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Abstract

This paper presents an innovative microwave technique, which is suitable for the de-
tection of defects in non-destructive-test and non-destructive-evaluation (NDT/NDE)
applications where a lot of a-prior: information is available. The proposed approach
is based on the equations of the inverse scattering problem, which are solved by
means of a minimization procedure based on a Genetic Algorithm (GA). To reduce
the number of problem unknowns, the available a-priori information is efficiently
exploited by introducing an updating procedure for the electric field computation
based on the Sherman-Morrison-Woodbury (SM W) formula. The results of a rep-
resentative set of numerical experiments as well as comparisons with state-of-the-
art methods are reported. They confirm the effectiveness, the feasibility, and the
robustness of the proposed approach, which shows some interesting features by a

computational point-of-view, as well.

Key-words: Nondestructive Testing and Evaluation, Microwave Imaging, Sherman-

Morrison-Woodbury Formula, Genetic Algorithms.



1 Introduction

In general, microwave imaging of dielectric objects is an expensive computational pro-
cess, because of the great number of unknowns and some negative features of the related
inverse problem, such as ill-positioning and non-linearity. However, testing an object for
evaluating the presence of a defect allows us to reduce the computational complexity by
fully exploiting the (generally) available a-priori information concerning the unperturbed
structure [1|. In some previous works |2]-|4], such a problem has been faced by parame-
terizing an anomaly such a crack in order to reduce the dimension of the search space. In
particular, the most significant features of the unknown defect (i.e., position and dimen-
sions) have been assumed as the parameters to be retrieved. To deal with non-linearity,
the inverse scattering problem has been reformulated as an optimization procedure solved
through a GA-based technique by defining a suitable cost function to be minimized. The
convergence of the proposed algorithm has been reached after a non-negligible number of
iterations strictly related to the required spatial resolution accuracy.

Recently, an improved approach, still based on a GA optimization procedure, has been
presented in [5]. In such a case, the investigation domain has been limited to the area of
the unknown defect, which belongs to an inhomogeneous space (the host medium without
the defect and the external background). However, although the dimension of the search
space has been further reduced, such an approach too requires an electric field estimation
only partially related to the crack features and it does not fully exploit the relationship
between the dielectric distribution and scattered fields.

Therefore, to overcome such a drawback, this work describes a new approach allowing
the computational resources be fully spent for the crack localization and dimensioning.
Essentially, the final aim is to estimate in a faster and more effective way the electric
field distribution in the investigation domain starting from the geometric features of the
defect retrieved during the iterative reconstruction process. Consequently, the arising

reduction of the number of unknowns leads to an increase of the convergence rate and to



an improvement of the reconstruction accuracy.

The manuscript is organized in six sections. In Section 2, the mathematical formulation of
the approach will be presented by detailing the numerical procedure for the computation
of electric field in the investigation domain. Moreover, two different implementations will
be described in Section 3. In Section 4, the computational improvement and the crack-
detection efficiency of the method will be assessed through selected numerical results.
Some remarks, arising from a comparative study (with other NDE/NDT methods), will

be reported in Section 5. Finally, some conclusions will be drawn in Section 6.

2 Mathematical Formulation

Let us consider the two-dimensional geometry shown in Fig. 1, where the structure under
test belongs to the region called investigation domain, D;,,. The background consists of
a homogeneous external medium. The investigation domain is illuminated by V' sources,
which radiate known incident electric fields E} ., v = 1, ...,V at the working frequency
fo- The electric field EY,, due to the interaction between the incident field and the
dielectric distribution of the investigation domain, is collected in a set of M receivers
located at certain measurement points in the observation domain Dgs. Let us assume
a TM-polarization and a plane wave illumination, then the electric field turns out to be
parallel to the axis of the cylindrical scatterer (E},. = E? . (x, y)2) and the problem
can be formulated in scalar form. Thus, by considering the point-matching version of the
Moment Method (MoM) [6] and partitioning D;,, is partitioned into N equal sub-domains

centered at (z,, y,), n = 1, ..., N, the scattering equations can be expressed in matrix

form as follows

[Eearr] = [Geat] [T] [Etor] (1)
[Einel = [Eiot] = [Gini] [T] [Etor] (2)

where



[E:

