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An Integrated Multi-Scaling Strategy based on a Parti-

cle Swarm Algorithm for Inverse Scattering Problems

Massimo Donelli, Gabriele Franceschini, Anna Martini, and Andrea Massa

Abstract

The application of a multiscale strategy integrated with a stochastic technique to
the solution of nonlinear inverse scattering problems is presented. The approach
allows for the explicit and easy handling of many difficulties associated with such a
problem ranging from ill-conditioning to nonlinearity and false solutions drawback.
The choice of a finite dimensional representation for the unknowns, due to the upper
bound to the essential dimension of the data, is iteratively accomplished by means
of an adaptive multi-resolution model, which offers considerable flexibility for the
inclusion of the a-priori knowledge and of the knowledge acquired during the itera-
tive steps of the multiscaling process. Even though a suitable representation of the
unknowns could limit the local minima problem, the multi-resolution strategy is in-
tegrated with a customized stochastic optimizer based on the behavior of a particle
swarm (PSO), which allows to prevent that nonlinearity could induce the solution
algorithm into false solutions without a large increasing of the overall computa-
tional burden. Selected examples are presented by considering a two-dimensional
microwave imaging problem so as to illustrate the key features of the integrated

stochastic multi-scaling strategy.
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1 Introduction

In the past couple of decades, there have been considerable advances in the efficiency,
robustness, and efficacy of inversion methods in every fields related to microwave imaging
and electromagnetic inverse scattering. The increased interest is evident from the number
of journal articles published on this subject, the ever-growing number of sessions organized
in major conferences, several books and proceedings that have recently appeared (see
[1][2][3] for an informative overview). Such a scenario seems to indicate that inverse
scattering continues to be a primary area of research for many academic, governmental,
and industrial teams worldwide.

Many advances have been driven by new as well as old applications (see [4] and the refer-
ences therein), such as geophysical prospecting and remote sensing [5][6], non-destructive
testing and evaluation |7]|8|, and medical imaging [9]|10][11]|12]. Moreover, inverse scat-
tering techniques have been applied in a large range of data and conditions (e.g., monochro-
matic, multi-frequency, and transients conditions).

Within this framework, many researches have been focused into improving the robustness
towards false solutions and the convergence rate of inversion techniques as well as into
addressing the non-uniqueness and ill-conditioning inherent to inverse scattering problems.
[ll-conditioning and false solutions are closely related topics, since they are caused by
the limited amount of available information on the problem in hand. It is well known
(see [13]| for an exhaustive and detailed treatment) that the “direct” problem (i.e., the
computation of the scattered field from a probed known scatterer) is directed towards a
loss of information. Its solution defines a transformation from a physical quantity (the
complete description of the scatterer in terms of geometry as well as dielectric features)
with a certain information content to another quantity (the scattered field) with a smaller
information content. Such an event implies that the “image” (the scattered field) provided
by a band-limited system is smoother than the object under test. Therefore, the corre-

sponding inverse scattering problem requires a transition with a gain of information. This



property provides the explanation of the ill-posedness of the inverse problem. In fact, it is
ill-posed (and its discretized counterpart turns out to be ill-conditioned) as a consequence
of the loss of information intrinsic to the solution of the direct process.

On the other hand, false solutions (i.e., physically unacceptable solutions, but mathemat-
ically acceptable) could be easily avoided by taking into account some information (or
a-priori information) on the behavior of the actual solution.

Then, the “golden rule” for solving an inverse scattering problem is to add some additional
information to compensate the loss of information of the imaging process. Such a infor-
mation is defined as additional since cannot be derived neither from the scattered field
nor from the properties of the mapping between the data and the unknowns space, which
describes the imaging process. It comes from other informative sources or from previous
information gained on the object.

The most simple form to add information is to mathematically express some expected
physical properties of the scatterer and to use such a knowledge explicitly to construct
families of approximate solutions. This is the principle of the regularization methods
formulated by A. N. Tikhonov and V. Y. Arsenin in [14]. The underlying idea of regular-
ization consists in considering a family of approximate solutions depending on a parameter
called regularization parameter. For noise-free data, the approximate solutions converge
to the actual solution when the regularization parameter tends to zero. Otherwise, one
can obtain an optimal approximation of the exact solution for a non-zero value of the
regularization parameter. The choice of the value of the regularization parameter is a
crucial and non-trivial problem. But, unlike linear inverse scattering problems for which
well-developed mathematical methods and efficient numerical algorithms are already avail-
able, the scientific literature does not provide any simple rule for the optimal choice of
the regularization coefficient when nonlinear problems are dealt with [15].

A different approach to restore well-position is to suitably define the dimension of the
unknown space by fully exploiting all the available information on the scenario under test.

To come to a well-posed problem, the description of the unknown scatterer is supposed



to belong to a finite dimensional space, which dimension is smaller than the essential
dimension of data. Such a dimension, because of the analytical nature of the scattering
operator, is a known quantity since it depends on the extension of the investigation domain
respect to the wavelength [16] and on the characteristics of the multi-view acquisition
system [17].

Unfortunately, the choice of a maximum number of retrievable unknowns equal to the
essential dimension of the scattered data does not usually fulfill the criterion given in [18§]
for a suitable representation (in terms of spatial resolution) for both the dielectric profile
of the scatterer and the induced electric field. In order to overcome such a mismatch-
ing, various strategies based on a multi-resolution expansion of the unknowns have been
proposed. These methods define discretization schemes and corresponding basis func-
tions tailored to represent the variety of length scales in the investigation domain (finer
scales near the discontinuities and more spatially diffused over the smooth expanses of the
scatterer or in the external homogeneous background). Taking advantage of such a kind
of expansion, it is possible to distribute in a non-uniform way the unknowns inside the
scattering domain. This is the common rational of the multi-resolution-based approaches.
The a-priori multi-resolution approach [19], owing to a-priori considerations on the math-
ematical nature of the problem and of the intrinsic features exhibited by the class of
retrievable functions, associates part of the total number of unknowns to a coarse rep-
resentation of the whole domain. Moreover, it concentrates the remaining ones in those
parts of the region under test where a better resolution can be achieved. Mathematically,
the arising problem is solved through the minimization (only once) of a cost function re-
lated to the scattering equations wherein the unknowns are represented with the a-prior:
multi-resolution expansion by considering a suitable wavelet transformation.

