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ertainty of Noisy S
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Abstra
tInverse s
attering data, even though 
olle
ted in a 
ontrolled-environment, are usu-ally 
orrupted by ele
tromagneti
 noise, whi
h strongly a�e
ts the e�e
tiveness ofthe re
onstru
tion te
hniques be
ause of the intrinsi
 ill-positioning of the problem.In order to limit the e�e
ts of the noise on the retrieval pro
edure and to fully ex-ploit the limited information 
ontent available from the measurements, an innovativeinversion s
heme based on the integration of an adaptive multi-s
ale pro
edure anda fuzzy-logi
-based de
ision strategy is proposed. The main goal of the approa
his to redu
e the 
omplexity of the problem as well as to improve the robustnessof the inversion pro
edure allowing an a

urate retrieval of the pro�le under test.The approa
h is based on an adaptive, 
oarse-to-�ne su

essive representation ofthe unknown obje
t obtained through a sequen
e of nonlinear re
onstru
tions wheresuitable weighting 
oe�
ients are de�ned through a fuzzy logi
. Key elements ofthe theoreti
al analysis are given and several numeri
al examples, 
on
erned withsyntheti
 and experimental test 
ases, illustrate the 
onsequen
es of the proposedapproa
h in terms of both resolution a

ura
y and robustness as well as 
omputa-tional 
osts.

Key-words:Mi
rowave Imaging, Inverse S
attering, Fuzzy-Logi
, Iterative Multi-S
aling Approa
h.2



1 Introdu
tionImaging an unknown obje
t from the �eld s
attered by the same obje
t when probed byan ele
tromagneti
 sour
e is a very interesting and 
hallenging topi
 [1℄. Let us 
onsiderthe wide range of possible appli
ations from subsurfa
e imaging [2℄ to biomedi
al anddiagnosti
 appli
ations [3℄. However, several theoreti
al di�
ulties o

ur in developinga pra
ti
al imaging system based on inverse s
attering phenomena [4℄. As a matter offa
t, inverse s
attering problems are intrinsi
ally ill-posed and their numeri
al 
ounterpartill-
onditioned be
ause of the limited amount of information 
olle
table from s
atteringexperiments [5℄[6℄. To limit/over
ome these drawba
ks several approa
hes have beenproposed. Two main paths of resear
h seem to be usually taken into a

ount:
• Some methods, taking into a

ount the a
hievable spatial resolution in relation tothe amount of data [7℄ and the nonlinearity of the problem in hand, de�ne suitablerepresentations of the unknowns in order to allow reliable re
onstru
tions throughe�e
tive optimization methods both deterministi
 [8℄ and sto
hasti
 [9℄[10℄;
• Other approa
hes 
onsider multi-resolution strategies in order to enhan
e the a
hiev-able resolution a

ura
y fully exploiting all the s
attering information [7℄[11℄-[13℄.Nevertheless, su
h te
hniques do not 
onsider or partially address the problem of thereliability/un
ertainty of the data. As a matter of fa
t, if quantifying the number ofinformative (i.e., independent) data [6℄ is a key-issue in solving inverse s
attering problems,on the other hand the e�e
tiveness of a retrieval pro
edure strongly depends on the levelof reliability of su
h data.In 
olle
ting the ele
tromagneti
 measurements, experimental and environmental noisesadd to the s
attered signals be
ause of the me
hani
al positioning of the ele
tromagneti
�eld sensors or the ele
tromagneti
 interferen
es in the test-site. The presen
e of these
orrupting fa
tors, be
ause of the high intrinsi
 instability 
aused by the ill-posedness ofinverse s
attering problems, strongly a�e
ts the a

ura
y of the re
onstru
tion withoutproper 
ountermeasures. 3



Certainly, a dire
t estimation of the un
ertainty/reliability asso
iated with s
atteringmeasurements would be really useful. But, be
ause of the 
ost and the 
omplexity ofsu
h an estimate, it is quite hard to be obtained (e.g., multiplexing and time averaging ofmultiple measurements 
ould be a solution strategy [14℄[15℄[16℄, but notwithstanding ana-priori knowledge on the noise type is needed). Moreover, su
h a knowledge usually isavailable not as an obje
tive knowledge (i.e., in terms of a mathemati
al model or numeri
alvalues), but as a subje
tive knowledge (e.g., �data are a�e
ted by low noise� or �data area�e
ted by mu
h noise� or �data are quite reliable�), whi
h represents an information thatis usually di�
ult or 
omplex (and expensive) to quantify using traditional mathemati
sor experimental methods. Be
ause of these problems, subje
tive information is usuallyignored or partially taken into a

ount. In general, the impa
t of 
orrupted data be
auseof the ill-posedness of the inverse problem is handled by looking for a regularized solution,whi
h better �ts all the available data (
orrupted or not by the noise and 
hara
terizedby a di�erent degree of reliability) by minimizing the dis
repan
y fun
tion 
omposedby two terms, namely the Data term and the State term. These terms depend on thes
attered �eld 
olle
ted in the observation domain and on the in
ident �eld measuredin the investigation domain, respe
tively. Suitable weighting parameters heuristi
allyde�ned [17℄[10℄ or iteratively tuned [18℄ allow one to weight more the one or the otherterm, depending on the un
ertainties asso
iated with both of them. In su
h a way, thesete
hniques allow a �global � 
ontrol on the whole set of data and they do not 
onsiderea
h measure individually with its degree of reliability. Moreover, the arising 
ontrol is�indire
t� sin
e it does not quantify the reliability of the s
attering data, but their impa
ton the 
ost fun
tion.As far as the use of the subje
tive information for e�e
tively exploiting the �
lean� in-formation (i.e., without noise and independent) 
ontained in noisy s
attering data is
on
erned, the following 
onsiderations should be taken into a

ount. If the amplitude ofthe total �eld s
attered by the target under test is small, then the 
olle
ted samples mightbe easily and irremediably a�e
ted by e.m. experimental and environmental noises. Onthe 
ontrary, the higher is the amplitude of the �eld samples, the lower is the risk of beingheavily 
orrupted. Starting from these physi
al bases, this paper proposes an innovative4



automati
 approa
h preliminary assessed in [19℄ and here integrated with a 
ustomized it-erative multi-s
aling pro
edure, whi
h takes into a

ount the un
ertainty on the reliabilityof the measured data, due to the presen
e of the noise, through a fuzzy-logi
-based strat-egy [20℄. To the best of the authors' knowledge, although fuzzy theory has been widelyemployed espe
ially in the framework of automated 
ontrols [21℄[22℄ where un
ertaintyand subje
tive knowledge play an important role, its use in the framework of ele
tromag-neti
s has been limited for example to the fuzzy partitioning of ANNs input spa
e [23℄,to the 
ombination of 
ompeting obje
tive fun
tions [24℄, and to determine the values ofregularization parameters in ECT appli
ations [25℄. Therefore, in the authors' opinion,the use of a fuzzy-based strategy for dealing with the un
ertainty on the reliability ofnoisy s
attered data represents a novelty in the framework of mi
rowave imaging.The underlying idea of the proposed approa
h is that of de�ning a system able to rea
tautomati
ally to any noisy 
ondition providing a degree of reliability of the s
attering dataso that they 
an be usefully employed during the retrieval pro
ess and for an �amount�related to their a