Y att) 1S @ M x1 matrix whose m-th element is given by EY, ., (Tm, Ym) = Efy (Tmy Ym)—

Ezync (l‘m, ym)a (iL'm, ym) S Dobs;

[EY.] and [E},] are N x 1 matrices whose n-th elements are given by E?. . (zpn, yn)

and E}, (Tn, Yn), (Tn, Yn) € Dino, respectively;

[Geyt] is the external Green’s matrix 7] of dimension M x N, while [Gj] is the

N x N internal Green’s matrix [7];

[T] is a N x N diagonal matrix whose elements are given by 7,5 = 3,57 (Zn, Yn),

6ns = 1if n = s and 6,, = 0 otherwise |7 (z,y) £ € (z,y) — 1 — jley) o (z,y) and

g
27 fogo?

o (z,y) being the dielectric constant and conductivity, respectively].

Starting from such a mathematical description, the inversion procedure for NDE/NDT
applications is aimed at detecting the presence of a crack in the host medium, whose cross-
section defines the area of investigation. By neglecting the a-priori information on the
unperturbed geometry (generally, available in several NDE/NDT applications concerned
with the defect detection), the problem unknowns would be the object function 7 (z,, yy)
and the total electric field E}, (z, yn) at each pixel of D;,, (n =1, ..., N). Thus, due to
the large number of unknowns, even though in presence of a non-negligible nonlinearity, it
could be profitable to solve such a standard inverse scattering problem through CG-FFT
methods [8].

Fortunately, by taking into account the a-priori information available in the crack-detection
NDE/NDT problem, it is possible to notably reduce the search space, modeling the de-
fect as an unknown small “object” in a known host medium. Under such a hypothesis,
let us approximate this “object” by means of a homogeneous rectangular void centered
at (zo, ¥o) [(wo, Yo) € {(zn, yn), n =1, ..., N}|, characterized by a length L, a width W,

and an orientation 6 (Fig. 1). In such a way, 7 (z, y») is a function of the features of the



crack ¢ = {xo, yo, L, W, 0}:

n if Xe[-3.5]andY € [, 5]

7 (Zn, Yn) = (3)
Tw) (Tny Yn) otherwise

where

To is the value of the object function of the defect;

® 7wy (Tn, yn) is the value of the object function at the n-th cell of the unperturbed

host medium;

o X = (z, — ) costd + (yn — yo) sinf and Y = (z,, — x¢) s1n0 + (yn — yo) cosb;

L, W, 6 are assumed to belong to finite sets of values: L € {L;;i=1, ..., ¢},
We{W;;j=1,..,w},and 0 € {0,; h=1, ..., t}, 6, = hAS.

Therefore, if B}, (2n,yn), n = 1, ..., N, is expressed as a function of v, the solution of

the scattering problem can be obtained as

¥, = arg {miny [6 ()] ] (4)

Yoot [ Btan] = [Gear 7] [Egy)II” N > ot 11 Binel = (] = (Gind] [7] [} I
ot 1B I ot B 5

where [Ep,] = S {¢} and [r] = R {¢} according to Eq. (3).

Due to the nonlinearity of © (1)) and the reduced number of problem unknowns, the
minimization of © (1) is carried out by means of a suitable version of a genetic algo-
rithm [9][10]. This multiple-agent stochastic optimizer demonstrated to be very effective
in dealing with reduced and nonlinear search spaces where deterministic methodologies

generally failed yielding wrong solutions corresponding to local minima of the functional

6



to be minimized. According to the implementation described in [2| and by using bi-
nary genetic operators, a sequence of populations of trial solutions {%q,k, qg=1, ..., Q}
(being k the iteration index, £ = 1, ...., K, and ¢ the index of the trial solution in the
population) is generated, whose optimal individual converges to the minimum of (5),
v = arg [mink (minq (@{

discretization, the coordinates of the center of the defect are assumed as integer param-

)

opt Y k}))} Because of the integer-valued unknowns (after

eters, t0o), ¢ is coded in a binary concatenated chromosome (Figure 2) in which L, W,

0, xy, and yy are coded in binary strings of I = logyl bits, J = logow, T = logst, and
C = logyV/' N, respectively.