A similar multi-resolution approach, based on a Daubechies wavelet expansion, is used
in [20] to easily manage different kind of prior statistical models on the scenario under
test when linear conditions hold. In such a case, regularization is accomplished through

a multi-scale prior stochastic model and a statistic tool (based on the use of the relative



error covariance matrix) is adopted to define the space-varying optimal scale for the
reconstruction. The arising inverse scattering problem is then recast to the minimization
of a two-terms cost function enforcing fidelity to scattering data and the matching with
the statistical prior model for the contrast, respectively.

A different approach based on a step-wise refinement procedure is developed by E. Miller
in [21] for a nonlinear scattering model. A sequence of different a-priori hypothesis tests
(i.e., a collection of anomaly configurations) are employed first to localize anomalous be-
haviors in large areas and then to refine these initial estimates to better characterize the
actual structures. The proposed stable coarse-to-fine localization method defines a de-
composition procedure (able to zoom on strong scatterers before refining other structures)
and a pruning step to remove unreliable candidate anomalies from further processing.

In the framework of adaptive multi-resolution approaches, Caorsi et al. proposed in [22]
an iterative technique where the distribution of the unknowns is a-posteriori determined
on the basis of the previous experience about the possible objects to be reconstructed,
but avoiding any a-prior: assumption on the position as well as on the kind of unknown
scatterers. The approach takes advantage of a constant multi-scaling piece-wise pulse
representation able to deal with all possible multi-resolution combinations (unlike wavelet
expansion) and it is aimed at determining firstly the regions-of-interest (Rols) where
the scatterers are located and successively at retrieving quantitative information. The
reconstruction process is developed as a sequence of increasingly “finer” representations
while at the same time retaining the information achieved in moving from a coarse to a
fine scale.

However, unlike the linear case, in nonlinear inverse problems, the condition of a number
of independent data equal or smaller than the number of retrievable unknowns may not
suffice to reach a reliable inversion because of the false solutions problem. Certainly, a
multi-resolution strategy considerably limits (with respect to standard deterministic meth-
ods) the occurrence of local minima in the arising cost function by reducing the search

space. But, there is no guarantee of avoiding local minima without a proper initialization



(when deterministic optimizers are used). Consequently, it is needed to integrate the
multi-resolution strategy (aimed at preventing the ill-positioning of the inverse scattering
problem) with a suitable global optimization procedure able to face the problem of false
solutions by taking into account the available a-priori information (and, for adaptive pro-
cesses, of the step-by-step acquired information) in a simple and computationally effective
manner.

Since false solutions are physically unacceptable solutions, the minimization method is

required to possess the following main features to prevent their occurrence:

e Simple and efficient inclusion of the available a-priori information (and of the step-

by-step acquired information) on the physical behavior of the unknown solution;

e Easy and on-line control of the solution quality in order to assure that trial solutions,
estimated during the sampling of the search space, are admissible solutions. If the
acceptable solution has to belong to a subdomain of the solution space (e.g., when
further constraints are imposed), the optimizer should monitor such a property

under the action of the operators generating the succession of trial solutions;

e Suitable operators able to fully exploit the information on the solution gained during

the minimization and/or arising from the a-priori information;

e Operators taking into account any possible link between different solution parame-
ters in order to easily replace non-feasible solutions by newly feasible ones without

introducing user-defined penalty functions;

In [23], since the proposed multi-resolution method is not dependent, on the minimization
algorithm and for simplicity, the authors used a conjugate-gradient approach by con-
sidering the optimization procedure as a “black boz” inside the overall system without
satisfying at all or in part the previous requirements. On the contrary, in this paper, the
overall reconstruction system is considered. An integrated strategy, aimed at preventing

the ill-conditioning of the inverse scattering problem with the multi-scaling expansion of
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the unknown profiles and at avoiding the solution be trapped in a false solution through
a suitable hill-climbing optimization method based on the PSO [24], is presented and
assessed by means of an exhaustive numerical validation. More in detail, the paper is or-
ganized as follows. In Section 2, the mathematical model and the geometry of an inverse
scattering problem is briefly described by pointing out the main features of such a kind
of problems. A suitable integrated strategy to face/limit some of the arising drawbacks is
then presented by focusing on the control level and the basic level of the overall system
in Section 3 and Section 4, respectively. Numerical experiments and some comparisons
with reference methodologies are presented in Section 5 to validate the proposed strategy.

Some brief conclusions follows (Sect. 6).

2 The Inverse Scattering Problem - Mathematical For-
mulation

The starting point for any microwave imaging approach in the spatial domain are the
Fredholm integral equations [25], which model the scattering phenomena relating the
internal field E} ,(r), v =1, ..., V (v being the index of the vth illumination, by assuming
a multi-view acquisition setup [26|) and the object function 7(r) (7(r) = [e,(r) — 1] —j%,
e-(r) and o(r) being the relative dielectric permittivity and the electric conductivity,
respectively) to the scattered electric field Eg.o(r), 0 = 1, ..., O (0 being the index of the
oth observation region) and to the incident electric field E} (r), respectively.

For a two-dimensional geometry (by omitting the sub-script z), they assume the following

scalar form

k

2
Senla.y) = =2 [ [ r@ )@, )HD (hd) da'dy’ (@,9) €D ()

K v
Blo(a,y) = Biyle, )+ 5% [ [ o, ) Byl ) HS (kod) de'dy (@, 5) € D (2)

where kg is the wave number of the background medium (characterized by a known ob-



(2)

ject function value 79), Hy~ is the zero-order second-kind Hankel function, and d =

\/ (x —2')?2 + (y — y')%. Moreover, D is the investigation domain where the unknown
scatterer (defined as a discontinuity in the object function distribution with respect to
the background, Dy = {(z, y) such that 7(z, y) # 7o}) is assumed to be located.