ura
y [i.e., by properly weighting the required �tting between ea
hsample of measured and re
onstru
ted data, see Eq. (6)℄. The system is required togive su
h an indi
ation starting from the same measured data without other a-prioriinformation or 
onstraints both on s
atterers and on the a
quisition setup.The paper is stru
tured as follows. A brief des
ription of a standard two-dimensionalmi
rowave imaging problem will be given in Se
t. 2 where a suitable weighted multi-resolution 
ost fun
tion will be de�ned in order to 
onveniently take into a

ount thepresen
e of 
orrupted s
attering data fully exploiting the available information 
ontent.Then, a detailed explanation of the fuzzy-logi
-based strategy and of its 
ustomization tothe mi
rowave imaging framework will be presented in Se
t. 3. Se
t. 4 will be devotedto the 
alibration and numeri
al testing of the fuzzy logi
 system (FLS). The 
riterionfor sele
ting the FLS des
riptive parameters will be brie�y summarized and the resultsof a sensitive analysis will be dis
ussed in order to de�ne the optimal setting (Sub-Se
t.4.1). In Sub-Se
t. 4.2, a numeri
al assessment will be performed by 
onsidering di�erents
attering s
enarios (syntheti
 as well as experimental) and various environmental 
on-ditions. Moreover, a 
omparative study among the proposed approa
h and the standard5



IMSA as well as with state-of-the-art regularization methods will be 
arried out. Finallysome 
on
lusions will be drawn and future developments will be proposed (Se
t. 5).2 Inverse Problem FormulationLet us 
onsider a 
ylindri
al two-dimensional geometry where a set of V transverse-magneti
 (TM) plane waves E
v
inc (x, y) = Ev

inc (x, y) ẑ, v = 1, ..V , su

essively illuminatesan investigation domain denoted by Γinv where an unknown inhomogeneous diele
tri
obje
t is supposed to lie. Without loss of generality, the host medium is a homoge-neous, non-magneti
 and lossless ba
kground with diele
tri
 properties equal to that ofthe va
uum (ε0, µ0). The diele
tri
 inhomogeneity that identi�es the unknown s
attereris des
ribed by means of the distribution of the obje
t fun
tion τ given by
τ (x, y) = [εR (x, y) − 1] − j

σc (x, y)

2πfε0
(1)where εR and σc are the relative diele
tri
 permittivity and the ele
tri
 
ondu
tivity ofthe s
atterer, respe
tively, and f is the working frequen
y of the probing sour
e.The �eld s
attered by the s
enario under test E

v
scatt (x, y) = Ev

scatt (x, y) ẑ, v = 1, ..., V ,is 
olle
ted in an external observation domain Γobs where a set of M(v), v = 1, ..., V ,measurement points are uniformly distributed. Starting from the knowledge of the s
at-tered �eld and of the in
ident �eld radiated by the ele
tromagneti
 sour
e, the s
attereris usually re
onstru
ted/imaged by solving the nonlinear inverse s
attering equations:
Ev

scatt

(

xm(v), ym(v)

)

= k2
0

∫

Γinv
G2D

(

xm(v), ym(v)|x′, y′
)

τ (x′, y′) Ev
tot (x′, y′) dx′dy′

(

xm(v), ym(v)

)

∈ Γobs m(v) = 1, ..., M(v), v = 1, ..., V
(2)

Ev
inc (x, y) = Ev

tot (x, y) − k2
0

∫

Γinv
G2D (x, y|x′, y′) τ (x′, y′) Ev

tot (x′, y′) dx′dy′

(x, y) ∈ Γinv v = 1, ..., V
(3)

where G2D denotes the Green fun
tion of the ba
kground medium and Ev
tot is the �eldwith the obje
t. Towards this end, sin
e a 
losed-form solution is generally not available,6



a suitable dis
retization is performed for allowing a numeri
al solution. As far as thewell-known Ri
hmond's pro
edure [26℄ is 
on
erned, the investigation domain is equallypartitioned into N sub-domains of area An, n = 1, . . . , N .However, be
ause of the limited information 
ontent available from s
attering data [6℄,multi-resolution strategies are ne
essary [11℄-[12℄ for a
hieving a suitable resolution of theobje
t fun
tion in Γinv keeping a limited number of unknowns at the same time. In su
h aframework, the iterative multi-s
aling approa
h [13℄ 
an be pro�tably used. By assuminga multi-resolution representation of the problems unknowns, namely the obje
t fun
tion
τ(x, y) =

R(s)
∑

r=1

N(r)
∑

n(r)=1

τ
(

xn(r), yn(r)

)

Bn(r) (x, y) (x, y) ∈ Γinv (4)and of the total �eld
Ev

tot(x, y) =

R(s)
∑

r=1

N(r)
∑

n(r)=1

Ev
tot

(

xn(r), yn(r)

)

Bn(r) (x, y) (x, y) ∈ Γinv (5)where r is the resolution index at the s-th step of multi-s
aling pro
ess, n(r) denotesthe 
orresponding dis
retization sub-domain in Dinv, and Bn(r) is a known re
tangularbasis fun
tion de�ned over the n(r)-th sub-domain, the IMSA 
onsists of a sequen
e of Ssu

essive re
onstru
tions (s = 1, . . . , S) of the unknown 
oe�
ients 
oded into the array
f (s) =

{

τ
(

xn(r), yn(r)

)

, Ev
tot

(

xn(r), yn(r)

) ; n(r) = 1, ... , N(r); r = 1, ... , R(s)}, R(s) = sbeing the 
urrent resolution index. Towards this end and at ea
h step s, the followingmulti-resolution 
ost fun
tion is minimized
Φ

(s)
IMSA

{

f (s)
}

=

∑V
v=1

∑M(v)
m(v)=1

∣

∣

∣
Ev

scatt

(

xm(v), ym(v)

)

− ΦData

{

f (s)
}
∣

∣

∣

2

∑V
v=1

∑M(v)
m(v)=1

∣

∣Ev
scatt

(

xm(v), ym(v)

)
∣

∣

2 (6)
+

∑V

v=1

∑R(s)
r=1

∑N(r)
n(r)=1 w

(

xn(r), yn(r)

)

∣

∣

∣
Ev

inc

(

xn(r), yn(r)

)

− ΦState

{

f (s)
}
∣

∣

∣

2

∑V

v=1

∑R(s)
r=1

∑N(r)
n(r)=1

∣

∣w
(

xn(r), yn(r)

)

Ev
inc

(

xn(r), yn(r)

