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Multi
ra
k Dete
tion in Two-Dimensional Stru
tures bymeans of GA-based Strategies
M. Benedetti, M. Donelli, and A. Massa

Abstra
tThis paper proposes a methodologi
al approa
h for the dete
tion of multiple defe
tsinside diele
tri
 or 
ondu
tive media. Two innovative algorithms are developed start-ing from the inverse s
attering equations solved by means of di�erent optimizationstrategies. In the �rst implementation, a hierar
hi
al strategy based on parallel-subpro
esses is 
onsidered, whereas the se
ond algorithm employs a single-pro
essar
hite
ture. Whatever the implementation, the arising 
ost fun
tion is minimizedthrough a suitable hybrid-
oded geneti
 algorithm, whose individuals en
ode theproblem unknowns. In order to a
hieve a 
omputational saving, the formulationbased on the inhomogeneous Green's fun
tion is adopted and ea
h 
ra
k-region isparametrized by means of a sele
ted set of des
riptive parameters. The approa
h aswell as its di�erent implementations are assessed through a sele
ted set of numer-i
al experiments and in 
omparison with previously developed single-
ra
k inverses
attering methods.
Key-words: Non-destru
tive Testing and Evaluation, Mi
rowave Imaging, Multi
ra
kDete
tion 2



1 Introdu
tionNondestru
tive Evaluation and Testing (NDE/NDT) is an interdis
iplinary resear
h areadevoted to the development of advan
ed sensors, measurement te
hnologies, and imag-ing te
hniques for the 
hara
terization of materials and stru
tures in a non-destru
tivefashion. Non-destru
tive evaluation (NDE) and testing (NDT) are mandatory in manyindustrial pro
esses that require an a

urate analysis of diele
tri
 or 
ondu
tive stru
tures(e.g., industrial produ
ts and artefa
ts).As far as the state-of-the-art is 
on
erned, ultrasoni
s [1℄, χ and γ-rays [2℄[3℄, infrared[4℄ and eddy 
urrents [5℄, are the methodologies mainly used in dealing with NDE/NDTproblems. Re
ently, some �emerging� te
hnologies su
h as mi
rowaves are appearing in�Subsurfa
e Sensing� methods for the nondestru
tive evaluation (see [6℄[7℄[8℄[9℄[10℄ andthe referen
es therein for a general overview) and now, in some appli
ations, the employ-ment of interrogating mi
rowaves is re
ognized as a suitable diagnosti
 tool [11℄-[13℄. Themain reasons of the growing interest and rapid development of mi
rowave-based method-ologies 
an be summarized by the following key-points: (a) ele
tromagneti
 �elds in themi
rowaves range penetrate all materials (unless ideal 
ondu
tors) and the s
attered �eldsare representative of the overall volume of the obje
t under test and not only of its surfa
e;(b) mi
rowave imaging modalities are very sensitive to the water 
ontent of the spe
imen;(
) mi
rowave sensors 
an be used without me
hani
al 
onta
ts with the spe
imen, aswell. Moreover, mi
rowave te
hnologies 
an be 
onsidered 
omplementary approa
hes to
onventional inspe
tion te
hniques guaranteeing non-invasive measurements and avoiding
ollateral e�e
ts on the spe
imen under test (being safe non-ionizing radiations).In the framework of mi
rowave methodologies, a further advan
e is represented by imagingte
hniques based on inverse s
attering approa
hes [14℄-[18℄, where a 
omplete image ofthe stru
ture under test is looked for. Unfortunately, these te
hniques are 
hara
terizedby several drawba
ks su
h as ill-position and non-linearity as well as the presen
e oflo
al minima that partially prevent their use in industrial appli
ations (unlike �passive�te
hniques) [11℄. Therefore, in order to allow an e�e
tive te
hnologi
al transfer in theframework of industrial pro
esses, other developments are mandatory. Let us 
onsider thearea of post-pro
essing te
hniques for the diagnosis of the spe
imen under test starting3



from the analysis of sensed data. Currently, the real-time monitoring is strongly limitedby the low-speed of the re
onstru
tion methods. Moreover, the wavelength of the probingele
tromagneti
 sour
e strongly limits the a
hievable spatial resolution or it requires high
omputational 
osts for obtaining a detailed re
onstru
tion.However, in the framework of inverse s
attering te
hniques, dealing with the dete
tionof defe
ts (also indi
ated as �
ra
ks� in the following) in known host stru
tures seemsto be 
loser to a realisti
 appli
ation be
ause of the large amount of available a-prioriinformation on the problem in hand. Su
h a topi
 has been e�e
tively addressed in[19℄, [20℄, and [21℄. However, the proposed approa
hes demonstrated their feasibilityand e�e
tiveness in simpli�ed geometri
 