An imaging process is aimed at retrieving the distribution of 7(x, y) and of the electric field
E},(x, y) in the investigation domain (x, y) € D by solving the arising inverse problem.
To numerically manage such a problem, a discretized version of (1)-(2) is needed. Gener-
ally, such a task is performed by measuring, for each illumination v, the scattered fields
at a finite number m,) =1, ..., M(,) of pre-defined locations inside the observation region
(O = 1) and by subdividing the investigation domain in N identical square subdomains
where the unknown object function (7(x,, yn), n =1, ..., N) as well as the electric field
(Ep (Tn, Yn), n=1, ..., Nyv=1,..,V) are assumed to be constant. Thus, the problem
unknowns are represented through a linear combination of rectangular basis functions

(Bn(z,y), n=1,...,N) as follows

(2, y) = ;T(xna Ya)Bu (z,y)  (z,y) €D (3)
E;fuot(x: y) = ;Efot(xn; yn)Bn (33, y) (l‘, y) €D (4)

and, as a result, the discretized form of (1)-(2) is obtained

[E:catt] = [G:wt] [T] [E;}ot] (5)
[Einel = {l] = (Gl [71} [EGi] (6)

where [E?,,,;] is an array of the measures collected for the vth view at M, measurement
points of the observation domain; [7] is a N x N diagonal matrix whose nonzero elements
are the values of the object function at the /N discretization domains of the investigation

domain; [EY .|, [E}f,] are two arrays of dimension N x 1 containing the samples of the
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total and incident electric field at the positions (z,, yn), n = 1, ..., N; [GY.,], |GY,;] are
the Green’s matrices.

Because of the approximations induced by the finite dimensional discretization of 7(z, y)
and E7,(z, y) (3)-(4) and the presence of an unavoidable measurement noise, the existence
of a solution of the algebraic system (5)-(6) is not ensured and a generalized solution has

to be defined as the global minimum of the following cost function ®(!

(I)(i) = ZvV:IH[ scatt] [Gem] [Efot]”z_i_

Sl l[Bbeand ||
S|l ]{w-[es, ]} e (7)

v:lll[EmeI?

where the two terms in (7) enforce fidelity to the data in the observation domain (E}q (Tm,» Ymy,) ),
(Tmgys Ymey) € D) and in the investigation domain (E},.(Zn, Yn); (Tn, yn) € D), Tespec-

tively; f = {7(zn, yn), Bty (Tns Yn);n=1,.,N;v=1,...,V}={f;57i=1,..,J; J=N xV}
Usually, the unknown profile of the object function is obtained as the solution of the

following nonlinear least square problem

Lo = arg {mini [ (£)]} ®)

where {i(k); k=1,.., K} is a sequence of trial solutions (k being the iteration number)
iteratively updated (but always considering an unique representation for the unknown
profile during the minimization process) by using minimization techniques such as the
conjugate-gradient method [27] or stochastic methodologies [29], [30].

Unfortunately, to achieve a suitable spatial resolution in the investigation domain, N
should be very large and, in forming the “image” of the investigation domain, one would
be requested to solve a large nonlinear optimization problem whose size U (i.e., the number

of unknowns) is proportional to the number of pixel N in the region-of-interest (Rol) (in

principle the overall investigation domain for a “bare” reconstruction).

M || || indicates the £2 norm.
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Focusing on the dimension of the unknowns space (neglecting just now the nonlinearity
problem), it should be pointed out that, for a scatterer of limited spatial extension, the
scattered fields are band-limited functions and the dimension of the corresponding finite
dimensional space depends on the scatterer extension [16]. Therefore, only a limited
number of independent data is actually available and, as a consequence, unless some a-
priori information is available or some kind of regularization is exploited, only a finite
number of unknowns can be actually retrieved. Consequently, unavoidable restrictions on
the achievable resolution are enforced.

On the other hand, due to the required (in principle and for a single-step reconstruc-
tion process) discretization, it is almost impossible to satisfy the sufficient condition to
have no local minima other than the global one [28]. Moreover, a not suitable choice of
the unknowns (i.e., an excessively large dimension of the unknowns space as well as an
inappropriate representation of the unknowns in terms of basis functions) could imply
ill-conditioning besides an increased sensitivity to false solutions.

Consequently, to come to a well-posed /well-conditioned problem and to guarantee that the
solution lies in the global minimum of the cost function, some countermeasures are needed.
To address the first concern, a suitable multi-resolution strategy, aimed at forcing the
dimensionality of the space of the unknowns to a lower value than the essential dimension
of data, is considered and a detailed description will be reported in Sect. 3. Moreover, to
suitably deal with the nonlinear nature of the functional (7), a customized global optimizer
should be used. In fact, unlike the linear case, a number of independent data equal to
the number of unknowns may not suffice to achieve an accurate inversion because of the
false solution problem [28]. Consequently, an approach based on a new (relatively, for the
remote sensing, and especially in the framework of microwave imaging) multiple-agent

technique is adopted (Sect. 4).
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3 The Inversion Strategy: The Iterative Multi-Scaling
Approach

The key point of the Iterative Multi-Scaling Approach (IMSA) is the determination of
a low-order multiscale representation for the unknowns so as to reduce the complexity
of the inversion process and to improve the accuracy in the spatial resolution by “suit-
ably” distributing (i.e., through an automatic refinement procedure) finer scales of the
representation in selected Rols during a sequence of iterative steps.

As far as the representation is concerned, the unknowns are expressed as a twofold sum-

mation of shifted and dilated forms of a standard step-like basis function

T(z Z Z) 7 (Zn@r)s Ynr)) Boer) (@, 9) (2, 9) €D 9)
R(s) N(r)
By, 9) =3 Y Eiy (tn(r), Unr) Bay (@) (@, 9) €D (10)

%
Il
—
3
S
3
3
Il

1

where 7 is the resolution index and s is the multi-scaling step index. Such a representation
allows to simultaneously take into account a broad spectrum of length scales ranging from
low-resolution levels to high-resolution levels. The summation over r ranges from 1, which
corresponds to the largest characteristic length scale, to R(s), which corresponds to the
smallest basis-function support at the s-th scaling step. For a given level , N(r) is the
number of non-overlapped basis functions centered in the area to be represented at the r-th
resolution. Therefore, the terms of small length scale can be concentrated at those regions
where the unknowns profile varies more rapidly. Then, to fully exploit the a-priori (or
iteratively gained) information on the dielectric distribution in the investigation domain,

the following adaptive multi-step process is performed:

e Initialization (s = 0)

Set the problem unknowns to the free-space configuration (7(z,y) = 0.0 and E},,(z, y) =

B}z, v));
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e Low-Order Reconstruction (s = 1)

Minimize ®(f) (7) by assuming a coarse representation for the unknowns i(l) =
{7 (@n, Yn), ELy (Tn, yn); n =1, ..., N} uniformly partitioning (R(s) = 1) the in-
vestigation domain D according to the amount of information content of the scat-

tering data [16];

o Multi-Step Process (s =2, ..., Sopt)