3 Outline of the SMW-based Method for Field Predic-
tion

As far as the computation of the unknown electric field values ([Ef,] = S {¢}) is con-

cerned, a method based on the Sherman-Morrison-Woodbury formula for matrix inversion
[11] is considered.

Let us assume that the perturbed geometry (i.e., the host medium with the defect) consists
of P (P < N) discretization sub-domains different from a known reference configuration
(characterized by a known distribution 7(cs) (25, yn), » = 1, ..., N). Moreover, let us
introduce two N x N matrices, [2] and [Y], which are related to the perturbed and the

reference geometry, and given by
(€] = {[] - [Gina] [7]} (6)

[T] = {[I] - [Gmt] [T(ref)}} (7)



where

T(ref) (w1, 1) -+ 0
[Tren] =
0 o Tires) (T, YN)
and the entries of [7] are functions of ¢ according to the relationship defined in (3); [/]
is the identity matrix. Thus, the unknown total electric field in D;,, can be computed
by using a computationally expensive matrix inversion as [E2,] = [Q] ' [EY,] (in the
following we will refer to such a procedure as “Direct Algorithm”). On the other hand,

the computational cost reduces, if ['I”]_1 is available and when the SMW formula is used
-1
™ =7 e el - ey e (8)

where
o [ - [Y]=—[C][F]
e [C]is an N x P matrix whose columns are the P non-zero columns in [Q2] — [Y];

e [F]is an N x P matrix whose p-th column, p =1, ..., P has the value 1 at its j,-th

entry and 0 otherwise (ji, ..., jp, being the P non-zero columns in [Q2] — [Y]).

Then, two different versions of the approach based on the SMW for the iterative esti-
mation of [E},] can be considered. The main difference lies in the choice of the reference
configuration for the dielectric profile in the investigation domain. They will be detailed

in the next sub-sections.

3.1 SMW “Unperturbed Configuration” (SMWy)

In such a version, the unperturbed geometry is assumed as reference model (7(res) (Tn, Yn) =
Tw) (Tn, Yn), n =1, ..., N) and
(Y] = {[1] = [Gind] [T0)] } - (9)



Therefore, the reference matrix [Y], which depends on the known unperturbed configu-
ration and not at all on the defect, can be computed off-line and only once during the
initialization phase of the iterative minimization (k = 1).

Then, for the g-th trial solution at the k-th iteration (k > 1), %q,k’ the corresponding

perturbed matrix turns out to be

(e = {11 = Gind [Flyp}  a=1,.Q (10)

where the sub-scripts ¢ and & denote quantities (matrices or scalars) related to yq R In

particular, [7]_, is a function of Yop = {xOJ ok Yolors Llgws Wlgp, 0] q,k} through (3).

Successively, Eq. (8) is applied to compute [Q]q_,lc
Q] =[X]"" + 1] [C],, {[I] — [Fly, [T [C]q,k}1 [Flo Y170 g=1,..,Q (11)

to give an estimation of the unknown electric field in the investigation domain

[Ezjot]q,k = [Q];,llg [E;Unc] (12)

concerned with the configuration %q . of the crack features.

3.2 SMW “Best Individual” (SMWp)

Since a suitable GA is used as the optimization procedure, it is possible to choose as

reference model at the k-th iteration [7(res)] = [7]op_1s [Tlopss_y Deing a function of

yopt,kil =arg [mmq (@ {%q,kq})} according to (3).