on�gurations 
hara
terized by the presen
e of asingle defe
t.In order to 
onsider more 
omplex and realisti
 s
enarios (e.g., multiple defe
ts, irregularshapes of the defe
ts, et
...), this work presents two innovative NDE/NDT strategiesaimed at dete
ting the presen
e of more than one defe
tive region inside a diele
tri
or 
ondu
tive host-medium. Sin
e there is the a-priori knowledge of the unperturbedgeometry, the 
ra
ks are de�ned as in
lusions in a known stru
ture and approximatedwith a limited set of essential parameters. Su
h a parameterization and the use of asuitable Green's fun
tion allow a redu
tion of the number of unknowns and 
onsequentlya non-negligible 
omputational saving during the re
onstru
tion pro
ess 
arried out interms of the optimization of a suitable 
ost fun
tion.As far as the proposed implementations are 
on
erned, the main di�eren
e lies in thear
hite
ture of the solution pro
edure and, 
onsequently, in 
ustomized and innovativeoptimizations based on a Geneti
 Algorithm (GA). The former strategy is based on ahierar
hi
al implementation, whi
h 
onsiders a set of parallel sub-pro
esses, ea
h oneinspe
ting on a solution with a di�erent �xed number of 
ra
ks. The latter deals with asingle optimization pro
ess aimed at looking for the best re
onstru
tion among di�erent
ra
k-length solutions.The paper is stru
tured as follows. Se
tion 2 provides the mathemati
al formulationfor the inverse s
attering approa
h to the re
onstru
tion of multiple-defe
ts in a two-dimensional s
enario. In Se
tion 3, the two implementations of the method are presented4



fo
using on the optimization pro
esses. The 
apabilities and 
urrent limitations of thetwo strategies in dealing with NDE/NDT problems are analyzed in Se
tion 4. Finally, inSe
tion 5, a dis
ussion follows and possible future developments are sket
hed.2 Mathemati
al FormulationLet us 
onsider a 
ylindri
 geometry where an area under test H is o

upied by a knownhost medium 
hara
terized by an obje
t fun
tion τH (x, y) = εH−1−j σH

2πfε0
, εH and σH be-ing its diele
tri
 permittivity and 
ondu
tivity, respe
tively (f is the working frequen
y).As shown in Fig. 1, su
h a region lies in a homogeneous ba
kground whose ele
tromag-neti
 properties, without loss of generality, are that of the va
uum (ε0, σ0). A set of Cdefe
ts Di, i = 1, ..., C, belongs to H . The geometri
 and ele
tromagneti
 
hara
teristi
sof the regions Di are unknown as well as their number. The two-dimensional s
enariois probed by V ele
tromagneti
 TM plane waves with ele
tri
 in
ident �elds linearly-polarized along the axis of symmetry of the stru
ture under test, Ev

inc (r) = Ev
inc (x, y) ẑ,

v = 1, ..., V . A

ording to the inverse s
attering equations [22℄, the ele
tri
 �eld indu
edin the �investigation domain� H is equivalent to that radiated in the free-spa
e by anequivalent 
urrent density Jv(x, y)

Ev
tot (x, y) = Ev

inc (x, y) +

∫ ∫

H

Jv(x′, y′)G0 (x, y/x′, y′) dx′dy′ (1)where G0 is the free-spa
e Green's fun
tion [19℄ and Jv(x, y) = τ (x, y)Ev
tot (x, y) being

τ (x, y) = ε (x, y) − 1 − j σ(x,y)
2πfε0

. Equation (1) 
an be reformulated in terms of a di�er-ential equivalent 
urrent density Jv
Di

(x, y) de�ned in Di, i = 1, ..., C and radiating in aninhomogeneous medium [23℄. A

ordingly, the ele
tri
 �eld 
an be expressed as
Ev

tot (x, y) = Ev
inc (x, y) +

∫ ∫
H

τH (x′, y′) Ev
tot (cf) (x′, y′) G0 (x, y/x′, y′) dx′dy′+

+
∑C

i=1

∫ ∫
Di

τDi
(x′, y′)Ev

tot (c),i (x
′, y′)G1 (x, y/x′, y′) dx′dy′

(2)where the se
ond term on the right side of (2) is the ele
tri
 �eld s
attered from the hostmedium without the defe
t, Ev
tot (cf) (x, y) being the ele
tri
 �eld indu
ed in the unper-5



turbed domain H . The last term of (2) is 
on
erned with the �eld distribution radiatedby Jv
Di

(x, y) = τDi
(x, y)Ev

tot (c),i (x, y) where τDi
(x, y) = τ (x, y) − τH (x, y), (x, y) ∈ Di,

i = 1, ..., C [20℄ are the di�erential obje
t fun
tions, G1 being the inhomogeneous Green'sfun
tion. By assuming the knowledge of the host medium (generally available), it is usefulto rewrite (2) as follows:
Ev

tot (x, y) = Ev
inc (cf) (x, y)+

C∑

i=1

∫ ∫

Di

τDi
(x′, y′) Ev

tot (c),i (x
′, y′) G1 (x, y/x′, y′) dx′dy′ (3)where Ev

inc (cf) (x, y) is the ele
tri
 �eld in the s
enario under test without the defe
t, whi
h
an be 
omputed o�-line on
e.In order to numeri
ally deal with the s
attering equations, let us dis
retize H in N squaresub-domains [24℄. Therefore, Di turns out to be �lled by Pi square pixels a

ording tothe 
ra
k size and the dis
retized operator G1 
an be easily 
omputed [20℄ and stored ina N × N matrix, [G1]. Thus, (3) be
omes
[Ev

tot] =
[
Ev

inc (cf)