— Rols Estimation
Define the number Q®), the locations (:Uﬁ(,)]) y((:(;) 1, ...,Q¥), and the ex-
tensions (Lg;g, qg=1, ..., Q(s)) of the Rols according to the clustering procedure
described in [23] and perform a noise filtering to eliminate some artifacts in

the reconstructed image [31];

— Multi-Resolution Ezpansion (s — s+ 1)

Refine the representation of the unknowns by increasing the resolution level in

the Rols (r = R(s)).
— Multi-Resolution Profile Retrieval

Minimize ®(f*)) (7) by considering the multi-resolution representation for the

unknowns (9)-(10), i { ( Tn(r)s yn(r)) , Etot( n(r)s Yn(r )) n(r) =1, ...,N(r);

r=1, ..,R(s)}, R(s) = s, and according to the PSO-based approach (Sect.
4);
— Termination Procedure

Go to the “Rols FEstimation” until a stationary condition on the number of

Rols
_ {‘Q(S) _ Q(c)‘}

S

<1g (11)

and on the qualitative reconstruction parameters

13



s (s—1)
te(g) ~ Ye(q) ‘
(s)

x 100} < My U= T, Yo, L (12)
c(q)

minqzly")Q(s) {

(Muy w = ¢, Ye, L being fixed thresholds) is reached (s = Sopt).

4 The Optimization Approach: The Particle Swarm
Algorithm

To develop an integrated system able to avoid the false-solutions problem and to fully
exploit (possibly on-line, i.e. at each iteration of the s-th “Multi-Resolution Profile Re-
trieval” phase) all the available a-priori and iteratively-acquired information by taking
advantage of the iterative nature of the multi-scaling process, a conjugate-gradient-based
approach (CG) does not seem the optimal choice. Although the reduction of the search
space, allowed by the multi-scaling procedure (with a favorable data/unknowns ratio),
turns out to be an ideal situation, a CG optimizer could be still trapped in local minima
unless a suitable initial guess is available. Moreover, during the minimization, it is not-so-
easy to monitor the solution admissibility. In general, such a check is delayed at the end
of the minimization process. Therefore, a non-physical solution can be generated, which
could represent a worse/wrong starting guess (i.e., a trial solution that does not belong
to the attraction basin of the global minimum) for the successive step.

Thus, according to the guidelines briefly summarized in Sect. 1, an optimization based on
a multiple-agent stochastic technique called PSO [24][32] is considered as minimization
tool. As well as stochastic techniques, one aspect making the PSO very interesting lies
in the possibility of easily including some information on the unknowns whenever during
the minimization process. Such a feature allows one to restrict the solution search to
the acceptance domain by positively affecting the convergence speed of the algorithm.
Moreover, the reduced dimension of the solution space of the IMSA does not cause an

excessive growth of the processing time.
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On the other hand, unlike genetic algorithms (GAs) and other heuristic techniques, PSO

presents some interesting features to be exploited in microwave imaging problems, as well:

e The PSO is simpler, both in formulation and computer implementation, than the
GA, which considers three-genetic operators (the selection, the crossover, and the

mutation). PSO considers one simple operator, that is the velocity updating;

e In general, heuristic techniques require a careful tuning of the control parameters,
which strongly influence the behavior of the optimization method. PSO allows an
easier manipulation of the calibration parameters and, even though their optimal
values depend on the specific problem, some of these parameters can be set for a

large class of problems and problem sizes;

e PSO has a flexible and well-balanced mechanism to enhance the global and local
exploration of the search space. Such a feature allows one to overcome the premature

convergence (or stagnation) and it enhances the search capability of the optimizer;

e PSO generally requires a smaller population size, which turns out in a reduced
computational cost of the overall minimization by allowing a reasonable compromise

between the computational burden and the minimization reliability.

In order to describe the implementation of the particle swarm algorithm and its integration
in the IMSA, let us consider a swarm of I particles P = {pz(-s); 1=1, .., I} (I being
the swarm size). Each member of the swarm pgs) is described by defining its position L(.s)

in the solution space and its velocity ggs)

g ={g)si=1,.,7} (13)
in flying the solution space starting from position L(:z to L(:l“ Then, the following
operations are iteratively repeated:

e Initial Setup (k= 0)

15



Generate a swarm of I particles Pk(i.) = {pl(:z, 1=1, .., 1 } and associated positions

L(:Z and velocities QS:Z?, 1 = 1, ..., I according to the information on the solution

acquired at the previous step s — 1:

fO=s{f0 i=1, 0 (14)
g9 =s{g7V}  i=1, .1 (15)

& being the linear operator, which maps the solution/velocity at the (s — 1)-th step
with resolution levels defined in the investigation domain at the s-th step. Set the

value of the control parameter called inertial weight wy.

e lterative Minimization Process (k=1, ..., K)

— Swarm Ranking

Calculate the value of the cost function (7) of each individual p§ji in the swarm

O =@ (f1),i=1,.., I

kyi
— Solution Updating

Compare each particle’s cost function value to the best fitness that the particle

has ever attained at any iteration up to current one, ® (Q@Li) = MiNp=1,. k1 {@232}
and update the “pbest” trial solution bg = ﬁ:z it ® ( L(:z) <® (bgf_)“) Up-
date the optimal ”gbest” trial solution, pgf’lpt, by modifying its position in the

solution space z,(f) = E:)pt, i(s) =arg {mini [Cb (L(:Z)] }

0 kopt
— Convergence Check
Stop the iterative process when the maximum number of iterations K is
achieved or a threshold on the cost function value § (i.e., ® {t,(cs)} <4, k=

k(s)

conv

) is reached, then set f( = £{*).

— Velocity Updating

16



Starting from the knowledge of ¢\ and b,(f}, modify ¢(*) as follows [24]:

gl(cs—zl,i,j = wgl(:z),j +Cim {bl(cszj - flg,si),j} + Cor {tl(csg - flg,si),j} (16)

where r; and ro are uniform random numbers between 0 and 1; C'; and C; are

two positive constants called acceleration coefficients [33].