Therefore, the iterative updating of [E},], , is obtained through (12) by considering that

I| — |Gint) |7 k=1
| 1= Gwlfrw) "
] = [Gindl [T]Opt,k,l k>1



and

9,0 = [0+ 17 (€ {1 - (I 0 (O ) (I a=1,,@ (14)

4 Numerical Validation and Comparative Assessment

In this section, the SMW -based approach will be assessed by considering a selected set
of numerical simulations. Both the proposed versions of the approach will be analyzed
and the achieved results will be compared with those of previous implementations, which
have been denoted as FGA [2] and IGA [5], in terms of the “localization error” (é.),
the “dimensioning error” (J,) (as defined in [2]), and the “field-prediction error” (AFE;y)

defined as

ABuw =4 517 Z_: > o x 100 (15)

where E; = E}, (n,yn) and the super-script ~ indicates a reconstructed quantity.
Concerning the problem geometry, a square homogeneous cylinder of side I = 0.8 Ay (Ao
being the free-space wavelength) illuminated by a set of V' = 4 plane-waves (E},. (z,y) =
e~dko(weosbutysindu) g - — (v — 1) 27) has been assumed. The scattering data have been
collected in M = 50 measurement points equally-spaced on a circle r = 0.64 Ay in radius.
Moreover, D;,, has been discretized into N = 256 square sub-domains [l..; = 0.05 A\o-
sided (Figure 3). Moreover, to simulate realistic environmental conditions, a noise of
Gaussian-type and characterized by a fixed signal-to-noise ratio (SN R) has been added
to scattering data.

Concerning the optimization procedure, the following parametric setup has been assumed:
@ = 80, P,, = 0.4 (mutation probability), Py, = 0.01 (bit-mutation probability), and

P, = 0.7 (crossover probability) [10]. Moreover, the iterative process has been stopped

10



when K = 1000 or if the stationary condition holds

Keann® {0, } - i {v, |
O {,e)

S Vst (16)

where Oy, = O {wopt,k}, Keonst = %, and v, = 3 x 1072

4.1 Computational Issues

In order to evaluate the performance of the proposed approach in terms of computational
costs, the following test case has been considered. An host medium, characterized by
Tw) (Tn, yn) =1, n =1, ..., N, has been located in a noisy (SNR = 15.0dB) scenario.
The unknown defect has been positioned in o = 0.15 Ay and 5, = 0.10 \¢y and different
values of its area have been considered to evaluate the dependence of the reconstruction
process on the dimension of the problem at hand.

Figure 4 shows the plot of the required CPU-time for each iteration (;) and for various
dimensions of the defect when the SM Wy and the SMWpg are used [Figure 4(a)]. As it
can be observed, t; for SMWp is independent on the area of the defect A., while it strictly
depends on the dimension of the defect when the SM W, approach is used. Concerning
the SMWy, t, grows as A, increases and the approach turns out to be effective when
A. <6.25 x 1072 A2 [Fig. 4(a)]. On the contrary, for the SMW3y, t;, is about an order in
magnitude smaller than the CPU-time for the Direct Algorithm [Fig. 4(b)|. Moreover, it
performs worse if compared with the FFGA and the IGA. However, its should be pointed
out that both approaches based on SMW formula require a lower number of iterations
to reach the convergence [Fig. 4(b)], the length of the curve being characteristic of the
required number of iterations.

Therefore, to complete the assessment of the effectiveness of the proposed implementa-
tions, it is needed to evaluate their reconstruction performance, as well. Towards this

aim, different representative test cases have been considered.
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4.2 Reconstruction Accuracy versus the Crack Area

By considering the same geometric arrangement of the previous example, a comparison
among the reconstruction methods has been carried out in terms of error figures by varying
the dimension of the defect from A, = 2.50 x 1073 up to A, = 2.50x 10~ \2 and for SN Rs
in the range between 2.5dB and 30.0dB. Figure 5 shows the gray-scale representations
of the localization error d, when the SMWy [Figure 5(a)|, the SMWpg [Figure 5(b)],
the FGA [Figure 5(¢)|, and the IGA [Figure 5(d)] are used, respectively. By comparing
Fig. 5(a) with Fig. 5(b), it turns out that SMWpy is more sensitive to the noise level
than SMWy, especially for the lowest values of A.. Moreover, methods based on SMW
formula outperform FGA when A, < 12.25x107? \3 and IGA when A, > 12.25x 1072 \2,
respectively. The localization accuracy of the SMW -based techniques is further confirmed
on average since, (Jc)gr, = 2-76 and (0c)gpw, = 3.62 versus (0c)pgs = 3.82 and
(8} 1au = 3.84.

