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Abstract

In the framework of buried object detection and subsurface sensing, some of the
main difficulties in the reconstruction process are certainly due to the aspect-limited
nature of available measurement data and to the requirement of an on-line recon-
struction. To limit these problems, a multi-source (MS) learning-by-example (LBE)
technique is proposed in this paper. In order to fully exploit the more attractive
features of the MS strategy, the proposed approach is based on a support vector
machine (SVM). The effectiveness of the MS-LBE technique is evaluated by com-
paring the achieved results with those obtained by means of a previously developed

single-source (SS) SVM-based procedure for an ideal as well as a noisy environment.



1 Introduction

The detection of natural as well as man-made subsurface targets, the identification of
cracks and voids included in a host structure, the location of sedimentary layers under
the sea water represent few examples of a large number of practical applications where
the reconstruction of an unknown object embedded in a not-accessible region is required.

As a matter of fact, the arising problem can be reformulated in terms of an inverse
scattering problem where the problem-unknowns (i.e., the image of the subsurface target)
are obtained starting from the observation of the electromagnetic interactions between the
object and a probing electromagnetic source. However, a large set of subsurface retrieval
problems, unlike standard imaging problems, presents some peculiar requirements and

characteristics:

e the aspect-limited measurement setup (and, consequently, a limited achievable in-

formation content);

e the need of a real-time processing.

As far as the information achievable from scattered data is concerned, due to the system
geometry (being both electromagnetic sources and measurement points located on the
same half-space), the inverse-problem data are acquired only on a finite set of measure-
ment positions (aspect-limited data) resulting in a troublesome reconstruction process [1]
particularly if a single-source single-illumination strategy is taken into account.

In order to enhance the reconstruction accuracy, enlarging the information content of
the input data, a MS strategy can be usefully adopted. As a matter of fact, single-source
multi-illumination strategies have been already successfully employed in the framework
of conventional inverse scattering problems [2][3]. However, when conventional nonlinear
single-source multi-illumination inverse scattering techniques are used, large computa-
tional resources are required strongly limiting the possibility for a real or quasi-real-time

processing. Then, to fully exploit the effectiveness of a microwave imaging method, allow-



ing an on-line detection also for large values of the contrast function, the use of so-called
LBE techniques results very attractive. The detection problem is reformulated into a re-
gression one, where the data (i.e., the measures of the anomalous field) and the unknowns
(i.e., the position of the object as well as its geometric and dielectric characteristic accord-
ing to the adopted parameterization) are related by means of an approximated function
to be estimated through an off-line data fitting process (training phase). As a matter
of fact, approaches based on both neural networks (NNs) [5][6] and SVMs [7][8] have
been satisfactorily applied for buried object detection in presence of single-illumination
acquisition systems. On the other hand, the use of a multi-illumination strategy certainly
would improve the localization accuracy of the LBE-based approach, but could greatly
complicate the mandatory training procedure. Consequently, in order to increase the data
information content jointly limiting the overall computational burden during the train-
ing phase, an innovative, to the best of authors’ knowledge, LBE-approach based on a
multi-source strategy is taken into account in this paper.

In more detail, the manuscript is organized as follows. Starting from the description
of the detection problem (Sect. 2), Section 3 presents the mathematical formulation
of the multi-source SVM-based approach. After a deep assessment of the potentialities
and current limitations of the method (Sect. 4), some conclusions and final remarks are

reported in Section 5.

