is recast into a single-objective one by defining a suitable cost function as a linear
combination of the data and state terms according to variable weighting parameters.
By iteratively tuning these parameters, the optimization procedure is forced to solve
an “almost” multi-objective problem avoiding the use of ad-hoc multiple-objective
optimization methods and satisfying different objectives in a balanced way. Selected
numerical results indicate that the use of such a strategy yields to accurate recon-
structions, with noise-corrupted data as well, by improving the performances of the

adopted optimization procedure.

Index Terms - Microwave imaging, inverse scattering, adaptive weighting, genetic algo-

rithms



1 Problem Overview

In the framework of inverse scattering techniques for microwave imaging, let us consider
the 2-D TM-polarization case. An unknown object, belonging to an investigation domain
D, is successively illuminated by a set of known incident electric fields fi"¢, v = 1, ..., V.
For each incident field fi"¢, the scattered field £ is measured on a surface S outside

D and satisfies the following integral equation (data equation)

f{]scatt = Geth fv (1)

where f, denotes the total electric field related to fi*, T is the material contrast, and Gy
is the external Green operator [1]. Moreover, the total field f, inside the investigation

domain is known to satisfy the so called state equation

f’lzj'nc = fv — GimT fv (2)

Gint being the internal Green operator [1].

The profile reconstruction problem consists of determining the material contrast 7 and
the field distribution f, inside D which satisfy the data and the state equations starting
from the knowledge of the incident fields ¢, v = 1,...,V on D and the scattered fields
fseatt y =1,...,V on S. Clearly, this is a multi-objective problem (MOP) since the solution
is required to satisfy two goals simultaneously. Mathematically, it can be described as
follows: “to minimize ® = G(7, fu) = {9data (T, [o)s Gstate(T, fo)} subject to the constraint
Q=H(r, f,) ={hi(7, fu),i=1,...,1} <0” where ® and 2 are the objective-array and

the constraint-array, respectively. More in detail,

\%4 2 1% : 2
e fgcatt_Gez fv e f;}nc_{fv —Gin fv}
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and the constraint-array is defined according to the available a-prior: information on the

problem’s unknowns (7, f,) (e.g., hi(7) = —Re (1), ho(7) = Re (1) —7}5,,, hs(T) = Im (1),

maz>
ho(t) = 7™ — I'm (7)). The MOP generally presents more than one acceptable solution
or there may not exist one solution that is the best with respect to all objectives. As far as
the MOP’s solution is concerned, such a problem can be directly addressed by considering
a customized optimization procedure. Many real-world electromagnetic problems involve
the simultaneous optimization of multiple objectives that often are competing. Usually,
customized methodologies for MOP’s are aimed at determining a trade-off surface (i.e.,
a set of non-dominated solutions [2|) known as Pareto front (see |3] and the references
cited therein).

Unlike these approaches, generally inverse scattering techniques do not treat the multi-
objectives as they are. The original problem is transformed into a single-objective (SOP)

one by defining an artificial scalar objective function generally obtained through some

linear combination of the weighted objectives [|4][1]:

QS(Ta f'u) = ¢data(7—a fv) + qbstate(’ra f'u)
¢data(7—7 fv) = QJdata {gdata (7—’ fv)} (4)
¢state (7—7 fv) = Ostate {gstate (7—; fv)}

Olgata aNd Qugqt being two positive weighting parameters!. Such a formulation allows the
use of any single-objective optimization algorithm [5]-[9], but it needs to define the weights
associated to each objective. This is one of the main drawbacks of the approach since
the behavior of the optimization algorithm is very sensitive and is biased by the values
of these parameters [10]. Although some very interesting attempts for selecting optimum
values of the weighting factors have been carried out [11] (even though the search of op-
timum regularization parameters is conceptually different from the determination of the

weighting factors, some interesting analogies and strategies for the unsupervised evolution

!The term “weighting” parameters has been used since the term “regularization” has been assumed to
be mainly associated with the use of a-priori, “external” information, which imposes additional constraints
to be satisfied besides state and data terms (e.g., Tikhonov, total variation, edge preserving, etc.).
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can be found in [11]), it is recognized as a very difficult problem from a mathematical
point of view. Generally, the choice of the values of the weighting parameters is performed
through a computationally expensive numerical experimentation or by considering a su-
pervised tuning process. Moreover, such a calibration presents some arbitrariness due to
the adopted model and is largely dependent on the scatterer involved, so that a general
theory providing the optimum values of gutq and aiee cannot be easily developed and
this certainly represents an obstacle preventing widespread industrial applications.