]
+

C∑

i=1

[G1,i] [τDi
]
[
Ev

tot,i

] (4)where:
• [Ev

tot] is a N × 1 array whose n-th element is Ev
tot(xn, yn), (xn, yn) ∈ H ;

•
[
Ev

inc (cf)

]
, [Ev

inc]+ [Go] [τH ]
[
Ev

tot (cf)

] is a N ×1 array whose n-th entry is the ele
-tri
 �eld without the defe
t at the n-th subdomain of H given by Ev
inc (cf) (xn, yn) =

Ev
inc (xn, yn) +

∫ ∫
H

τH (x′, y′) Ev
tot (cf) (x′, y′) G0 (xn, yn/x

′, y′) dx′dy′;
•

[
Ev

tot,i

] is a Pi × 1 ve
tor whose pi-th entry identi�es the value of the ele
tri
 �eldin the pi-th pixel of Di, i = 1, ..., C;
• [τDi

] is a Pi × Pi diagonal matrix, whose non-null elements are the values of obje
tfun
tion τDi
in the Pi pixels of Di;

• [G1,i] is the i-th inhomogeneous spa
e Green's matrix of N × Pi elements derivedfrom [G1] by sele
ting the rows related to the positions pi (pi = 1, ..., Pi) of thepixels of Di in H . 6



Sin
e the inhomogeneous operator [G1,i] determines the e�e
ts of the i -th di�erentialequivalent 
urrent density lo
ated in the unknown region Di, the s
attering problem 
anbe reformulated as the re
onstru
tion of the di�erential obje
t fun
tion τDi
in the setof pixels pi = 1, ..., Pi of H where the defe
t is lo
ated. Moreover, in order to furtherde
rease the number of unknowns by adding some a-priori assumptions, ea
h region

Di is approximated by a re
tangular homogeneous domain properly parametrized. Inparti
ular, let us des
ribe the i-th defe
t with the 
oordinates of the 
enter of Di,(xi, yi),the length Li, its side Wi, and the orientation θi. Then, the Pi diagonal entries of [τDi
]turn out to be

τDi
⌋n,n =






τ(xn, yn) − τH(xn, yn) if ξ ∈
[
−Li

2
, Li

2

] and ζ ∈
[
−Wi

2
, Wi

2

]

0 otherwise (5)where ξ = (xn − xi) 
osθi + (yn − yi) sinθi, ζ = (xn − xi) sinθi + (yn − yi) 
osθi, and n =

1, . . . , Pi.Moreover, sin
e the ele
tri
 �eld indu
ed in Di is unknown as well, the set of parametersto be retrieved during the re
onstru
tion is
χ =

{
C; Υi, i = 1, ..., C;

[
Ev

tot,i

]
, i = 1, ..., C

} (6)where Υi = [(xi, yi) ; Li; Wi; θi] and [
Ev

tot,i

]
= {Ev

tot (xpi
, ypi

) , pi = 1, . . . , Pi}, i = 1, . . . , C.In order to determine the optimal solution χopt of the re
onstru
tion problem from theknowledge of the �eld measured in an external observation domain O [i.e., Ev
tot(xm, ym),

m = 1, ..., M , (xm, ym) ∈ O /∈ H ℄, of the �eld at the same lo
ations but without the defe
t,
Ev

tot (cf)(xm, ym), and of the �eld without the defe
t in the investigation domain H [i.e.,
Ev

inc(xn, yn), n = 1, ..., N , (xn, yn) ∈ H ℄, the problem in hand is re
ast as an optimizationone through the de�nition of a suitable 
ost fun
tion
Ω(χ) = α

{
‖[Ev

tot]−[Ev
tot (cf)]−

PC
i=1[G1,i][τDi ][E

v
tot,i]‖2

O

‖[Ev
tot]−[Ev

inc]‖2

O

}

+β

{
‖[Ev

tot (cf)]+[Ev
tot]−

PC
i=1[G1,i][τDi ][E

v
tot,i]‖2

H

‖[Ev
inc]‖2

H

} (7)where α and β are two positive regularization parameters, whi
h allow one to weight more7



the �in
ident� (β) or the �s
attered� (α) data depending on the un
ertainties or the noiselevel asso
iated with both of them. Moreover, equation (7) is the sum of two normalizedleast-square terms quantifying the errors when mat
hing the s
attering data.In order to look for χopt [
orresponding to the global minimum of the nonlinear 
ostfun
tion (7)℄, a suitable global minimization strategy has to be used. Towards this end,two di�erent GA-based approa
hes have been developed and they will be des
ribed in thefollowing sub-se
tions.2.1 Hierar
hi
al Strategy (HS)Let us assume that the number of defe
ts lying in H is lower than a �xed integer Cmax(Cmax ≥ C). Under su
h a hypothesis, the hierar
hi
al approa
h 
onsiders Cmax parallelre
onstru
tion sub-pro
esses ea
h one aimed at investigating the presen
e and the 
har-a
teristi
s of a di�erent number of defe
ts from 1 up to Cmax. As far as the j-th pro
essis 
on
erned (j = 1, . . . , Cmax), a population of Qj trial solutions 
oding a �xed numberof 
ra
ks, j, is 
onsidered
χ

j
= {χj,q; q = 1, . . . , Qj} =

{(
j; Υi, i = 1, ..., j;