Admissibility Check:

to a

To reduce excessively large step sizes in the particle’s fly, clamp ‘ 91({21,1',]'
specified maximum value G;-S) (according to the reference literature [32], G;-S)
is set to the dynamic range of the jth dimension defined according to the
a-priori information). Moreover, to limit the search space of the swarm to
the physically admissible solution space, change the sign of g,(cs_zl,m (“reflecting

wall” boundary condition [32]) when f,gi)l,i,j turns out to be out of the physical

range.

Particle’s Position Updating

Modify the particle’s position as follows

flgj—)l,i,j = flg,si),j +gl€::)—1,i,j J=1 .., J;1=1 ..,1 (17)

5 Numerical Validation

The numerical assessment is organized in two-parts. In the first part, the performance of

the integrated IMSA-PSO strategy will be firstly examined in a set of test cases, which

were previously used to test the IMSA-CG strategy and “bare” approaches. Successively,

more complicated scenarios will be considered ranging from synthetic multiple-scatterers

geometries as well as real objects probed in a controlled environment.

In comparing the reconstructed distributions with the actual ones, the following measures
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of success will be used. The first is a relative error measure over all the pixels in a defined

region of the investigation domain

NG

LN | ) T(xn - Yng, ) - Tref(ajn o Ung, )
Oy = —= Z{ (r)? 77 ) “}xmo R = Sopi (18)

r=1 N((j)) (=1 Tref(xnm ’ y"(r))

where j = tot when (z, y) € D, j = int when (z, y) € Dy, and j = ext when (z, y) €
{D — Dy}; 7 and 7"¢/ being the values of the actual and reconstructed object function,
respectively.

Moreover, two indices of the achieved qualitative imaging will be evaluated:

\/[fccwopt) = 2]+ [yt — 8]
Ao

p= (Localization Error) (19)

L - Lre . y
A = {%} x 100  (Dimensional Error) (20)
ref

Concerning the numerical validation, the first test case (#1) is one of that was earlier
treated in [22]. The scattering object, shown in a pictorial grey-level representation in
Fig. 1(a), consists of a centered square hollow cylinder (75, = 0.0 and 7,,; = 0.5) whose
dimensions are L;, = 0.8 \g and L, = 1.6 A\g. The investigation region is a square area
Lp = 2.4 )y wide, while the measurement region is a circle R = 1.8 )¢ in radius where
M) = 21 equally-spaced receivers are located. The number of views is equal to V' = 4.
To model a realistic environment, a Gaussian-type noise characterized by signal-to-noise
ratio (SN R) equal to 30 dB has been added to scattering data. Therefore, to take into
account the stochastic nature of the noise, the reported results are the average of the
executions of the reconstruction procedure for 10 different independent realizations of the
random process generating the noisy scattering data.

As far as the IMSA strategy is concerned, the Rol has been discretized in N(R) = 36

square sub-domains (U = 360, U being the number of the arising unknowns) and the
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maximum number of iterations of the optimization process at the s-th step has been fixed
to K©) = 2000, s = 1, ..., Sopt- Comncerning the characteristic parameters of the PSO,
the following configuration has been assumed after a calibration phase and according
to the guidelines in the related literature [32][24]: w = 0.4 (constant inertial weight),
C1 = Cy = 2.0 (acceleration terms), I = 20 ~ 2-U (swarm dimension).

In Fig. 1, the processing results at various steps of the IMSA-PSO procedure are shown.
According to the sequence of operations described in Sect. 3, the “low-order reconstruc-
tion” (s = 1) is aimed at performing an inversion by using the same level of spatial
resolution in the overall investigation domain (N(R(s)) = N). The retrieved profile is
shown in Fig. 1(b) where the dashed line indicates the contour of the actual object. As
it can be observed, the scatterer is non-reliably reconstructed as confirmed by the error
figures reported in Tab. I (see for example the value of the dimensional error equal to
A],_, = 15.02). However, from such an reconstruction it is possible to identify the region
where the object is located. Thanks to this information and to the improved knowledge
of the scatterer under test, the resolution accuracy improves in the successive steps (Fig.
1(¢) - s = 2) until the object is satisfactorily reconstructed at the end of the multi-step
process [Fig. 1(d)|. The final error in estimating the support of the scatterer reduces of
about five times (M ~ 4.66) and the localization errors decreases of two-orders in

S:Sl,ptzél

magnitude (—S’;Jzi ~ 1.38 x 10?). For comparison purposes, let us consider the recon-
structed profiles with the IMSA-CG strategy, the CG-based approach and the PSO-based
method, respectively (Fig. 2). Concerning the “bare” approaches, it should be pointed
out that D has been partitioned in N = 100 sub-domains, with a homogeneous grid whose
cell side is equal to the finest discretization length of the multiscaling process. Moreover,
because of the increased dimension of the search space (U = 500), the maximum number
of iterations for the minimization process has been fixed to K,,,; = 6000.

As can be noted from pictorial representations (Fig. 2) and confirmed by the values of error

figures in Tab. II, the IMSA-PSO [Fig. 1(d)] guarantees a non-negligible improvement

in comparison with the IMSA-CG strategy [Fig. 2(a)] as well as the “bare” approaches
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[Figs. 2(b)-(c)]- Such an indication is further assessed by observing Fig. 3, which shows
the behaviors of the reconstructions of the object function along a horizontal [y = 0.0 -
Fig. 3(a)] and a vertical [z = 0.0 - Fig. 3(b)] section of the investigation domain together
with the ideal profile.

Quantitatively, to better highlight the well-known advantages of multi-resolution strate-

(PSO) (PSO)
__pP3 __APSO)
gies over standard approaches, let us consider that STisA=P50) ™ ~ 0.90x10?, A(,AAMA P50y =

o(PSO)
4.0, and W%{E,p—sm ~ 1.4. Moreover, the obtained performance confirms the effective-
tot

ness of the PSO as nonlinear optimizer compared to a standard conjugate-gradient based

approach, but especially the capability of the integrated strategy (IMSA-PSO) to fully

exploit and enhance the best features of the optimizer ( ((11]34:/;4 55(2) ~ 71.42 (PSGO)) and

AUMSA-CG) A(CG)
AUMSA—PSO) — 3'09A(PSO))'

For completeness, as far as the minimization procedure is concerned, Fig. 4 gives the
behavior of the cost function @{tff)} versus the increasing number of process itera-
tions. Moreover, to evaluate the computational load of the reconstruction process Tab.
III gives the values of some representative parameters: T} (iteration time), K, (to-

tal number of iterations of the minimization procedure, K;,; = ZS"” k&) k) be-

conv) conv
ing the number of iterations needed to achieve the “convergence” at the sth step of

the multi-scaling process), and U. As expected, because of the reduced number of un-

knowns (U(IJ\I{I(SZS—O;S()) = U(IZ(SCAG)C@ ~ 1.39), the multi-scaling methodology allows a sig-