As far as the dimensioning of the defect is concerned, the SM Wy, slightly outperforms the
SMWg and the IGA approaches ((da)garp, = 13.94, (0a)sprw, = 15-37, and (da) ;g4 =
14.69), in particular for low noise conditions [Figs. 6(a)-(b)]. On the other hand, a larger
improvement is achieved with respect to the F'GA technique ({04) g4 = 33.00).

Finally, as expected, the SMW-based approaches notably overcome the FGA and the
IG A methods in predicting the electric field induced in the investigation domain as
shown in Fig. 7 and confirmed by the average values of AFE;,; ((AEy) suwy = 995,
(AEu) sy = 7-01, (A peq = 31.27, and (AEjp) ;6,4 = 12.04).

4.3 Reconstruction Accuracy versus the Host Medium Conduc-
tivity
In the following example, the reconstruction capabilities are assessed for a lossy host

medium. Towards this end, the electric conductivity of the homogeneous host medium

has been varied in the range o(y) € [0.0, 1.0] and a square defect (0.2 A\o-sided) has been
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located at xq = 0.26 Ay and o = 0.0 Ao.

The localization errors are reported in Figure 8 with a gray-scale representation. By
comparing the results for the SMWy and the SMWy [Figures 8(a)-(b)], it turns out
that the “best individual” implementation is more strongly affected by the value of oy
than its “unperturbed” counterpart. Nevertheless, SMW -based methods as well as the
IG A technique show good localization properties whatever the host medium and the
environment conditions as confirmed by the average values ({J¢) ¢prw, = 3-22, (0c) gprw, =
7.35, and (dc) ;54 = 4.18). On the contrary, the defect is not satisfactorily localized when
the FGA is adopted ((6c) pgq = 20.75).

Similar conclusions hold for the estimation of the crack dimensions (Figure 9). In fact,
on average, the SMWy reaches the best results as compared with other techniques
((0a) sarw, = 1559, (0a) sprw, = 36.95, (a) pa > 100.0, and (0a) ;g4 = 28.14).

Finally, once again, SMW techniques demonstrate very accurate in estimating the un-
known electric field as pointed out by the values of the error figure [Figures 10(a)(b)(¢)(d)]
as well as on average (<AEt0t>SMWU = 3.34, (AEtot)spw, = 819, (AEjot) pgs = 38.57,
and (AE) ;a4 = 10.34).

5 Final Remarks

On the basis of the computational costs and the reconstruction capabilities discussed in
the previous sub-sections, a deeper comparison is performed by considering the IGA and
the SMWpg approaches as representative methodologies. As a matter of fact, the “best
individual” implementation of the SMW -based method is more efficient than the SM Wy
technique since it allows to reduce the computational burden for any crack dimension A,
|[Figures 4(d)-(e)] by keeping (or improving) the accuracy in the defect localization and
dimensioning. Moreover, Figs. 5-10 pointed out that the behaviors of the error figures J,
da, and AEy, are very close/similar for both the SMW techniques and the corresponding

average values turn out to be adequate for an accurate reconstruction.
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In comparison with the IGA, SMWg is computationally more expensive |Figure 4(e)],
although it converges faster and it is more accurate in reconstructing the perturbed sce-
nario, mainly concerning the prediction of the electric field. To point out such proper-
ties, Figures 11 and 12 show a gray-scale representation of the discrepancy error figures:
Yo = 6T _ sSMWB) 1y = s{TGA) _ sSMWB) and XEpoy = AEth 4 _ AEt(ftMWB ) for the

)

two analyzed test cases (Subsection 4.2 and Subsection 4.3).

As can be observed from Figure 11, IGA and SMWp reach almost the same accuracy
in locating and dimensioning the defect [Figs. 11(a)(b)], while Figure 11(c) points out
that the SMWpg is more efficient in the field computation, especially when the data are
affected by noise.

The same conclusions can be drawn by considering the effects of o). In such a case, the
SMWyg approach works better when the host medium is lossy, too [Figure 12].