[
Ev

tot,i

]
, i = 1, ..., j

)
q
; q = 1, . . . , Qj

}
.(8)Starting from a set of randomly generated solutions χ0

j
, the j-th population iterativelyevolves (χkj

j =⇒ χ
kj+1
j , kj being the iteration index of the j-th pro
ess) until a stopping 
ri-terion [kj = Kmax or Ω {χj,opt} ≤ Ωth, χj,min = arg{minq=1,..,Qj

[minkj=1,...,Kmax

(
Ω

{
χ

kj

j,q

})]}℄is rea
hed. At the kj-th step the (kj + 1)-th population is generated by means of a set ofsuitable geneti
 operators denoted by ℑ{·} (χkj+1
j = ℑ

{
χ

kj

j

}) and the best trial solutionde�ned so far is stored in the array χj,min. When all the Cmax pro
esses are terminated,the 
onvergen
e solution is determined as the minimum among the set of solutions χj,min,
j = 1, . . . , C. The whole minimization pro
edure 
an be resumed by the following pseudo-
ode: for j = 1, ..., Cmax do

kj = 0 8



χ0
j

= ℜ
{
χ

j

}

χj,min = arg{minq=1,..,Qj

[
Ω

{
χ0

j,q

}]}while [
(kj < Kmax) and (

Ω
{
χ

kj

j,min

}
> Ωth

)] do
kj = kj + 1

χ
kj

j = ℑ
{
χ

kj−1
j

}

χ
kj

j,min = arg{minq=1,..,Qj

[
Ω

{
χ

kj

j,q

}]}if [
Ω

{
χ

kj

j,min

}
> Ω

{
χ

kj−1
j,min

}] then
χj,min = χ

kj−1
j,minelse

χj,min = χ
kj

j,minendifenddo
χopt = arg {minj=1,..,Cmax

[Ω {χj,min}]}enddowhere ℜ is the random fun
tion. As far as the implementation of the geneti
 operatorsis 
on
erned, the hierar
hi
al approa
h makes use of a multi
ra
k variable-length hybrid
oding (Figure 2). Ea
h parameter of the 
ra
k in (6) is binary en
oded by 
onsidering
xi, yi, Li, Wi, and θi as dis
rete variables: xi = l∆B , l = 1, . . . , B; yi = l∆B, l = 1, . . . , B;
Li = l∆D, l = 1, . . . , D; Wi = l∆D, l = 1, . . . , D, and θi = l∆Θ, l = 1, . . . , Θ. Moreover,a real representation is used for 
oding the �eld unknowns, Ev

tot (xpi
, ypi

), pi = 1, . . . , Pi,
i = 1, . . . , j.A

ording to this representation, suitable sto
hasti
 operators (denoted by ℑ{·}) areneeded. The o�spring are generated from their parents by means of a 
ustomized multi-
ra
k 
rossover , whereas standard elitism, sele
tion and mutation are adopted [19℄.Be
ause of the hybrid 
oding, a single-point 
rossover (binary 
rossover) Φb is performedwith probability πb between the binary sequen
es of two parents, namely χ

kj
qa and χ

kj
qb .By imposing that the 
ross-position �cp� falls only on a boundary between two adja
entgenes [Figure 3(a)℄, the binary 
rossover returns the following 
hildren

9



χ
kj+1
qa = {j; (Υ1)

kj

qa
,
[
(xi, yi)

kj

qa
; (Li)

kj

qa
;
∣∣∣
cp

(Wi)
kj

qb
; (θi)

kj

qb

]
, . . . , (Υj)

kj

qb
;
[
Ev

tot,1

]kj

qa
,
[
Ev

tot,i

]kj+1

qa

, . . . ,
[
Ev

tot,j

]kj

qb

}

χ
kj+1
qb

= {j; (Υ1)
kj

qb
,
[
(xi, yi)

kj

qb
; (Li)

kj

qa
;
∣∣∣
cp

(Wi)
kj

qa
; (θi)

kj

qa

]
, . . . , (Υj)

kj

qa
;
[
Ev

tot,1

]kj

qb
,
[
Ev

tot,i

]kj+1

qb

, . . . ,
[
Ev

tot,j

]kj

qa

}(9)where [
Ev

tot,i

]kj+1

qa
and [

Ev
tot,i

]kj+1

qb
are 
omputed extending to the multi-
ra
k 
ase therelationship reported in [20℄ [Eq. (11)℄ and pi
torially des
ribed in Fig. 3(a) (r being arandom number uniformly distributed in [0; 1]).If the binary 
rossover Φb has not been applied, the double-point 
rossover is performedwith probability πd on that part of the 
hromosomes 
on
erned with the �eld unknownsand a

ording to Eq. (13) of [20℄.2.2 Integrated Strategy (IS)Unlike the hierar
hi
al approa
h, the integrated strategy 
onsiders a single optimizationpro
ess. Towards this purpose, the population of Q trial solutions is 
omposed by �het-erogeneous� 
hromosomes ea
h of them 
oding a di�erent number of 
ra
ks