The unsupervised adaptive setting of these parameters may be a solution. As an
analogy to the unsupervised evolution of weighting parameters, but within the framework
of the adaptive choice of the regularization factors, a significant contribution has been
proposed by Abubakar et al. [12]. By fully exploiting some a-priori information? on
the scatterer under test, a suitable adaptive multiplicative parameter is defined. Such a
parameter is a function of the total variation regularization factor and it is determined
by the iterative inversion procedure itself. This eliminates the choice of the values of the
parameters completely.

In this letter, an alternative adaptive weighting strategy is proposed. The approach
defines an adaptive and unsupervised procedure for tuning the weighting parameters with-
out any information on the class of the profiles to be reconstructed. After a mathematical

description of the iterative process (Sect. 2), selected numerical results will be presented

in order to preliminary illustrate the effectiveness of the proposed approach.

2 The Adaptive Weighting Strategy

Let us consider a multiple-agent strategy (e.g., the real-coded genetic algorithm proposed
in [6]) where a set of L trial solutions {(T(l), i 1=1, ...,L} is defined and iteratively
(k being the iteration number) updated in order to define the optimal solution minimizing

the cost function (7?9 f(r)) = arg {mz’nk {mm, [¢(7'((]?), fv(gc))] }} Generally speaking,

2The TV-factor takes into account for the nature of the scatterer under test. The norm used in
defining the TV-factor favors a blocky’ contrast (L!-norm) or a smooth profile (L?-norm) [13].
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the underlying idea of the adaptive weighting strategy (AWS) is to reduce the original
multiple-objective problem in a single-objective one. In particular, the proposed approach
forces the decreasing not-only of the greatest term but it also favors the minimization of
the other which is already better satisfied. Mathematically, such a strategy is detailed in
the following.

At each iteration and for each trial solution /, the AWS requires the tuning of {adam},(cl)

(l) . (l) 9data (T((,?)a fu(l()k)) GJstate (T((Ilc))’ fqgl()k))
and {Qtqte },’ according to the values of s’ = — oo\ — o\
GJstate (T(k)’fv(k)) 9data (T(k)’fv(k))

by comparing the data term ggq1, (7'((,?), f (86)) and the state term ggqaze (7'((,?), fv(gc)) More

v

in detaﬂa if Gdata (T((]lc))a féa)) S Gstate (7—((]?)’ fégc)) then

and dg) =

@ e ()
Sk if s’ <
{astate}l(cl) = {adata}l(cl) =1.0 (5)
Yk otherwise

where v, is a threshold adaptively tuned iteration-by-iteration. Its value is decreased
(Vks1 12&) when kgqiq O Kgqre i equal to a fixed percentage 7 of the maximum number
of iterations K. Moreover, two counters are updated: kg?ate — kg?ate + 1 and kélgta + 0.

Otherwise (gdata (T((,i)), fzggc)) > Gstate (7'((,?), fégc))), the following complementary rule is

adopted
dV if dY <
{ouaa}) =4 " Lo {Ostare}) = 1.0 (6)
Y otherwise

and kg?ate — 07 k((il(zta A kc(ilczta + L.

Successively, the genetic operators are applied by taking into account as fitness measure

of the lth solution its corresponding weighted cost function ¢ (T,Sl), 5&))

3 Numerical Validation

In this section, selected numerical results are provided in order to show the effectiveness

of the proposed methodology. The assumed imaging configuration is shown in Fig. 1(a)
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(please note that the black pixel near the low right corner is used for reference). The
scattering object is an off-centered square homogeneous cylinder of side d = %)\ (X being
the free-space wavelength) illuminated by a set of V' = 8 unit TM-polarized plane waves.
The coordinates of the center of the cylinder are zqg = y, = —g—g)\ and 7 = 0.5. The
input scattering data are analytically computed and a gaussian noise, characterized by a
signal-to-noise ratio equal to 20 dB, has been added.

The initial set of L trial solutions has been generated by considering complete ran-
dom values in the following ranges: 0.0 < Tél) < 1.0, —-1.5 < Re{fq%)} < 1.5, and
-15 < Im{f%)} < 1.5. In particular, Fig. 1(b) shows the dielectric distribution
related to T((()O)p " satisfying (TéOP 2 fzf(vg)t)) = arg {mml [3 (Tél), fz%))]} (T((g)”t), 52’(1;’)’5)) =
arg {mini [6 () fuw)]}-

As far as the regularization strategy is concerned, the proposed technique is indepen-
dent from the type of the multi-agent minimization algorithm. However, because of the
stochastic nature of the considered multi-agent procedure, the AWS-based minimization
process has been executed 30 times for each numerical experiment with the same ran-
domly generated initial population. The average results of a complete set of executions
are then presented.