Finally, the last example deals with a host medium discretized into N = 3969 square pixels
in order to confirm the effectiveness of the proposed approach in exploiting the available
a-priori information in a larger dimension of the problem, as well. As a matter of fact,

when the SMW is used, the dimension of ¥ does not depend on the discretization

SMW
of the investigation domain and the unknown electric field samples (Ej;, n = 1,..., N,
v =1,...,V) are determined through the SMW-based matrix inversion procedure starting
from the estimate of ¢ .
Thus, as expected, the SMWpg keeps almost unaltered its properties in terms of recon-
struction accuracy as shown in Fig. 13 where the behaviors of the error figures concerned
with the crack reconstruction are reported (A, = 0.09 A2, zo = 0.15 )\ and yo = 0.1 )).
On the contrary, since the number of unknowns to be determined by means of the opti-

mization procedure, ¢ = {xo, yo, L, W, 0; Ey;Y, n=1,..,N;v=1,..,V}, as well as

IGA
the dimension of the search space directly depend on N, the effectiveness of the /G A in

locating the defect significantly reduces increasing the discretization of Dj,,.
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6 Conclusions

A new technique for a microwave NDT/NDE crack-detection has been proposed. The
approach, based on the Sherman-Morrison-Woodbury updating formula, fully exploit the
available a-prior: information about the unperturbed configuration. The effectiveness of
the proposed approach has been assessed through a numerical analysis by considering
input data affected by noise as well as dissipative host media, too. The obtained results
has confirmed the capabilities of the method in locating and dimensioning the defect and
in accurately estimating the distribution of the total electric inside the test area.

However, it has been observed that the allowed improvement in the reconstruction accu-
racy has, as a counterpart, a non-negligible increase of the computational burden cost in
comparison with other approaches. Therefore, the reduction of the computational load is
still an open question that will be further addressed, especially to extend the diagnostic

procedure to three-dimensional configurations.
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FIGURE CAPTIONS

e Figure 1. Problem geometry.
e Figure 2. The binary-coded chromosome.
e Figure 3. Discretized geometry. Square homogeneous cylinder (cross section).

e Figure 4. CPU times for various crack area: (a) Comparison among the SMWy-
based approach, the SMWpg-based approach and the Direct Algorithm when A, =
0.0625)\% and A, = 0.1225)\2. (b) Comparison among the SMWy-based approach,
the SMWg-based approach, FGA, IGA, and the Direct Algorithm when A, =
0.0225)2.

e Figure 5. Error parameter 6. versus the crack area for different SN R values: (a)

SMWy-based approach, (b) SMWpg-based approach, (¢) FGA, and (d) IGA.

e Figure 6. Error parameter 0, versus the crack area for different SNR values: (a)

SMWy-based approach, (b) SMWpg-based approach, (¢) FGA, and (d) IGA.

e Figure 7. Error parameter AFE,,; versus the crack area for different SN R values:

(a) SMWy-based approach, (b) SMWpg-based approach, (¢) FGA, and (d) IGA.

e Figure 8. Error parameter 6, versus o for different SNR values: (a) SMWy-
based approach, (b) SMWpg-based approach, (¢) FGA, and (d) IGA.

e Figure 9. Error parameter 9, versus oy for different SNR values: (a) SMWy-
based approach, (b) SMWpg-based approach, (¢) FGA, and (d) IGA.

e Figure 10. Error parameter AFE,, versus o) for different SNR values: (a)

SMWy-based approach, (b) SMWpg-based approach, (¢) FGA, and (d) IGA.

e Figure 11. Error figures ((a) X, (b) Xa, and (¢) xg,,,) versus the the crack dimen-

sion A, and for different SN R values.
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e Figure 12. Error figures ((a) x¢ (b) Xa, and (¢) xg,,) versus the host medium

conductivity oy and for different SN R values.

e Figure 13. Behavior of (a) x. and (b) x, versus SNR when N = 3969 and for
SMWpg and IGA.
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Fig. 1 - M. Benedetti et al., “Effective Exploitation of the A-Prior: Information ...”
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