χ = {χq; q = 1, . . . , Q} =
{
Cq; Υi, i = 1, ..., Cq;

[
Ev

tot,i

]
, i = 1, ..., Cq; q = 1, . . . , Q

}(10)
Cq being an integer value randomly 
hosen in the range between 1 and Cmax. Moreover,starting from a randomly generated set of solutions χ0, the iterative (k being the iterationindex) optimization pro
ess evolves for a
hieving the �
onvergen
e� 
ondition (k = Kmaxor Ω

{
χk

opt

}
≤ Ωth) a

ording to the following instru
tionswhile [

(k < Kmax) and (
Ω

{
χk

opt

}
> Ωth

)] do
k = k + 1

χk

b
= Φb

[
ℵ

{
χk−1

opt

}]

χk

o
= ℘

{
χk−1

opt

}

χk

p
=

{
χk

b
, χk

o
, χk−1

}

χk = ℑ
{
χk

p

}

χk
opt = arg{minq=1,..,Q

[
Ω

{
χk

q

}]}10



enddowhere χk

o
and χk

b
are two populations of Q

2
trial solutions generated from the optimaltrial solution rea
hed at the (k − 1)-th step, χk−1

opt , by means of the operators ℘ {·} and
Φb [ℵ {·}], respe
tively.More in detail, χk

b
is a population whose individuals 
ode solutions with the same numberof 
ra
ks as χk−1

opt and it is generated by randomly modifying through the operator ℜ (·)all genes of χk−1
opt ex
ept that 
oding Ck−1

opt

χk−1
b,q = ℵ

{
χk−1

opt

}
,

{
Ck−1

opt ; ℜ
(
Υk−1

opt,i

)
, i = 1, ..., Ck−1

opt ;ℜ
([

Ev
tot,i

]k−1

opt

)
, i = 1, ..., Ck−1

opt

}

q = 1, ..., Q

2

.(11)and su

essively, applying the binary 
rossover χk
b,q = Φb

{
χk−1

b,q

}.As far as the sub-population χk

o
is 
on
erned, it 
onsists of (Cmax − 1) equally parti-tioned sub-sets, ea
h of them with individuals having the same number of 
ra
ks Cl,

l = 1, ..., (Cmax − 1), and di�erent from Ck−1
opt . These trial solutions are generated a

ord-ing to the following rules:

• If an individual belongs to the l-th subset 
hara
terized by Cl < Ck−1
opt , then

χk
o,q =

{
Cl; Υk

i = Υk−1
opt,r, i = 1, ..., Cl;

[
Ev

tot,i

]k
=

[
Ev

tot,s

]k−1

opt
, i = 1, ..., Cl

} (12)
r and s being integer random numbers between 1 and Ck−1

opt [Fig. 3(b)℄;
• Otherwise (i.e., Cl > Ck−1

opt ), the trial solution is obtained by adding suitable genesto the 
hromosome 
oding χk−1
opt [Fig. 3(
)℄. Randomly in that part 
on
erned withthe 
ra
k parameters and from the �eld distribution of the unperturbed s
enario inthe remaining part:

χk
o,q =





Cl;

Υk
i = Υk−1

opt,i, i = 1, ..., Ck−1
opt

Υk
i = ℜ, i = Ck−1

opt + 1, ..., Cl

;

[
Ev

tot,i

]k
=

[
Ev

tot,i

]k−1

opt
, i = 1, ..., Ck−1

opt

[
Ev

tot,i

]k
=

[
Ev

tot (cf),i

]k−1

opt
, i = Ck−1

opt + 1, ..., Cl




(13)
11



Finally, ea
h iterative loop is terminated by pro
essing the heterogeneous population χk

pthrough standard sele
tion, elitism, and mutation (no 
rossover operations are performed)as des
ribed in [19℄[20℄ (χk

p
= ℑ

{
χk−1

p

}).3 Numeri
al ValidationAs far as the validation of the proposed strategies is 
on
erned, a numeri
al assessmenthas been 
arried out by 
onsidering di�erent 
on�gurations of the defe
ts and various
hara
teristi
s of the host medium in order to verify the possibility and feasibility ofdealing with more general (and probably more realisti
) multiple-defe
ts s
enarios. Onthe other hand, the robustness against blurred s
attering data has been evaluated byadding a random Gaussian noise with a �xed signal-to-noise ratio (SNR) to the measured�eld samples [20℄.For quantifying the performan
e of the proposed implementations and be
ause of themultiple-
ra
k geometries, suitable error indexes have been de�ned extending those re-ported in [19℄:
• Multi-
ra
k Lo
alization Error , δ:

δ =

∑C

c=1

C






√
(x̂c − xc)

2 + (ŷc − yc)
2

dmax

× 100




 (14)
dmax being the maximum linear dimension of H and (x̂c, ŷc) the estimated 
enter of
c-th 
ra
k;

• Multi-
ra
k Area Error , ∆:
∆ =

∑C
c=1

C






∣∣∣Âc − Ac

∣∣∣
Ac

× 100




 (15)
Moreover, the Pre
ision-Re
all Index , R, has been evaluated for estimating the a

ura
y

12



of ea
h strategy in dete
ting multiple defe
ts and their number
R =

Ψopt

Ψ
× 100 (16)