)
∣

∣

2where the �rst term represents the normalized global mismat
h between estimated (from
7



the re
onstru
tion of f (s))
ΦData

{

f (s)
}

=

R(s)
∑

r=1

N(r)
∑

n(r)=1

w
(

xn(r), yn(r)

)

τ
(

xn(r), yn(r)

)

Ev
tot

(

xn(r), yn(r)

)

G2D

(

k0ρm(v)n(r)

)(7)and measured data in Γobs [i.e., Ev
scatt

(

xm(v), ym(v)

)℄, while the se
ond term is the normal-ized global error in mat
hing the State Equation sin
e
ΦState

{

f (s)
}

= Ev
tot

(

xn(r), yn(r)

)

−
N(r)
∑

p(r)=1

τ
(

xp(r), yp(r)

)

Ev
tot

(

xp(r), yp(r)

)

G2D

(

k0ρn(r)p(r)

)(8)determines the estimated value of the in
ident �eld in Γinv.Moreover, w is a weighting fun
tion
w
(

xn(r), yn(r)

)

=











0 if
(

xn(r), yn(r)

)

/∈ D(s−1)

1 if
(

xn(r), yn(r)

)

∈ D(s−1)
(9)and D(s−1) the support of the Region-of-Interest (RoI) where the unknown s
atterer hasbeen dete
ted at the (s − 1)-th step [13℄. Starting from the 
oarse re
onstru
tion a
hievedat the �rst step (s = 1, D(s−1) = Γinv), the iterative �zooming� pro
ess is repeated untilthe �stationary� 
ondition [13℄ holds true (s = Sopt).Although su
h a formulation allows an e�e
tive use of the available s
attering data interms of the a
hievable spatial resolution, it does not take into a

ount the un
ertaintyon the reliability of the s
attering data [Ev

scatt

(

xm(v), ym(v)

) and Ev
inc

(

xn(r), yn(r)

)℄, whi
hin real appli
ations are usually 
orrupted by equivalent sour
es of noise.In order to fully exploit the available subje
tive knowledge on the s
attering data andto take into a

ount the un
ertainty/reliability asso
iated with the measurements, let usrepresent/quantify the un
ertainty/reliability-degree of the data by introdu
ing in (6) aset of suitable weighting parameters αm(v) and βn(r),v. Thus, the arising IMSA − Fuzzy
ost fun
tion is expressed as follows
8



Φ
(s)
IMSA−Fuzzy

{

f (s)
}

=

∑V

v=1

∑M(v)
m(v)=1

{

αm(v)

∣

∣

∣
Ev

scatt

(

xm(v), ym(v)

)

− ΦData

{

f (s)
}
∣

∣

∣

2
}

∑V

v=1

∑M(v)
m(v)=1

∣

∣Ev
scatt

(

xm(v), ym(v)

)
∣

∣

2 (10)
+

∑V
v=1

∑R(s)
r=1

∑N(r)
n(r)=1

{

βn(r),vw
(

xn(r), yn(r)

)

∣

∣

∣
Ev

inc

(

xn(r), yn(r)

)

− ΦState

{

f (s)
}
∣

∣

∣

2
}

∑V
v=1

∑R(s)
r=1

∑N(r)
n(r)=1

∣

∣w
(

xn(r), yn(r)

)

Ev
inc

(

xn(r), yn(r)

)
∣

∣

2where the weighting parameters are 
omputed starting from a fuzzy representation ofthe un
ertainty asso
iated with the measurements and by means of a fuzzy logi
 basedstrategy des
ribed in the following se
tion (Se
t. 3).
3 The Fuzzy-Logi
 StrategyThe framework of fuzzy logi
 (FL) is unique in its ability to represent subje
tive orlinguisti
 knowledge in terms of a mathemati
al model. Furthermore, its 
oupling withrule-based systems is enabling the modeling of the approximate and impre
ise reasoningpro
esses 
ommon in human problem solving [21℄. Therefore, FLSs have been widely usedin the last de
ades espe
ially in the �eld of automati
 
ontrols after Zadeh introdu
ed thebasi
 prin
iples of FL and approximate reasoning in his pioneering work [20℄. For anoverview, the interested reader is suggested to refer to the dated and 
lassi
al referen
eson FL and systems. For example, [27℄[28℄ as well as [29℄[30℄[31℄[32℄ and the referen
es
ited therein.Generally speaking, a FLS system 
an be des
ribed through the blo
k-diagram in Fig.1(a). The FLS maps a 
risp input (or a 
olle
tion of 
risp inputs) into a 
risp output. Atthe heart of the FLS Fig. 1 [Fig. 1(a)℄ there is a fuzzy rule base, whi
h 
ontains fuzzyrules expressed in the form of IF − THEN statements. The mapping of the input datato the desired output is generally performed in three stages. These are the fuzzi�
ationof the input data (assuming this data is 
risp), the fuzzy inferen
e using fuzzy rules, anda defuzzi�
ation stage used for produ
ing a 
risp s
alar output. Usually, if the rule baseof the FLS in
ludes several rules, their individual outputs are 
ombined in the inferen
estage for produ
ing a single fuzzy output set.9



3.1 The FLS for Ele
tromagneti
 ImagingLet us refer to the blo
k diagram shown in Fig. 1(b). The proposed implementation of afuzzy-logi
 strategy for automati
ally evaluating the level of un
ertainty on the reliabilityof measured data needs of a normalization step before the fuzzy-logi
 system. The nor-malization blo
k , 
hara
terized by the transfer fun
tion N { � }, de�nes the 
risp inputsto the fuzzy system starting from the knowledge of the total and s
attered ele
tri
 �eldin the observation domain and of the in
ident ele
tri
 �eld in the investigation domain.Su
h normalized values are 
omputed as follows
ηm(v) = N

{

Ev
scatt

(

xm(v), ym(v)

)

, Ev
tot

(

xm(v), ym(v)

)}

=

∣

∣

∣

∣

Ev
scatt(xm(v),ym(v))
Ev

tot(xm(v),ym(v))

∣

∣

∣

∣

maxv

{

maxm(v)

∣

∣

∣

∣

Ev
scatt(xm(v),ym(v))
Ev

tot(xm(v),ym(v))

∣

∣

∣

∣

}(11)
ξn(r),v = N

{

Ev
inc

(

xn(r), yn(r)

)}

=

∣

∣Ev
inc

(

xn(r), yn(r)

)
∣

∣

maxv

{

maxr

[

maxn(r)

∣

∣Ev
inc

(

xn(r), yn(r)