2 Formulation of the Regression Problem

Let us consider the half-space geometry shown in Figure 1, where the upper region is
assumed to be free-space (¢,1 = 1.0, o1 = 0.0) and the lower region is representative
of a lossy ground, whose relative permittivity and electric conductivity are £, and oo,
respectively. A two-dimensional circular cylinder of diameter d.; is buried in the lossy
earth at an unknown position P = ZTeitZ + Yeuy. The transmitters and receivers are

located in the free-space, along a straight line parallel to the air-earth interface. More-



over, let us suppose that the buried cylinder is contained in an investigation domain
D, = {—% <z< %; —% <y< %} Consequently, the permittivity distribution of the

investigation domain results

Ercil P € Sei
€Dy (B) = (1)
€ro  otherwise

o (p) Ocil P € Scil
D \P) =
o9  otherwise

where S.; indicates the cylinder cross-section.
Then, by assuming 2z-directed electric current filaments as electromagnetic sources,
the scattered electric field measured at the rth receiver position p , r =1,..., R due to T

transmitters located at p,, ¢ = 1,...,T" is given by

Eyear (p,) = kz/ Gi(p,.p) E(p,t=1,.T;p) O(p) dp (3)

Dy

where E (Bt t=1,..,T; B) is the electric field at p € Dy due to the illumination produced
by T sources; G (Br’ g) is the Green function when Brbelongs to the upper half-space

and p lies in the ground; O (/_)) is the object function defined as follows

0 (p) = 0:(p) +i—0s (p) (4)

Wer

where O, (/_)) =€p, (,(_)) — g and O, (,(_)) =o0p, (,(_)) — 09.
The detection problem is aimed at determining the unknown function relating the
measurement data to the unknowns of the inverse scattering problem, that is to find a

function & such that:

p =3 (%) (5)

being p = {Ecil’ deily Ereils acil} and 'y = {Escat (Er) ,r=1,.., R}. The arising problem



is very complex and difficult to be managed due to the nonlinearity and ill-posedness.

However, if N examples (i.e., couples of input-output pairs {(p) ,(EE)H} ,n=1..,N
—/ N

) are available, then (5) can be seen as an example of a regression problem for which an

approximation of & can be determined by means of a SVM-based procedure as detailed

in Sect. 3.

3 LBE-based Technique for Buried Object Detection -

The SVM Algorithm

Learning-by-examples techniques are based on the following underlying idea: “to find an
approximation of the unknown function S by means of a data-fitling process”.

As far as the NN approach [9] is concerned, the data fitting is carried out by means
of a nonlinear interpolation of the N examples in the R—dimensional input space, ',
(being R the input-space dimension). However, NN-based solution generally does not
allow the model complexity control, sometime leading to an “over-fitting” of the training
data and resulting in an inability to correctly estimate the output in presence of input
data which do not belong to the original training set.

Conversely, SVMs maintain generalization properties by considering a linear data-
fitting in a transformed space where the original examples are mapped through a nonlinear
mapping. In more detail, firstly each data array {I'y}, is mapped into the so-called
“feature space” by means of a nonlinear transformation ¢ : RE — RE being R > R.
Then, the sample points on the feature space are linearly interpolated according to the
following relation

S(@Cp)=w ¢ [Lp) +b (6)

where w is the vector normal to the hyper-plane defined by (6) in the feature space and

b is the bias term. The selection of the proper hyper-plane is carried out by solving the



arising constrained minimization problem:
miny, {2 (1)} (7)

under the constraints

o) — (w- {(Tp),} +b)| < e+ 6

&n >0

where

Q) = O fan} + AR {0} = 5 Julf +3 36, Q

being p*) the kth component of the nth target of the training set. Then, it results that
the so defined hyper-plane is “as flat as possible” (thus providing a simple linear data
fitting in the feature space) and the arising approximating function S shows for a large
number of examples a deviation from the target lower than a fixed quantity, €, and greater
deviations, &,, for some examples.