Ψopt and Ψ being the number of su

essful dete
tions and the total number of repeatedsimulations with the same geometry and 
onditions, respe
tively.For the numeri
al validation, if it is not spe
i�ed, the following referen
e s
enario hasbeen 
onsidered. A square homogeneous host medium of side LH = 0.8λ (dmax =
√

2LH)
hara
terized by a diele
tri
 permittivity equal to εH = 2.4 and homogeneous defe
ts(εDi
= 1.0 and σDi

= 0.0, i = 1, ..., C). Su
h a s
enario has been illuminated by V = 4dire
tions with sour
es radiating ele
tri
 in
ident �elds Ev
inc (x, y) = e−jk0(x
osγv+ysinγv),

γv = (v − 1)2π
V
, v = 1, ..., V , k0 being the free-spa
e wavenumber. Furthermore, thesamples of the s
attered ele
tri
 �eld have been 
olle
ted at M = 50 equally-spa
edpositions lo
ated on a 
ir
le ρ = 0.64λ in radius.A

ording to the guidelines suggested in [25℄-[28℄, the following parameters for the GA-based multi-
ra
k optimization has been assumed: Q = 80, πb = πd = 0.7, πm = 0.4(mutation probability), Kmax = 600, and Ωth = 10−5.3.1 Test Case #1 - Re
onstru
tion of a Single-Cra
k Con�gura-tionAs a �rst test 
ase, let us 
onsider a 
omparative study on the e�e
tiveness of the multi-
ra
k strategies versus 
ustomized single-
ra
k te
hniques previously developed and 
are-fully assessed (i.e., the FGA [19℄ and the IGA [20℄ approa
hes). Towards this purpose, anunknown defe
t (C = 1) of area Ac

λ2

⌋
c=1

= 2.25 × 10−2 has been lo
ated at xc

λ

⌋
c=1

= 0.22and xc

λ

⌋
c=1

= 0.15 in a lossy (σH = 0.1 [S/m]) host medium. Moreover, the s
atteringdata have been blurred with an in
reasing level of additive noise (from SNR = 30 dBup to SNR = 5 dB). Con
erning multi-
ra
k implementations, Cmax has been �xed to
Cmax = 3, thus the number of 
ra
ks lying in the investigation domain H is an unknown,as well.Figure 4 shows the obtained results in terms of re
onstru
tion errors: δ [Fig. 4(a)℄ and ∆13



[Fig. 4(b)℄. Due to the intrinsi
 nature both of the GA-based strategies and of the noise,these results are average values of the exe
ution of ea
h algorithm for ten independentrealizations of the random pro
ess blurring the s
attering data.As expe
ted and already demonstrated in [20℄, IGA-based approa
hes (i.e., the single-
ra
k IGA and the multi-
ra
k strategies) allow a non-negligible improvement in thelo
alization a

ura
y. As a matter of fa
t, the average value of the lo
alization error 〈δ〉FGAturns out to be greater than 25 %, whereas IGA-based algorithms provide a lo
alizationa

ura
y with an error index lower than 20 % whatever the noise level. Moreover, thee�e
tiveness of IGA-based te
hniques improves (δ ≈ 5 %) for an in
reasing of the signal-to-noise-ratio (SNR > 15 dB). Furthermore, multi
ra
k implementations prove a betterrobustness against higher noisy 
ondition (δIGA > δIGA−HS ≥ δIGA−IS when SNR ≤

12 dB) despite the enlargement of the unknowns spa
e (sin
e Cmax 6= 1) with respe
t tothe IGA single-
ra
k strategy.As far as the estimation of the dimension of the defe
t is 
on
erned, Fig. 4(b) shows thatthe behaviors of the error �gures of the single-
ra
k IGA approa
h and of the integratedstrategy (IG) are quite similar in the range of noise variations, whereas the hierar
hi
alapproa
h (HS) generally does not rea
h the a

ura
y of single-
ra
k algorithms.3.2 Test Case #2 - Dependen
e of the Re
onstru
tion A

ura
yon the Number of Defe
ts CThe se
ond test 
ase is aimed at evaluating the feasibility of the proposed approa
h in deal-ing with multiple-defe
t 
on�gurations by 
omparing the hierar
hi
al and the integratedimplementations. Under the assumption that Cmax = 3, three geometries 
hara
terizedby the presen
e of a number of 
ra
ks from C = 1 up to C = 3 (Fig. 5) have been
onsidered. The position and size of ea
h defe
t Di, i = 1, . . . , C, are summarized in Tab.I.In order to assess the e�e
tiveness in dete
ting the number of defe
ts, the pre
ision-re
allindex R has been evaluated for ea
h experiment (C = 1, 2, 3) and in 
orresponden
e withdi�erent signal-to-noise ratios (SNR = 10, 20, 30 dB). The results of su
h an analysisare reported in Fig. 6. As far as the HS is 
on
erned [Fig. 6(a)℄, R⌋HS ≤ 40 %14