)
∣

∣

]} (12)in order to �rank � the whole set of s
attering data in terms of their relative amplitudesa

ording to the idea that the higher is the normalized amplitude of a sample, the loweris its risk of being heavily 
orrupted as well as the un
ertainty on its reliability for re-
onstru
tion purposes. Then, in order to obtain a reliability index for ea
h measurement,the normalized 
oe�
ients ηm(v) and ξn(r),v are mapped into the 
risp 
oe�
ients αm(v)and βn(r),v by means of the transfer fun
tion ℑ{ � } s
hemati
ally-des
ribed in the blo
kdiagram shown in Fig. 1(a). More in detail, given a set of rules (ℜi, i = 1, ..., I, I beingthe number of rules) de�ned by a set of ante
edents/premises (Ai, i = 1, ..., I) and relative
onsequen
es/
on
lusions (Ci, i = 1, ..., I), the inferen
e pro
ess pro
eeds in �ve steps.1. Inputs Fuzzi�
ation - The fuzzi�er Ω { � } applies to the a
tual values of the
oe�
ients ηm(v) and ξn(r),v the Gaussian membership fun
tion µ ( � ) in order todetermine the degree to whi
h they belong to the appropriate fuzzy sets Fi de�nedin ea
h premise Ai. The Gaussian fun
tion is de�ned as
µ
(

η; ηm(v); σ
)

=
1√

2πσ2
exp

(

−
(

η − ηm(v)

)2

σ2

) (13)10



or
µ
(

ξ; ξn(r),v; σ
)

=
1√

2πσ2
exp

(

−
(

ξ − ξn(r),v

)2

σ2

) (14)
entered in 
orresponden
e with the a
tual value of the input 
oe�
ient (ηm(v) or
ξn(r),v) and 
hara
terized by a varian
e value σ proportional to the un
ertainty levelasso
iated to the 
urrent measure;2. Rule A
tivation - On
e the 
risp input has been fuzzi�ed, the i-th rule ℜi isa
tivated when there is a non-zero degree of similarity between the fuzzy input[µ (η; ηm(v); σ

) or µ
(

ξ; ξn(r),v; σ
)℄ and the ante
edent Ai. Mathemati
ally, it 
an beexpressed as follows

µ
(

η; ηm(v); σ
)

∩ Ai (η) 6= {0} ⇒ ℜi activated (15)
µ
(

ξ; ξn(r),v; σ
)

∩ Ai (ξ) 6= {0} ⇒ ℜi activated. (16)The a
tivation value of ea
h rule, Ri, is 
omputed evaluating the highest valueamong the interse
tion points between the membership fun
tion of the i-th an-te
edent Ai and the membership fun
tion asso
iated to the input. Analyti
ally,
Ri = max

η∈[0,1]

{

µ (η) : µ
(

η; ηm(v); σ
)

= Ai (η)
} (17)

Ri = max
ξ∈[0,1]

{

µ (ξ) : µ
(

ξ; ξn(r),v; σ
)

= Ai (ξ)
}

; (18)
3. Rule Impli
ation - The output fuzzy subset G′

i, to be assigned to ea
h output vari-able of ea
h rule, is 
omputed by de�ning the 
orresponding membership fun
tion[C ′

i (α) or C ′

i (β)℄ through the MIN inferen
ing rule [33℄ starting from the a
tivationvalue Ri. The output membership fun
tion Ci (de�ning the fuzzy set Gi) is 
lippedo� at a height 
orresponding to the degree of truth Ri of the premise Ai

C ′

i (α) = min
α∈[0,1]

{Ci (α) , Ri} , α ∈ [0, 1] (19)11



C ′

i (β) = min
β∈[0,1]

{Ci (β) , Ri} , β ∈ [0, 1] ; (20)
4. Output Fuzzy Subsets Aggregation - Sin
e de
isions are based on the testing ofthe whole set of rules {ℜi, i = 1, ..., I}, the rules must be 
ombined in order to makea de
ision. The list of trun
ated output fuzzy sets {G′

i, i = 1, ..., I} returned by theimpli
ation pro
ess for ea
h rule are 
ombined (�aggregation� pro
ess) into a singleoutput fuzzy set O. The membership fun
tion ϑ of the aggregate output fuzzy set Ois 
omputed taking the maximum value among all the output membership fun
tions
{C ′

i, i = 1, ..., I}

ϑ (α) = max
i=1,...,I

{C ′

i (α)} , α ∈ [0, 1] (21)
ϑ (β) = max

i=1,...,I
{C ′

i (β)} , β ∈ [0, 1] ; (22)
5. Defuzzi�
ation - The defuzzi�
ation blo
k Θ { � } is used for 
onverting the ag-gregate fuzzy output set O into the reliability 
oe�
ient αm(v) (or βn(r),v) 
on
ernedwith the normalized 
oe�
ient ηm(v) (or ξn(r),v), respe
tively. For its simpli
ity, letus 
onsider the so-
alled height defuzzi�er [34℄. Let gi denote the 
enter of grav-ity of the fuzzy set Gi, then the defuzzi�er 
omputes the 
ost fun
tion weighting
oe�
ients as follows

αm(v) =

∑I
i=1 [giC

′

i (α = gi)]
∑I

i=1 C ′

i (α = gi)
(23)

βn(r),v =

∑I

i=1 [giC
′

i (β = gi)]
∑I

i=1 C ′

i (β = gi)
. (24)

4 Numeri
al Analysis and TestingThe aim of this se
tion is twofold. Firstly, a sensitivity analysis on the impa
t of some FLSparameters on the re
onstru
tion performan
e are reported to determine their optimal12



setting for mi
rowave imaging. Then, by 
onsidering su
h an optimal 
on�guration, thee�e
tiveness and robustness of the FL-based approa
h are assessed in re
onstru
tingdi�erent s
attering s
enarios starting from syntheti
ally-generated as well as experimentalinverse s
attering data.4.1 FLS CalibrationSeveral 
hoi
es 
ould be made in de�ning ea
h blo
k of the diagram of the FLS shown inFig. 1(a). As a matter of fa
t, the FLS user is requested to de
ide on the type of fuzzi-�
ation (singleton or non-singleton), mathemati
al expression of the membership fun
-tions (triangular, trapezoidal, Gaussian, et
...), des
riptive parameters of the membershipfun
tions, impli
ation (MIN inferen
e or PRODUCT inferen
e rule), aggregation rule(MAX or SUM), and defuzzi�er (maximum, mean-of-maxima, 
entroid, height, et
...).In our implementation, a non-singleton fuzzi�er has been sele
ted for the fuzzi�
ationpro
edure. Unlike the singleton fuzzi�er , su
h a fuzzi�er is 
hara
terized by a Gaussianmembership fun
tion µ (ς; ς̄; σ) (
entered in ς̄ and with varian
e σ) in order to take into a
-
ount the un
ertainty 
on
erned with the reliability of measured data [33℄. Con
erning theother 
hoi
es for the inferen
e blo
k, be
ause of our interest in the engineering appli
ationof FL, the 
riterion of the 
omputational simpli
ity has been adopted. Therefore, triangu-lar/trapezoidal membership fun
tions {Ci, i = 1, ..., I} have been used by representing lin-guisti
 variables (e.g., reliability of measured data, amplitude ∈ {slight, low, medium, strong, high})in terms of fuzzy sets [33℄-[37℄. Moreover, simple inferen
e rules (MIN inferen
e and
MAX 
omposition) have been 
onsidered in the impli
ation and aggregation phase, re-spe
tively. Furthermore, the height defuzzi�er has been adopted for simpli
ity sin
e the
enters of gravity {gi, i = 1, ..., I} of triangular/trapezoidal membership fun
tions area-priori known.Nevertheless these assumptions/simpli�
ations, the FLS needs of a 
areful tuning of theremaining parameters, whi
h are expe
ted to a�e
t the imaging performan
es. Therefore,a sensitivity study on the e�e
ts of the parameter σ of the non-singleton Gaussian fuzzi�erand of the fuzzy rules has been performed for presenting a reliable FL-based approa
h for13