In order to solve (7), the original problem is usually reformulated in its “dual form” by

introducing N Lagrange multipliers, a,,, n = 1,... N (see [10] for a detailed mathematical

description)

maxa, {¥ (an, n=1,...N)} = maz,, {% >N Zj-v:l a; o K (f{(EE)z} ,g{(EE)]}) +

+e Zvlzvzl o] — 27]:]:1 an@gc)}

i a, =0 o, €[\ (11)

where K (@i,gj) =)@ (@1) is the kernel function. Provided that K be positive-
defined, the quadratic problem (10)-(11) has an unique solution and standard algorithms

[11][12] can be used in order to determine the «, coefficients. Consequently, it is possible



to analytically express w as follows

w = ;ang{(EE)n} (12)

and to compute the value of the bias term, b, according to [12]

N

b=p =3 a0 {(Cr),}- o {(Tr),} — € sign ()] . (13)

Jj=1

According to (6) and (12), the approximating function & can be rewritten as

S(Lp) = Y auk {(Lp), Lo} +0 (14)

n=1

where only the knowledge of support vectors, {a; #0, j=1,...,J}, and of the kernel
function is needed. It should be pointed that its is not required to explicitly define
the nonlinear function ¢ and the nonlinear mapping is realized by selecting a function
K so that it represents a positive-definite kernel function. In this paper, gaussian kernel

functions, whose effectiveness in dealing with subsurface sensing has been already assessed

[5], are taken into account.

4 Results

In order to test the effectiveness of the proposed approach, a set of selected numerical
examples is considered . With reference to the problem geometry illustrated in Figure 1,
the following geometry and dielectric parameters are taken into account. The subsurface
relative permittivity and conductivity are e,0 = 4.0 and o9 = 1 mS/m, respectively. The
investigation domain is a A X A square region where an unknown lossless circular pipe,
dei; = A/6 in diameter and characterized by a relative permittivity equal to &..; = 5.0, is
located. The multi-source system is organized as follows. Transmitters and receivers are

located at h; = h, = A\/6 above the air-earth interface and R = 16 receivers are positioned



along the linear observation domain (L = A long) with an inter-element distance equal
to A, = A/15. Moreover, illuminating sources are positioned one A\/4 far from the other
(A; = A\/4) on the same linear domain. The measurement data are numerically computed
by means of a finite-element-based simulator and by considering an additive white gaussian
noise with assigned signal-to-noise ratio (SN R) to simulate a realistic noisy environment.

As far as the generation of the training and of the test sets are concerned, the target
cylinder is moved in Ny, = 676 and Ny = 625 different positions according to the
following scanning rule

PO = (a),yf))  n=1,.,N® (15)

pg> ypq

where the super-script i is related to the “training” (train) or to the “test” (test), and

x(z) = xg?art (p 1

() —yﬁtlrﬁ( —1

)A
)Ay(Z g=1, ..., N?Si) (16)
being x%%n) yg%n) =—)\/2, Agltrain) _ Ay(tmin) = A/25, Na(ctmin) _ Nggtmin) — 26, and
gliest) — yltesh) — 193 /25, Agltest) = Aytest) = ) /25, N{test) = N{test) = 25, respectively.

In the first test case, T = 3 unit sources, located so that the medium one is central with
respect to the investigation domain, are considered in an almost ideal environment scenario
(SNR =100 dB) to preliminary assess the effectiveness of the proposed multi-source LBE-
based approach (MSLBE). To this end, in order to allow a quantitative estimation of the

localization accuracy, the following error figures are then defined
e Local Errors

n=p+ (q _ 1)Nm(test)

52 — |qul_)qu| 5; — |ypq5ypq| p=1, ---,NétESt) (17)
— test
q= 1""’st )



being (Z,q, Upq) and (2,4, Yp,) estimated and actual coordinates of the scatterer,

respectively, and D = L the maximum error.

e Local Average Errors

X 1 Ny(test) N
P ‘ P W Er:l Tor (test)
AP = 5 p=1,..,N{ (18)
(test)
Y21 - ﬁ Zivzml grq
AP = d g=1,.., N (19)