when SNR ≤ 10 dB whatever the number of 
ra
ks. Otherwise (SNR ≥ 20 dB), thee�
a
y of the algorithm improves espe
ially for a smaller value of C. Unlike the HS,the integrated implementation generally provides better performan
es very 
lose to theoptimal value (R = 100 %) ex
ept for �worst� 
on�gurations 
hara
terized by a highernoise (SNR < 10 dB) and smaller defe
ts.The dependen
e of the re
onstru
tion a

ura
y on the number of defe
ts and the level ofnoise 
an be estimated from the plots shown in Fig. 7. The results are presented in termsof δ - left 
olumn [Figs. 7(a), 7(
), and 7(e)℄ - and of ∆ - right 
olumn [Figs. 7(b), 7(d),and 7(f )℄ for C = 1 - �rst row [Figs. 7(a) and 7(b)℄, C = 2 - se
ond row [Figs. 7(
) and7(d)℄, and C = Cmax = 3 - third row [Figs. 7(e) and 7(f )℄. Both implementations providea satisfa
tory lo
alization (δ⌋IS < 18 % and δ⌋HS < 29 %) and the 
enters of the 
ra
ksare a

urately retrieved when SNR > 15.0 dB (δ < 7 %).On the other hand, the dimensioning of the defe
ts turns out to be more di�
ult and theperforman
es of the multi-
ra
k strategies get worse. However, for 
omparison purposes,it should be noti
ed that the IS 
onsiderably over
omes the HS and the arising error
∆⌋IS is always lower than 60 %. In parti
ular, ∆⌋IS < 20 % when SNR > 15.0 dB.From a 
omputational point of view, on
e again, the IS turns out to be more e�e
tivethan the HS both in terms of 
onvergen
e rate and time per iteration. As one example,Figure 8 shows the plot of the required CPU-time for ea
h iteration of a representativesimulation (C = 3 and SNR = 5.0 dB).3.3 Test Case #3 - Dependen
e of the Re
onstru
tion A

ura
yon the Host Medium Properties (σ)The test 
ase #3 is devoted at evaluating the multi-
ra
k strategies for di�erent 
on�g-urations of the host medium. Towards this end, the ele
tri
 
ondu
tivity σH has beenvaried from 0.1 [S/m] up to 1.0 [S/m] and the arrangement of the 
ra
ks was the same asshown in �gure 5 (Tab. I).The 
olor-level representations of the re
onstru
tion errors δ and ∆ are reported in Figure9. As expe
ted, sin
e the multi-
ra
k strategies are based on the 
omputation of theinhomogeneous Green's fun
tion as well as the single-
ra
k IGA, both the IS and the15



HS give a

urate lo
alizations of the defe
ts, whi
h result in low average values of the
orresponding indexes: 〈δ〉HS = 9.49 % and 〈δ〉IS = 8.15 %. Con
erning the dependen
eon the 
ondu
tivity of the host medium and on the SNR, the quality of the estimationof the defe
ts 
oordinates (xi, yi), i = 1, .., C, C = 3, enhan
es as SNR in
reases and
σ de
reases. A similar behavior holds true also for the 
ra
ks dimensioning as shown inFigs. 9(
)-9(d), but the errors signi�
antly grow also on average (〈∆〉IS = 52.19 % vs.
〈∆〉HS = 74.73 %).3.4 Test Case #4 - Dependen
e of the Re
onstru
tion A

ura
yon the Defe
ts Con�gurationThe last test 
ase is aimed at testing the resolution 
apabilities of the proposed approa
hes.As a matter of fa
t, a reliable re
onstru
tion pro
ess should be able to distinguish adja
entdefe
ts avoiding the in
orre
t dete
tion of a single 
ra
k instead of a multiple geometry.In order to verify su
h a feature, the same s
enario as for test 
ase #2 (C = 3) has been
onsidered, but the defe
ts have been pla
ed 
loser the ones to the others as indi
ated inTab. II and shown in Fig. 10.As expe
ted, the obtained results worsen with respe
t to those of Se
t. 3.2. Figure11(a) gives the values of the pre
ision-re
all index for di�erent signal-to-noise ratios.The integrated approa
h turns out to be more e�
ient than the hierar
hi
al strategy. Ita
hieves a value of R = 90 % in 
orresponden
e with the highest SNR value and R > 70 %whatever the noise level.In order to point out the reliability of the IS versus the HS, it is interesting to betterdetail the a
hieved results for a �xed SNR. Let us 
onsider the 
ase of SNR = 10 %. Insu
h a 
ase, the integrated approa
h always dete
ts a multiple-defe
t 
on�guration andthe fault per
entage [i.e., F ⌋(C=2)

IS = 30 %℄ is related to a geometry with two 
ra
ks. Onthe 
ontrary, the probability of estimating one or two 
ra
ks is equal for the hierar
hi
alstrategy to F ⌋(C=1)
HS = 13.7 % and F ⌋(C=2)