mi
rowave imaging. Towards this end, the following experiments have been 
arried out:
• Experiment 1 - Di�erent sets of rules, de�ned a

ording to the suggestions in thereferen
e literature, have been analyzed;
• Experiment 2 - The value of σ has been varied in a range of admissible values,

σ ∈ [10−5, 10−1], for attributing the more appropriate level of un
ertainty to thes
attering data.As a measure of e�e
tiveness, the values of the quantitative error indexes (ζtot = totalre
onstru
tion error, ζint = internal re
onstru
tion error, and ζext = external re
onstru
-tion error) de�ned in [13℄ have been used and the following referen
e s
enarios have been
onsidered:
• S
enario 1 - A square homogeneous investigation domain Γinv, Linv = 1.125 λ0-sided, where an o�-
entered diele
tri
 homogeneous s
atterer of side l = 0.2 λ0and obje
t fun
tion τ = 1.5 is lo
ated at xc = yc = 0.3 λ0. Moreover, a multi-illumination/multi-view imaging setup 
hara
terized by V = 4 views and M(v) =

20, v = 1, ..., V equally-spa
ed sensors on a 
ir
ular domain Γobs (of radius robs =

1.125 λ0) has been used for probing the s
attering 
on�guration under test.;
• S
enario 2 - A square homogeneous diele
tri
 (τ = 1.5) 
ylinder of side l = 1.2 λ0lo
ated in a Linv = 4 λ0-sided investigation domain at xc = 0.4 λ0 and yc = 1.0 λ0.

Γinv has been illuminated by V = 8 plane waves and the s
attering data have been
olle
ted in M(v) = 50, v = 1, ..., V measurement points on a 
ir
ular observationdomain Γobs with radius robs = 2.93 λ0.In order to simulate noisy 
onditions, the s
attering data have been 
orrupted by addinga syntheti
 Gaussian noise 
hara
terized by an assigned signal-to-noise ratio (SNR) [13℄.Consequently, in order to take into a

ount the sto
hasti
 nature of the noise, ea
h test
ase has been repeated P = 100 times with the same parameters setup and the average
14



values of the error indexes
ζj =

1

P

P
∑

p=1

ζj j = tot, int, ext (25)have been re
orded.Furthermore, be
ause of the needs of fo
using on FLS by evaluating the e�e
ts of its
hara
teristi
 parameters, �bare� re
onstru
tions (i.e., single-step homogeneous-resolutioninversions) have been 
arried out negle
ting the �overboost� e�e
t of the multi-step pro-
edure. A

ordingly, Γinv has been uniformly-partitioned into N = 15 × 15 (S
enario 1 )and N = 45 × 45 (S
enario 2 ) square sub-domains.4.1.1 Experiment #1As a general 
riterion for de�ning the set of rules, let us 
onsider that a greater resolutionis generally a
hieved by using more membership fun
tions at the pri
e of greater 
ompu-tational 
omplexity. Moreover, membership fun
tions 
an be made to overlap in order todistribute our de
ision on the data reliability over more than one input 
lass making the
FLS more robust. Con
erning the de�nition of 
ustomized rules for the imaging problem,the following key-points have been taken into a

ount: (i) the smallest is the amplitudeof the measured �eld, more relevant 
ould be the blurring/masking e�e
t of the noise;(ii) the greater is the amplitude of the �eld s
attered by the obje
t (i.e., Ev

tot) 
omparedto the in
ident �eld (i.e., Ev
scatt - where a sort of �print� of the s
atterer is �
oded � - isnot negligible), the higher is usually the information on the s
atterer 
olle
table froms
attering data.Starting from these 
onsiderations and from known referen
e 
on�gurations, the sets ofrules pi
torially-represented in Fig. 2 have been dedu
ed by interpreting, a

ording to theguidelines in [33℄-[37℄, the linguisti
 variables 
on
erned with the amplitudes of the �eldsamples for the ante
edents, and the value of the reliability 
oe�
ient αm(v) (or βn(r),v) forthe 
onsequen
es. More in detail, the sets of rules (i.e., ante
edents and 
onsequen
es) ofFigs. 2(a)-(l) have been generated by varying position and shape of their fuzzy sets. Then,the most suitable rule has been 
hosen by using ea
h pair of ante
edents/
onsequen
es15



in re
onstru
ting both referen
e s
enarios and by evaluating its e�e
tiveness in terms ofinversion a

ura
y. Table 1 summarizes the obtained results in a representative situationwhen SNR = 5 dB [Tab. I (a) - S
enario 1 and Tab. I (b) - S
enario 2 ℄. As it 
an benoti
ed, the smallest values of the error indexes o

ur in 
orresponden
e with the set ofrules #3. Su
h a situation usually veri�es whatever the SNR value.4.1.2 Experiment #2Under the assumption of a non-singleton Gaussian fuzzi�er , the level of un
ertainty oninputs depends on the varian
e σ. Let us 
onsider that the higher is the σ value, thegreater is the un
ertainty of data. Otherwise, when the reliability of the measures is high,then σ redu
es to 0 and the Gaussian membership fun
tion be
omes of singleton type.However, no analyti
al rules for de�ning the optimal varian
e value exist (to the best ofthe authors' knowledge), thus a heuristi
 
alibration must be 
arried out. Towards thisend, σ has been varied in the range between 10−5 and 10−1 by 
onsidering various noisy
onditions (i.e., di�erent SNR values). Sin
e the positive e�e
t of the FL-based strategyis expe
ted to o

ur when signi�
ant levels of noise are present, the situation 
hara
terizedby a SNR = 5 dB has been assumed as a representative test 
ase. Fig. 3 illustrates thebehavior of the FLS in terms of averaged error �gures when dealing with S
enario 1 .Although non-so-signi�
ant di�eren
es arise, the value of σ = 10−4 guarantees the bestre
onstru
tion providing the smallest values of the error �gures (ζtot = 6.38, ζ int = 23.10,and ζext = 5.68). The same 
onsiderations hold true for the S
enario 2 , as well.In 
on
lusion, the following parametri
 
on�guration will be our referen
e FLS setup: setof rules #3 and σ = 10−4.4.2 TestingIn this se
tion, the potentialities of the proposed FL-based mi
rowave imaging te
hniquewill be assessed by presenting a sele
ted set of results from several numeri
al experiments.16