The set of genetic parameters used is chosen according to the values suggested in the
literature on this subject [14][15]: L = 81 (dimension of the set of trial solutions), P, = 0.6
(crossover probability), P, = 5x 1072 (mutation probability), Py, = 1x 1073 (single-gene
mutation), and K = 2 x 10%. Moreover, the numerical thresholds and parameters of the
adaptive regularization strategy are n =1 x 10~ and 7, = 1.0.

In figure 2 the behaviors of the optimal value of the weighted cost function after the
application of the genetic operators (i.e., {¢},(c"pt) = MiNp=1, {minl [(b <T((,ll)), 1581))]})
and related data and state terms are shown. For comparison purposes, the results obtained
by considering a standard procedure with constant weighting parameters ({adam}g) =

{astate},(cl) = 1.0 - Fig. 2(a)) and an adaptive regularization with fixed threshold (vx = 7o)

in the updating of {adata}g) and {Oésmte}g) (Fig. 2(b)), are also reported. During the



iterative process, a similar behavior can be observed for the case of the reference (Fig.
2(a)) as well as for those of the adaptive strategies (Fig. 2(b)-(c¢)). The optimization
algorithm forces {qbdam},(fp " and {qbsmte}io” " to assume the same order of magnitude. On
the contrary, not-negligible differences turn out in the corresponding data { gdata}g” " and
state {gstate},(:p Y terms given in Fig. 3. In particular, the constant-weights strategy (Fig.
3(a)) reduces the data term of about two-orders in magnitude during the iterative process.
On the other hand, when the adaptive strategies are used, the same term is decreased of
about three (Fig. 3(b)) and four-orders (Fig. 3(¢)) in magnitude, respectively.

As a consequence, starting from the same random distribution of the initial guess
population, at the end of the iterative optimization process performed with the same
minimization algorithm, the profile reconstructions shown at the bottom of Fig. 4 are
obtained. For completeness, the estimated distributions at intermediate iterations are
also given (Figd - £ = 1000 (top) and k = 5000 (middle)). As can be seen, the adaptive
strategies allow an improvement of the reconstruction accuracy as confirmed by the values

of the error figures (Tab. I.) computed as follows

=, = {/DJ o (””T’ 2’;; @.9) 4, dy} % 100 (7)

where 7(°P!) is the reconstructed object function and D; indicates the whole domain (j =
tot), or the area where the actual scatterer is located (j = int), or the background

belonging to the investigation domain (j = ext).

4 Conclusions

In this paper, a new adaptive regularization strategy for microwave imaging purposes has
been presented. The proposed approach considers only a very limited a-prior: information
(e.g., some physical constraints on the values of the material contrast 7, T, < 7(z,y) <

Tmaz) about the scenario under test and does not require neither some knowledge on the

8



shape of the scatterer under test nor a supervised tuning procedure. The updating of the
regularization parameters is adaptively determined by means of an on-line analysis of the
values of the cost function terms. This allows a more efficient management of the original
multi-objective inverse scattering problem without recurring to an ad-hoc optimization
strategy. Numerical experiments have been carried out and the achieved results are very
promising.

In the authors’ opinion, although further analysis should be performed for a com-
plete assessment of the method, the obtained results are indicative of the potentialities,
robustness and flexibility of the proposed approach. Future works will be devoted to fur-
ther refine the adaptive tuning of the regularization parameters in order to improve the

convergence rate of the minimization process.
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Figure Caption

e Figure 1. Dielectric profile reconstruction. Actual dielectric distribution (a). Initial

trial dielectric distribution (b).

e Figure 2. Behavior of the cost function versus the iteration number £: (a) Constant-
weights approach, (b) Adaptive-weights approach - Constant-threshold strategy

(7 = 7), and (c¢) Adaptive-weights approach - Variable-threshold strategy.

e Figure 3. Behavior of the terms (ggatq and gssqse) of the cost function versus the iter-
ation number k: (a) Constant-weights approach, (b) Adaptive-weights approach
- Constant-threshold strategy (yx = 7o), and (¢) Adaptive-weights approach -

Variable-threshold strategy.

e Figure 4. Dielectric profile reconstruction. Dielectric distribution estimated at
k = 1000 (top), k = 5000 (middle), and at the convergence k = K (bottom)
with the Constant-weights approach (left), with the Adaptive-weights approach -
Constant-threshold strategy (center), and with the Adaptive-weights approach -

Variable-threshold strategy (right).
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Table Caption

e Table I. Dielectric profile reconstruction. Error figures.
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Fig. 1 - E. Bort et al., “An adaptive regularization strategy ...”
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