(PSO)
nificant reduction of the computational burden at each iteration (mkm ~ 1.5 and

% ~ 1.8). Concerning the overall computational load of the IMSA-PSO, it turns
out to be of the same order but greater than that of the IMSA-CG. However, the trade-off
between the increased computational time and the enhancement of reconstruction accu-
racy (and the possibility to avoid local minima) seems to be in favor of the IMSA-PSO in
such an example (gt(%ﬂtzzA—PiGo)) ~ 1.5, but % ~ 1.05x 10? and % ~ 3.62;
Ciot = T X Kip) as well as (in some test-cases also in a more remarkable way) in the

following experiments and examples.

As regards to the same scattering scenario, the second experiment is aimed at assessing the
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robustness of the proposed integrated strategy to corrupted scattering data. One of the
most desirable features of the IMSA-CG was its stability with respect to the noise, then it
is interesting to verify whether such a property is confirmed for the IMSA-PSO. Thus, the
retrieval process has been carried out by altering the scattering data with different levels
of noise (ranging from SNR = 30dB to SNR = 5dB). The results of such an analysis
are reported in Fig. 5 and in Fig 6 in terms of reconstructed profiles and behaviors of the
error figures, respectively. As expected, the decreasing of the SNR causes a reduction
of the reconstruction accuracy (Fig. 5) and larger errors occur in the qualitative |[Figs.
6(d)-(e)] as well as in the quantitative imaging of the scenario under test [Figs. 6(a)-(b)].
However, the behaviors of the error figures (especially those related to the qualitative
reconstruction, p and A) further assess the effectiveness of the IMSA-PSO in comparison
with other methods.

The second test case (#2) concerns with a similar hollow cylinder configuration, but it
considers an off-centered disposition of the scatterer (27¢/ = yr¢/ = —0.2 \,) and different
thickness of each layer (L, = 0.4 A\g and L,y,; = 1.2 )g), to evaluate the spatial resolution
of the stochastic integrated strategy. Let us consider the reconstructions obtained with the
IMSA-PSO for the scattering configurations (#1) and (#2), at the same noisy conditions
SNR = 30dB. By comparing Fig. 1(¢) and Fig. 7(a), it can be observed that when the
dimensions of the inner cylinder reduce, the quality of the retrieved image decreases and
the values of the error figures grow (e.g., pl,, = 2.1 x 1072 vs. p|,, = 4.1 x 1072,
Al

= 3.22 vs. A, = 712, and O]y, = 3.01 vs. Ojpyly, = 6.82). How-

#1 #1
ever, once again, the IMSA-PSO outperforms the IMSA-CG (O] ;gVISA’PSO) = 4.42
vs. Our)is" 79D = 5.96, 0" ) = 6.82 vs. O]y ¥ = 12,15, and

Oczt ;%MSA_PSO) = 1.66 vs. Oy ;ngA_CG) = 4.31). Such a result is further con-
firmed by varying the environmental conditions as well and, unless very poor conditions
(SNR < 5dB), the reconstructed profiles turn out to be quite close to the reference one
and they occupies a large area of the actual distribution [Figs. 7(b)-(¢); Tab. IV].

The next example (#3) deals with another single multi-layer object [Fig. 8(a) - 73, = 2.0,
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Tout0.5, Lin = 0.4 N9, and Ly, = 1.2 Ag] to further assess the effectiveness of the approach
in retrieving stratified distributions. More in detail, such a test case is representative
of a scattering scenario complementary to that described in (#1) and (#2) where the
dielectric permittivity grows from the inner to the outer layer. Fig. 8 shows the estimated
dielectric profiles for different values of the signal-to-noise ratio. As can be noticed and
quantitatively pointed out by the values of error figures (Tab. V), the results clearly
indicate that the IMSA-PSO successfully reconstructs the scenario under test by detecting
the two-layers of the object whatever the noisy conditions. As expected, the accuracy
reduces when the level of the noise increases and the symmetry in the reconstruction
tends to disappear as shown in Figs. 8(e)-(f) and highlighted by the variation in the
localization error (p] gyp_goas = 3-6 X 1072 vs. plonposqp = 1.3 X 1071).

In order to conclude the numerical assessment with synthetic data, the test case (#4) deals
with a multi-scatterers scenario, Fig. 9(a). The IMSA already demonstrated its effective-
ness in dealing with multiple homogeneous objects 23|, thus this example considers a more
complex configuration characterized by two hollow square cylinders (7(1)y = 72y = 0.5,
Layin = Ly = 0.6 X, and Liyou = Ljour = 0.8 Xo) located at 2{ff, = y[i/, = 0.5\
and xg’)f .= yg)fc = —0.5 g, respectively. The SNR has been fixed to 20 dB.

Figs. 9(b) and 9(c¢) show the results at the convergence of the multi-scaling process
when the IMSA-PSO and the IMSA-CG are used, respectively. Whatever the method,
two different object are detected and located with an adequate degree of accuracy (Tab.
VI). However, the deterministic strategy is not able to retrieve the internal layer of the
cylinders. On the contrary, the PSO-based approach faithfully predicts the presence of
two-layers in each scatterer as pictorially shown Fig. 9(a) and, as a consequence, the error

figures related to the reconstruction in the internal regions improve (A(MSA=P SO)J

11.04 vs. AUMSA-CG)| 31,04, AUMSA=PSO)| = 924 vs. AUMSACO)|
q:

qg=1
31.24 and @(.IMSAfPSO)J — 4.91 vs ('IMSAfCG)J —8.71 G(IMSAfPSO)J —3.16
- int q=1 . . int g=1 - ) wnt q=2 .