The behavior of the proposed method will be illustrated by 
onsidering di�erent s
atterersand syntheti
 noisy 
onditions (Se
t. 4.2.1). Moreover, the inversion of experimentally-a
quired data will be dealt with for a 
he
k in a real framework (Se
t. 4.2.2).The obtained results will be mainly 
ompared with those from the standard implementa-tion of the IMSA [13℄ in order to show the enhan
ement in the re
onstru
tion a

ura
yallowed by the FL strategy when dealing with noisy/
orrupted data. As far as the IMSAis 
on
erned, the RoI has been partitioned into N(R) = 10 × 10 square sub-domains.Moreover, the minimization of (10) has been iteratively performed with a deterministi

onjugate-gradient pro
edure [13℄ with a maximum number of iterations at ea
h step �xedto K(s) = 2000, s = 1, ..., Sopt. The use of a deterministi
 te
hnique for this analysis ismotivated by the need of fo
using on the improvement guaranteed by the use of a FLSnegle
ting the randomness arising from the integration of the re
onstru
tion pro
edurewith a sto
hasti
 optimizer (more e�e
tive in avoiding the solution is trapped in the lo
alminima of the 
ost fun
tion).4.2.1 Numeri
al AssessmentThe �rst example is aimed at showing the e�e
t of the reliability indexes αm(v) and βn(r),von the re
onstru
tion 
apabilities of the imaging pro
edure in di�erent noisy 
onditions.The grey-s
ale representations(1)of the re
onstru
tions obtained without and exploitingthe FLS are reported in Fig. 4 for di�erent SNR values when the so-
alled S
enario 2is taken into a

ount. As requested in de�ning the guidelines of the FLS, when the noiselevel is non-so-signi�
ant (SNR ≥ 20 dB), the FL blo
k behaves in a �transparent� wayand its e�e
t in terms of re
onstru
tion a

ura
y appears almost negligible as pi
toriallyshown in Figs. 4(a) and 4(b) and quantitatively 
on�rmed by the averaged values of theerror �gures in Tab. II (ζtot

⌋

IMSA
= 5.98 vs. ζtot

⌋

IMSA−Fuzzy
= 5.45, ζext

⌋

IMSA
= 5.77vs. ζext

⌋

IMSA−Fuzzy
= 5.16, and ζ int

⌋

IMSA
= 11.78 vs. ζtot

⌋

IMSA−Fuzzy
= 10.40).On the other hand and as expe
ted, the fuzzy data pro
essing, whi
h a
ts before the
ost fun
tion minimization, signi�
antly impa
ts when SNR < 20 dB, that is in those

(1) The a
tual support of the s
atterer is denoted by the dashed line and the bla
k pixel in the lowerright border is used for referen
e. 17



situations where the measured data are seriously 
orrupted by the noise. Su
h an event
an be 
learly observed 
omparing the representative samples of re
onstru
ted pro�lesshown in Figs. 4(
)-(d) (SNR = 10 dB) and Figs. 4(e)-(f ) (SNR = 5 dB). As a matterof fa
t, when the level of noise in
reases, the diele
tri
 pro�le re
onstru
ted by meansof the standard IMSA presents some inhomogeneities [SNR = 10 dB - Fig. 4(
)℄ andsome artifa
ts adds in heavy noise 
onditions [SNR = 5 dB - Fig. 4(e)℄. Whereas, theimages retrieved by the FL-based system are more homogeneous and quite faithfully �tthe a
tual shape of the s
atterer whatever the SNR value [Figs. 4(d)-(f )℄. For 
om-parison purposes, let us 
onsider that on average ζint⌋IMSA

ζint⌋IMSA−F uzzy

∣

∣

∣

∣

SNR=10 dB

≃ 1.5 and
ζint⌋IMSA

ζint⌋IMSA−F uzzy

∣

∣

∣

∣

SNR=5 dB

≃ 1.3 , and ζext⌋IMSA

ζext⌋IMSA−F uzzy

∣

∣

∣

∣

SNR=5 dB

≃ 1.8.The performan
es of the IMSA−Fuzzy and IMSA are summarized in Fig. 5 where theplots of both qualitative error indexes (δ and ∆ de�ned as in [13℄) and the quantitative er-ror �gures ζj (j = {tot, int, ext}) versus SNR are shown. On average, the IMSA−Fuzzyusually over
omes the standard approa
h in lo
ating as well as in shaping [Fig. 5(a)℄the s
atterer. Su
h a behavior is more and more evident as the noise level in
reases.As far as the lo
alization error is 
on
erned, we have δ⌋
IMSA

δ⌋
IMSA−F uzzy

∣

∣

∣

∣

SNR=15 dB

≃ 1.5,
δ⌋

IMSA

δ⌋
IMSA−F uzzy

∣

∣

∣

∣

SNR=10 dB

≃ 2.0, and δ⌋
IMSA

δ⌋
IMSA−F uzzy

∣

∣

∣

∣

SNR=5 dB

≃ 3.0. Similarly, it happens forthe area-estimation error ∆: ∆⌋
IMSA

∆⌋
IMSA−F uzzy

∣

∣

∣

∣

SNR=15 dB

≃ 1.2, ∆⌋
IMSA

∆⌋
IMSA−F uzzy

∣

∣

∣

∣

SNR=10 dB

≃ 2.0,and ∆⌋
IMSA

∆⌋
IMSA−F uzzy

∣

∣

∣

∣

SNR=5 dB

≃ 2.7. On the other hand, Fig. 5(b) further points out thepositive e�e
t of the FL-based strategy in the faithful re
onstru
tion of the diele
tri
distribution of the s
atterer sin
e on average avSNR{ζint⌋IMSA
}

avSNR

n

ζint⌋IMSA−F uzzy

o ≃ 1.7.For 
omparison purposes, let us 
onsider the inversion results of the same 
on�gurationby using, for example, two regularization methods, namely the Tikhonov [38℄ [Figs. 6(a),(
), and (e)℄ and the Landweber [5℄ [Figs. 6(b), (d), and (f )℄ methods. Whatever thenoise level, the a
tual square 
ylinder is neither lo
alized nor shaped. On the other hand,sin
e the 
ondition of �weak s
atterer � does not hold true, also the Born approa
h (eventhough in noiseless 
onditions) is not able at a
hieving a satisfa
tory re
onstru
tion [Fig.6(g)℄. 18