HS = 46.3 % [1 − R =
∑Cmax

C=1 F (C)℄, respe
tively.Con
erning the re
onstru
tion errors, by 
omparing the results shown in Figs. 11(b) and11(
) to those in Figs. 7(e) and 7(f ), it is evident the worsening in the lo
alization andin the estimation of the 
ra
ks dimensions. Moreover, the 
apabilities in lo
alizing and16



dimensioning the defe
ts of the IS are almost independent from the noise level.4 Con
lusionsIn this work, the problem of dete
ting and re
onstru
ting multiple defe
ts in a knownhost medium has been analyzed. Starting from the inverse s
attering equations and by
onsidering an e�e
tive integral formulation based on the de�nition of the inhomogeneousGreen's fun
tion, the problem in hand has been addressed with a GA-based te
hniqueimplemented through two innovative strategies.The main features of the proposed approa
h are the following:
• 
apability to dete
t multiple as well as single defe
ts;
• 
apability to re
onstru
t multiple defe
ts di�erent in shape as well as in dimensions;
• exploitation of the a-priori information and 
omputational saving;
• 
apability to operate in the presen
e of diele
tri
 as well as 
ondu
tive host media;
• robustness to blurred data.Con
erning the methodologi
al novelties of this work, some key-issues should be pointedout:
• spe
i�
 formulation of the multi-
ra
k re
onstru
tion problem within the frameworkof inverse s
attering te
hniques;
• original implementations of the data pro
essing through innovative ar
hite
turesbased on GAs;
• de�nition of 
ustomized GA-operators for dealing with heterogeneous and variable-length 
hromosomes.From the numeri
al experiments 
arried out on di�erent 
on�gurations and s
enarios, thefollowing 
on
lusions 
an be drawn:

17



• the proposed multi-
ra
k approa
h proved e�e
tive providing, in its integrated im-plementation, both high dete
tion a

ura
y, good re
onstru
tions, and a satisfa
toryrobustness;
• the HS showed good results, but in general, they were on average inferior to thoseobtained with the integrated algorithm (IS). Su
h a behavior, although the IS 
hro-mosomes 
ould be 
onsidered as a subset of the whole set of trial solutions 
odedby the HS, seems to be related to a more e�e
tive sampling of the solution spa
e inthe limited amount of iterations;
• the IS revealed very good in terms of 
omputational 
osts o�ering an a

eptabletrade-o� between a

ura
y and 
onvergen
e rate of the optimization pro
ess;
• the multi-
ra
k strategies exhibited good a

ura
ies in dealing with single-defe
tgeometries and their performan
es turned out 
omparable with those of 
ustomizedsingle-defe
t te
hniques;However, although the proposed multi-
ra
k dete
tion te
hnique seems to be a verypromising tool for unsupervised and automati
 appli
ations, several improvements forits industrial implementation are mandatory.Towards this end, future developments of this work will be oriented in the followingdire
tions:
• developing a pro
edure that parameterizes the 
ra
k by means of more general and
omplex des
riptors;
• extending the pro
edure to a three-dimensional s
enario;
• des
ribing in an a

urate and detailed fashion the overall measurement setup in orderto take into a

ount other sour
es of noise and ina

ura
ies in the data 
olle
tion.
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FIGURE CAPTIONS
• Figure 1. Multi-
ra
k problem geometry (C = 2).
• Figure 2. Example of a multi
ra
k hybrid 
oded variable-length 
hromosome.
• Figure 3. Example of (a) the binary 
rossover. Generation of trial solutions of thesub-population χk

o
when (b) Cl < Ck−1

opt and when (
) Cl > Ck−1
opt .

• Figure 4. Test Case #1. Behavior of (a) δ and (b) ∆ versus SNR when C = 1and for FGA, IGA, HS, and IS.
• Figure 5. Test Case #2. Referen
e geometry.
• Figure 6. Test Case #2. Behavior of the pre
ision-re
all index R: (a) Hierar
hi
alStrategy and (b) and Integrated Strategy.
• Figure 7. Test Case #2. Behavior of re
onstru
tion errors versus SNR for di�erentnumber of defe
ts. C = 1: (a) δ and (b) ∆; C = 2: (
) δ and (d) ∆; C = 3: (e) δand (f ) ∆.
• Figure 8. CPU times. Comparison among the IS and the HS when C = 3 and

SNR = 5 dB.
• Figure 9. Test Case #3. Behavior of the re
onstru
tion errors versus SNR andthe 
ondu
tivity of the host medium, σH . Hierar
hi
al Strategy : (a) lo
alizationerror δ and (b) area error ∆. Integrated Strategy : (
) lo
alization error δ and (d)area error ∆.
• Figure 10. Test Case #4. Referen
e geometry.
• Figure 11. Test Case #4. Behavior of the error indexes versus SNR for the HSand the IS: (a) pre
ision-re
all index R , (b) lo
alization error δ, and (
) area error

∆.
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TABLE CAPTIONS
• Table I. Test Cases #1 and #2 - Positions and sizes of the defe
ts.
• Table II. Test Case #3 - Positions and sizes of the defe
ts.
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xc
λ

yc
λ

Ac
λ2

c = 1 0.22 0.15 0.0225

c = 2 0.0 −0.15 0.01

c = 3 −0.26 0.15 0.04
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λ

Ac
λ2

c = 1 0.102 0.102 0.04

c = 2 0.046 −0.102 0.01

c = 3 −0.102 0.046 0.0225
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