=1

q=2

IMSA-CG
v, QUMSA-Ca)

Finally, the last example of the numerical validation is aimed at assessing the effec-
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tiveness of the IMSA-PSO as well as to evaluate the allowed improvement in compari-
son with IMSA-CG when experimental scattering data are used. Towards this aim, the
multiple-frequency angular-diversity bistatic data provided by the Institut Fresnel, Mar-
seille, France [34]| has been used. Concerning the experimental setup, it consists of a 2D
bistatic measurement system with an emitter placed at a fixed position, while a receiver is
rotating with an arm along the vertical cylindrical scatterer under test. The distances be-
tween emitter-center and receiver-center are set to 720 mm + 3 mm and 720 mm + 3 mm,
respectively. The target rotates from 0° to 350° in steps of 10°. The rotation of the receiver
is from 60° to 300° in steps of 5°. Obviously, the aspect-limited nature of the measurement
setup leads to a reduction of the available information. Therefore, all V' = 36 available
views and, for each of them, M) = 49, v = 1,...,V, have been used for the reconstruction.
To focus on the capabilities of the proposed approach, the IMSA-PSO has been applied
to a monochromatic dataset (f = 1GHz), avoiding multi-frequency [35] or frequency-
hopping approaches [36]. Moreover, the multiple-objects configuration called “diel TM_ 8f.exp“,
supposed to lie in a square area of 30 x 30 cm?, has been managed. The scatterers are
two homogeneous dielectric cylinders characterized by an object function 7(4) = 2.040.3,
g = 1,2 with circular cross-sections ¢ = 15mm in radius and placed about 30 mm from
the center of the experimental setup where ¢/ = 90 mm is the distance between the centers
of the cylinders.

As far as the iterative optimizer is concerned, a small swarm dimension has been assumed
(if compared to the dimension of the search space) § ~ 7.5%x1073, U = 2664, to reduce the
overall computational burden (t,(CIMSA_PSO) = 1.75 sec) and to evaluate the effectiveness of
the approach in sampling a large search-space with a limited number of agents (i.e., trial
solutions). The values of the other control parameters have been maintained unaltered.
Figure 10 shows the evolution of the reconstructed profile during the multi-step procedure
[right column - Figs. 10(a)(c¢)(e)(g)] when the IMSA-PSO is applied. For comparison
purposes, on the left column of the same figure [Figs. 10(d)(d)(f)(h)], the inversion results

with the IMSA-CG at the same steps are reported. The final reconstructions of the two
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IMSA-based strategies are given in Fig. 11 where the dielectric distributions achieved by
using the “bare” methods are included, as well. As can be seen, the profile retrieved with
the PSO-based approach is not satisfactory [Fig. 11(c)] and it is even worse for the CG-
based approach [Figs. 11(d)]. On the contrary, the resolution accuracy heavily improves
when the IMSA-based strategies are used |[Figs. 11(a)(b)]. Because of the hill-climbing
nature of the stochastic optimizer, the multi-scaling process of the IMSA-PSO strategy

: . . IMSA—PSO IMSA-CG
requires more iterations to reach the convergence (Sépt ) =5 vs. S(gpt ) = 4;

t,(CIMSA_CG) = 1.33 sec), but the final result turns out to be better in terms of shaping as

well as homogeneity of the estimated structures.

6 Conclusions

In this paper, an approach to the solution of the nonlinear inverse scattering problem,
based upon techniques drawn from the fields of multi-scale modeling and stochastic opti-
mization, has been presented. The problem unknowns have been expressed as a twofold
summation of rectangular basis functions, which, adaptively and according to the knowl-
edge gained during a multi-step reconstruction process, fit itself to the various length
scales associated with the dielectric distribution in the investigation domain. The in-
version scheme is based on an adaptive coarse-to-detailed iterative strategy consisting of
a sequence of nonlinear reconstructions performed through a suitable global optimizer.
To prevent the problem of false solutions (or local minima of the arising nonlinear cost
function) and to fully exploit the so-effective spatial distribution of the unknowns, a cus-
tomized optimization based on the swarm behavior has been adopted.

A number of numerical tests indicated that the new integrated approach keeps the best
features of the multi-scaling process, successfully reconstructing various contrasts and dif-
ferent dielectric distributions. Moreover, thanks to the exploitation of the hill-climbing
properties of the stochastic optimizer and a suitable sampling of the search space guided by

the multi-scaling strategy, it exhibits additional properties that overcome the IMSA-CG
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in terms of reconstruction accuracy and accommodation of the a-priori (acquired) infor-
mation without requiring an impracticable computational load and unavailable memory

resources.
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Figure Captions

e Figure 1. Centered hollow square dielectric cylinder (L, = 0.8 A, Lous = 1.6 A,
7 = 0.5 - Noisy Conditions: SNR = 30dB) - Actual dielectric distribution (a).
Retrieved distributions with the IMSA-PSO Strategy at (b) s =1, (¢) s = 2, and
(d) s = Sopt = 4.

e Figure 2. Centered hollow square dielectric cylinder (L, = 0.8 Ao, Lous = 1.6 A,
7 = 0.5 - Noisy Conditions: SNR = 30dB) - Dielectric distributions reconstructed
at the convergence by means of (a) the IMSA-CG Strategy, (b) the CG-based Ap-
proach, and (¢) the PSO-based Approach.

e Figure 3. Centered hollow square dielectric cylinder (L, = 0.8 Ao, Lous = 1.6 A,
7 = 0.5 - Noisy Conditions: SNR = 30dB) - Comparison between the retrieved
profile and the actual one along the (a) z-axis and the (b) y-axis (actual profile -
red line; IMSA-PSO Strategy - blue line; IMSA-CG Strategy - green line; CG-based

Approach - magenta line; PSO-based Approach - light blue line.

e Figure 4. Centered hollow square dielectric cylinder (L, = 0.8 Ag, Loys = 1.6 A,
7 = 0.5 - Noisy Conditions: SNR = 30dB) - Behavior of the cost function during
the iterative process for the IMSA-PSO Strategy, the IMSA-CG Strategy, the CG-
based Approach, and the PSO-based Approach.

e Figure 5. Centered hollow square dielectric cylinder (L, = 0.8 Ag, Loyt = 1.6 A,
7 = 0.5 - Noisy Conditions) - Comparison between the dielectric profile recon-
structed with the IMSA-PSO Strategy and the actual one along the (a) z-axis and
the (b) y-axis for different SNR values (Actual profile - red line; SNR = 30dB -
green line; SNR = 20dB - blu line; SNR = 10dB - magenta line; SNR = 5dB -

light blue line.

e Figure 6. Centered hollow square dielectric cylinder (L, = 0.8 Ao, Lous = 1.6 Ao,
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7 = 0.5 - Noisy Conditions) - Behaviors of the error figures versus SN R values: (a)

Otot, (0) Oint, (¢) Ocst, (d) p (Localization error), and (e) A (Dimensional error).