From the 
omputational point of view, the IMSA−Fuzzy te
hnique favorably 
ompareswith the standard multi-resolution approa
h and the minimization of the IMSA 
ostfun
tion bene�ts of the a
tion of the reliability 
oe�
ients αm(v) and βn(r),v as pointedout in Fig. 7 where some representative samples of the 
ost fun
tion versus the iterationnumber k are shown [Fig. 7(a) - SNR = 20 dB, Fig. 7(b) - SNR = 10 dB, and Fig.7(
) - SNR = 5 dB℄. As it 
an be observed, the total number of iterations needed fora
hieving the stationary 
ondition de�ned as Kopt =
∑Sopt

s=1 k
(s)
conv (k(s)

conv being the numberof iterations needed to a
hieve �
onvergen
e� at the s-th step of the multi-s
aling pro
ess,
k

(s)
conv ≤ K(s)) usually in
reases when the noise level grows and the IMSA is used, whileit keeps an almost 
onstant value (Kopt ≃ 1200) when the FL-based strategy is adopted.In order to numeri
ally analyze the 
onvergen
e issue, let us 
onsider the behavior of the
onvergen
e index ∆Kopt de�ned as follows

∆Kopt =
{Kopt}IMSA

− {Kopt}IMSA−Fuzzy

{Kopt}IMSA

× 100 (26)for di�erent noisy 
onditions (Fig. 8). As expe
ted, be
ause of the positive e�e
t of the
FLS in dealing with 
orrupted s
attering data, the value of ∆Ktot grows as the SNRvalue de
reases. Moreover, in 
orresponden
e with low levels of noise (SNR > 30 dB), the
omputational performan
es of the two approa
hes are very similar further 
on�rming the�transparent� behavior of the FLS in these 
onditions. Therefore, the proposed approa
hallows a saving of the total number of iterations espe
ially dealing with noisy data. Su
h aredu
tion guarantees a 
omputational saving greater than the 
omputational load due tothe use of the FLS sin
e the 
oe�
ients αm(v) and βn(r),v are 
omputed on
e and o�-line.The se
ond experiment is aimed at evaluating the dependen
e of the re
onstru
tion 
a-pability of the proposed FL-based approa
h on the dimension of the obje
t under test.Towards this purpose, the side of the homogeneous (τ = 1.5) square 
ylinder has been var-ied from l = 0.24 λ0 up to l = 0.72 λ0 and a noise 
hara
terized by SNR = 5 dB has beenadded to s
attering data. Although the values of the error indexes in
rease as the supportof the a
tual s
atterer enlarges (Fig. 9), it should be noti
ed that the dynami
s of thesevariations is very limited (ζ int

⌋

IMSA−Fuzzy
∈ [10.5, 11.5] and ζext

⌋

IMSA−Fuzzy
∈ [0.2, 1.1]).19



Su
h an event seems to indi
ate a substantial invarian
e of the re
onstru
tion e�e
tive-ness of the IMSA−Fuzzy versus the s
atterer dimension. For 
omparison purposes, thesame plots 
on
erned with the standard IMSA are shown.For 
ompleteness, the last experiment deals with a s
enario (S
enario 3 ) 
hara
terizedby an homogeneous (τ = 3) 
ir
ular 
ylinder l in diameter with a signi�
ant noise level(SNR = 5 dB) blurring the s
attering data. Fig. 10 shows some inversion samples ob-tained without [Figs. 10(a)(
)℄ and with the FLS [Figs. 10(b)(d)℄ when l = 0.26 λ0 [Figs.10(a)(b)℄ and l = 1.46 λ0 [Figs. 10(
)(d)℄. Su
h results further 
on�rm the e�e
tivenessas well as the enhan
ement of the FL-based approa
h ( ζtot⌋IMSA

ζtot⌋IMSA−F uzzy

∣

∣

∣

∣

l
λ0

=0.26

≃ 6.9 and
ζtot⌋IMSA

ζtot⌋IMSA−F uzzy

∣

∣

∣

∣

l
λ0

=1.46

≃ 4.34) also in dealing with strong s
atterers (beyond the �weaks
atterer � 
ondition).4.2.2 Experimental ValidationThe last part of the numeri
al testing is devoted at assessing the e�e
tiveness of the
IMSA − Fuzzy te
hnique when experimental s
attering data are dealt with. Towardsthis end, the multiple-frequen
y angular-diversity bistati
 data provided by the InstitutFresnel, Marseille, Fran
e [39℄ have been used as referen
e ben
hmark. The experimentalimaging setup 
onsists of a 2D bistati
 measurement system with an emitter pla
ed at a�xed position, while a re
eiver is rotating with an arm along the verti
al axis of the 
ylin-dri
al s
atterer under test. Su
h a system allows to implement a multi-illumination/multi-view a
quisition pro
edure 
hara
terized by V = 36 views and M(v) = 49, v = 1, ..., V ,sample measurement points.The 
onsidered experimental dataset (�dielTM_de
8f.exp�) is 
on
erned with an o�-
entered homogeneous 
ir
ular 
ylinder d = 30 mm in diameter. Su
h an obje
t is 
har-a
terized by a nominal value of the obje
t fun
tion equal to τ(x, y) = 2.0 ± 0.3 and itis lo
ated at xc = 0.0, yc = −30 mm. As far as the investigation domain Dinv is 
on-
erned, a square domain 30× 30 cm2 has been assumed and be
ause of the aspe
t-limitednature of the experimental setup, the 
omplete set of measures has been used, but onlymono-frequen
y data have been 
onsidered.20



The �rst 
omputational test has been performed by using the s
attering data at f =

3 GHz. Even though the retrieved distributions are smoothed versions of the a
tualpro�le [Figs. 11(a)-(b)℄, it is possible to 
learly dete
t the obje
t under test as well asits lo
ation and shape (Tab. III). As far as the 
omparison between the IMSA andthe IMSA − Fuzzy is 
on
erned, the FL-based approa
h allows one to obtain a morehomogeneous representation of the diele
tri
 pro�le under test. However, non-so-relevantdi�eren
es 
an be observed and the improvement in the re
onstru
tion a

ura
y are notas large as for syntheti
 test 
ases. Moreover, the 
omputational 
osts required by the twoapproa
hes for rea
hing the stationary 
ondition [13℄ appear almost equivalent as shownin Fig. 12(a).Su
h a behavior 
an be justi�ed by a better SNR (greater than that of previous syn-theti
 test 
ases) for the low-frequen
y s
attering data when 
olle
ted in a 
ontrolled-environment (as pointed out in [40℄). On the other hand, it is well known that an enhan
ed
orruption of the s
attering data o

ur as the frequen
y in
reases.In order to verify su
h a hypothesis, some re
onstru
tions at higher frequen
ies (f =