D

where X, = 2, Vg = 1,..., N{"*Y) and Y, = ypq, Vp =1, ..., N0

T

e Global Average Errors

2
(test) (test)
N, es N es

1 1 1
O =5 | vomm 2 |Xo— w2 7 20
x D NgsteSt) Z D NgsteSt) 7;1 pr ( )
1 1 Nz(tESt) Nz(tESt) 2
@y - B (test) Z YZI T ar(test) Z grq (21)
z g=1 z r=1

Figure 2 shows the local error in the estimation of both the target coordinates as a function
of the target position. For comparison purposes, the results obtained with a single-source
single-illumination LBE-based approach (SSLBE) are also reported in Figure 3 (being
the unit source located at a central position with respect to the investigation domain).
As can be observed, the MSLBE technique generally outperforms the SSLBE approach.
In particular, the horizontal resolution results very accurate as confirmed from the local
error statistics (Tab. I) 3 lower than those related to SSLBE approach.

As far as the robustness to the environmental noise is concerned, the performances of
the proposed approach are evaluated in the second test case dealing with a training data
set related to examples with SNR = 100 dB but test sets ranging from SNR = 100dB to

SNR = 5dB. Figure 4 shows the behavior of the global average error in the estimation of

10



the spatial z and y coordinates as a function of the signal-to-noise ratio. As a comparison,
the plots related to SSLBE approach are also reported. It can be noted that the MSLBE
approach guarantees an improvement in the localization accuracy also in correspondence
with lower SN R values. In more detail, if the use of the multiple source strategy allows
a consistent decrease in the localization error along the horizontal direction, it retains
the good performances already shown by SSLBE in the estimation of the target depth,
slightly improving the localization effectiveness for strongly noisy environments.

Since the prediction of the horizontal position of the target is more positively affected
by the MSLBE strategy, in order to better understand the arising positive “effects”, the
relative local average is reported in Figure 5. As expected, in correspondence with a fixed
signal-to-noise, the MSLBE approach better estimates the position of the targets located
near the lateral boundaries of the investigation domain with a corresponding local average

error lower than 0.05 for SNR > 10dB when —0.3 < % < 0.25.

5 Conclusions

In this paper a multi-source LBE-based electromagnetic approach is presented for the
detection of buried objects. The proposed method allows to combine the advantages of a
multi-source strategy with those of a SVM-based methodology, satisfying the requirements
of both accurate and real-time processing. The effectiveness of the approach has been
assessed, also in comparison with a previously developed SSLBE approach, by considering
noiseless as well as noisy environments. The obtained results demonstrated an improved
accuracy regardless to the modeled environmental noise and, particularly, in predicting
the horizontal coordinate of the target. Future research activities will be devoted to the
definition of the optimal trade-off between number and location of illumination sources
in order to give some guidelines for the design of optimized sub-surface electromagnetic

applicators.
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FIGURE CAPTIONS

e Figure 1 - Problem geometry.

e Figure 2 - MSLBE approach. Local error as a function of the actual position of the

buried cylinder: (a) d, and (b) .

e Figure 3 - SSLBE approach. Local error as a function of the actual position of the

buried cylinder: (a) 6, and (b) 6.
e Figure 4 - Behavior of the global average error versus SNR: (a) ©, and (b) ©,.

e Figure 5 - Behavior of the horizontal local average error in correspondence with

various SINR values: (a) MSLBE approach and (6) SSLBE approach.

14



TABLE CAPTIONS

e Table I - Local error statistics.
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Fig. 1 - E. Bermani et al., “A Multi-Source Approach based on ...
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av, {00} | max, {67} | min, {57}
MSLBE — Approach | 0.015 0.079 7.55 x 107°
SSLBE — Approach | 0.058 0.274 6.80 x 107
(a)
avy, {55} max, {5;‘} min, {5;}}
MSLBE — Approach | 0.035 0.207 | 1.56 x 107°
SSLBE — Approach | 0.035 0.224 3.09 x 107°

Tab. I - E. Bermani et al., “A Multi-Source Approach based on ...
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