Figure 7. Off-centered hollow square cylinder (L;, = 0.4)\g, Loys = 1.2Xg, 7 =
0.5 - Noisy Conditions) - Dielectric distribution retrieved by using the IMSA-PSO
Strategy when (a) SNR = 30dB, (b) SNR =20dB, (¢) SNR = 10dB, and (d)
SNR = 5dB. Horizontal (y = 0.0) (e) and vertical (x = 0.0) (f) cross-section view.

Figure 8. Centered stratified square dielectric cylinder (L;, = 0.4 Xy, Tin = 2.0
and Ly, = 1.2Xg, Tour = 0.5) - (a) Reference distribution. Dielectric distribution
retrieved by using the IMSA-PSO Strategy when (b) SNR = 20dB, (¢) SNR =
10dB, and (d) SNR = 5dB. Horizontal (y = —0.2 ) (e) and vertical (z =

—0.2 \g) (f) cross-section view.

Figure 9. Multiple off-centered hollow square dielectric cylinders (1) = 7(2) =
0.5, Liyin = Lyin = 0.6 Ao, and L(1your = L(2)our = 0.8 Ao - Noisy Conditions:
SNR = 20dB) - Actual distribution (a). Dielectric distributions retrieved at the

convergence by using (b) the IMSA-PSO Strategy and (c) the IMSA-CG Strategy.

Figure 10. Multiple circular homogeneous dielectric cylinders (7(1y = 72y = 2.0
0.3, L(1y = Ly = 30mm, d = 90mm - Real dataset “Marseille” [34]) - Retrieved
distributions at different steps of the IMSA integrated with the PSO algorithm
(left) and the CG algorithm (right): (a)-(b) s =1, (¢)-(d) s =2, (e)-(f) s = 3, and
(9)-(h) s = 4.

Figure 11. Multiple circular homogeneous dielectric cylinders (7) = 7(9) =
2.0%0.3, Ly = L(g) = 30mm, d = 90 mm - Real dataset “Marseille” [34]) - Dielec-
tric distributions reconstructed at the convergence by means of (a) the IMSA-PSO
Strategy (s = Sopt = 5), (b) the IMSA-CG Strategy (s = Sopt = 4), (¢) the PSO-
based Approach, and (d) the CG-based Approach.
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Table Captions

e Table I. Centered hollow square dielectric cylinder (L;, = 0.8 Ao, Loyt = 1.6 Ao,
7 = 0.5 - Noisy Conditions: SNR = 30 dB) - Values of the qualitative (p and §) and
quantitative (41, Eint, and ee44) error figures for IMSA-PSO Strategy and IMSA-CG

Strategy at different steps s (s = 1, ..., S?") of the multi-scaling procedure.

e Table II. Centered hollow square dielectric cylinder (L, = 0.8 Ao, Loyt = 1.6 A,
7 = 0.5 - Noisy Conditions: SNR = 30dB) - Values of the error figures at the
convergence for the IMSA-PSO Strategy, the IMSA-CG Strategy, the CG-based
Approach, and the PSO-based Approach.

e Table III. Centered hollow square dielectric cylinder (L;, = 0.8 Ao, Loy = 1.6 Ao,
7 = 0.5 - Noisy Conditions: SNR = 30 dB) - Characteristic parameters of the itera-
tive reconstruction process when the IMSA-PSO Strategy, the IMSA-CG Strategy,
the CG-based Approach, and the PSO-based Approach are used (tx [sec]).

e Table I'V. Off-centered hollow square dielectric cylinder (L, = 0.4 Ao, Loyt = 1.2 Ao,
7 = 0.5 - Noisy Conditions) - Values of the error figures at s = S (IMSA-PSO
Strategy) for different SN Rs.

e Table V. Reconstruction of a centered stratified square dielectric cylinder (Lipper =
0.4X0, Tinner = 2.0 and Loyser = 1.2, Touter = 0.5 - Noisy Conditions) - Values of
the error figures at s = S (IMSA-PSO Strategy) for different SN Rs.

e Table VI. Multiple off-centered hollow square dielectric cylinders (71y = 7(2) = 0.5,
Layin = Lyin = 0.6 Ao, and L(1)ous = L2)out = 0.8 Ag - Noisy Conditions: SNR =
20 dB) Values of the error figures at the convergence for the IMSA-PSO Strategy
and the IMSA-CG Strategy.
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IMSA—PSO|IMSA—-CG PSO CG
Ojor 3.83 4.64 5.28 6.98
Oint 3.01 5.01 4.57 6.73
Ot 1.77 1.39 2.48 3.61

0 2.1 x 1073 2.2 x 107! 1.9x 107! | 2.8 x 1071

A 3.22 11.65 12.91 15.21

Tab. IT - M. Donelli et al., ’An Integrated Multi-Scaling Strategy based on ...”
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IMSA — PSO|IMSA—-CG PSO CG
U o 360 360 500 500
Kot 8000 8000 6000 771
Sopt 4 4 — —
T, ® 8.2 x 1072 5.5x 1072 | 1.26 x 107! | 1.01 x 107!

Tab. III - M. Donelli et al., ’An Integrated Multi-Scaling Strategy based on ...”

(2) When the IMSA is used then N stands for the number of discretizations of the Rol (N = N(R)).
(3) Concerning the IMSA Strategy U = 360. For the PSO and CG-based Approaches U = 500.
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A
7.12
9.88
9.25

13.51

4.1 x 1072
4.8 x 1072
2.7 x 1072
2.3 x 1071

1.66
2.15
3.89
5.46

@ext

@int

6.82
3.21
8.23
13.22

®t0t
95

4.42
5.05
5.89
6.

SNR [dB]
30
20
10
5

Tab. IV - M. Donelli et al., ”An Integrated Multi-Scaling Strategy based on ...”
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IMSA—PSO|IMSA—-CG

S 1.02 1.41
Oint | 41 4.21 8.71
Oint | ;o 3.16 8.26

Oest 0.42 0.53

Pl -1 2.4 x 1072 5.0 x 1072
P 4= 1.3 x 1072 2.5 x 1072
11.04 31.04
9.24 31.24

Tab. VI - M. Donelli et al., "An Integrated Multi-Scaling Strategy based on ...”
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