6 GHz and f = 8 GHz) have been 
arried out and the results are shown in Figs. 11(
)-11(f ). As shown in [13℄, the re
onstru
tion a

ura
y redu
es apart from the IMSAstrategy used. However, be
ause of the de
reasing of the SNR in 
orresponden
e with thein
reasing of f , the improvement in the re
onstru
tion allowed by the FLS is 
onsiderablein terms of both quantitative imaging [Fig. 11(
) vs. Fig. 11(d) and Fig. 11(e) vs. Fig.11(f ) - Tab. III℄ and 
onvergen
e rate [Figs. 12(b)-(
)℄.
5 Con
lusionsIn this paper, an innovative te
hnique that integrates the iterative multi-s
aling approa
hwith an automati
 strategy for estimating the un
ertainty asso
iated with the results ofs
attering measurements has been developed for mi
rowave imaging purposes. By 
onsid-ering a multi-resolution representation of the pro�le under test, the proposed methodologyallows one to yield a reliable re
onstru
tion by means of the exploitation of the informa-21



tion 
ontent available from noisy-
orrupted s
attering data.Towards this end, a fuzzy-logi
-based de
ision strategy has been adopted in order to asso
iate to ea
h s
atteringsample a degree of �reliability�.The main features of the proposed system are the following:
• 
apability to estimate the un
ertainty asso
iated with s
attering measurements inan automati
 fashion (allowing a �transparent� behavior when noise levels are neg-ligible) thanks to the FL-based de
ision strategy;
• 
apability to exploit the amount of information 
olle
table from s
attering datathanks to a multi-resolution representation of the diele
tri
 pro�le of the obje
tunder test;
• redu
tion of the 
omputational 
osts thanks to the integration of the multi-s
alingre
onstru
tion s
heme and the FL approa
h;
• robustness to 
orrupted data and noise;
• 
apability to deal with 
omplex nonlinear 
ost fun
tions.Con
erning the methodologi
al novelties of this work, besides the de�nition of the globalar
hite
ture of the whole system, they mainly rely on the 
ombination of the innovative

FL-based de
ision s
heme within the multiresolution inversion ar
hite
ture in order to
ontemporaneously and fully exploit limited and noisy s
attering data 
hara
terized byan a-priori unknown degree of reliability.In the numeri
al assessment, 
arried out on di�erent 
onditions and datasets 
on
ernedwith various s
attering 
on�gurations and data (syntheti
 as well as experimental), theproposed ar
hite
ture proved e�e
tive, providing both a

eptable re
onstru
tion a

ura
yand robustness to the noise. Final re
onstru
tions have usually shown a general agreementwith a
tual pro�les and they 
on�rm the enhan
ed inversion a

ura
y (
ompared to thestate-of-the-art approa
hes) in 
orresponden
e with a de
reasing of the SNR. Moreover,the numeri
al results pointed out that, as requested, the FL-based inversions are very22




lose and essentially identi
al to those obtained with a standard multi-resolution approa
hin the presen
e of low (or negligible) levels of noise.Be
ause of the preliminary positive results and the favorable trade-o� between 
omplex-ity/
osts and re
onstru
tion e�e
tiveness, the proposed approa
h seems a promising toolto be extended to layered/strati�ed media as well as inhomogeneous ba
kgrounds fordealing with biomedi
al and more realisti
 industrial appli
ations where the reliability ofs
attering data is a 
riti
al key-issue.A
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Figure Captions

• Figure 1. (a) Blo
k diagram of the FLS. (b) System ar
hite
ture of the FL-basedApproa
h.
• Figure 2. Ante
edents (left) and 
onsequen
es (right). Pi
torial representation ofthe set of rules (a)(b) #1, (
)(d) #2, (e)(f ) #3, (g)(h) #4, and (i)(l) #5.
• Figure 3. FLS Calibration (S
enario 1 - SNR = 5 dB). Behaviors of the errorindexes (ζj , j = tot, int, ext) versus the value of the varian
e σ of the fuzzi�
ationGaussian membership fun
tion.
• Figure 4. Re
onstru
tion of an o�-
entered square (l = 1.2 λ0) homogeneous di-ele
tri
 (τ = 1.5) 
ylinder - Samples of the diele
tri
 pro�les re
onstru
ted by usingthe IMSA (left 
olumn) and the IMSA − Fuzzy method (right 
olumn): (a)(b)

SNR = 20 dB, (
)(d) SNR = 10 dB, and (e)(f ) SNR = 5 dB.
• Figure 5. Re
onstru
tion of an o�-
entered square (l = 1.2 λ0) homogeneous di-ele
tri
 (τ = 1.5) 
ylinder - Average values of the error �gures versus SNRs: (a)27



lo
alization error δ, (b) area-estimation error ∆, (
) total re
onstru
tion error ζtot,(d) internal re
onstru
tion error ζ int, and (e) external re
onstru
tion error ζext.
• Figure 6. Re
onstru
tion of an o�-
entered square (l = 1.2 λ0) homogeneous di-ele
tri
 (τ = 1.5) 
ylinder - Samples of the diele
tri
 pro�les re
onstru
ted by usingthe T ikhonov (left 
olumn) and the (b) Landweber (right 
olumn) regularizationmethods: (a)(b) SNR = 20 dB, (
)(d) SNR = 10 dB, and (e)(f ) SNR = 5 dB.

Born approa
h (Noiseless 
ase) (g).
• Figure 7. Re
onstru
tion of an o�-
entered square (l = 1.2 λ0) homogeneous di-ele
tri
 (τ = 1.5) 
ylinder - Behavior of the 
ost fun
tion during the multi-s
alingminimization pro
ess: (a) SNR = 20 dB, (b) SNR = 10 dB, and (
) SNR = 5 dB.
• Figure 8. Re
onstru
tion of an o�-
entered square (l = 1.2 λ0) homogeneous di-ele
tri
 (τ = 1.5) 
ylinder - Behavior of the 
onvergen
e index ∆Ktot versus SNR.
• Figure 9. Re
onstru
tion of an o�-
entered square homogeneous diele
tri
 (τ =

1.5) 
ylinder (SNR = 5 dB) - Average values of the re
onstru
tion error �guresversus obje
t side l: (a) ζtot, (b) ζ int, and (
) ζext.
• Figure 10. Re
onstru
tion of an o�-
entered 
ir
ular homogeneous diele
tri
 (τ =

3) 
ylinder (SNR = 5 dB) - Samples of the diele
tri
 pro�les re
onstru
ted by usingthe IMSA (left 
olumn) and the IMSA − Fuzzy method (right 
olumn): (a)(b)
l

λ0
= 0.26 and (
)(d) l

λ0
= 1.46.

• Figure 11. Re
onstru
tion of an o�-
entered homogeneous 
ir
ular 
ylinder (Realdataset �Marseille� [39℄ - �dielTM_de
8f.exp�). Diele
tri
 distributions re
onstru
tedat the 
onvergen
e by means of (left 
olumn) the standard IMSA and (right 
ol-umn) the IMSA − Fuzzy method. (a)(b) f = 3 GHz, (
)(d) f = 6 GHz, and(e)(f ) f = 8 GHz.
• Figure 12. Re
onstru
tion of an o�-
entered homogeneous 
ir
ular 
ylinder (Realdataset �Marseille� [39℄ - �dielTM_de
8f.exp�). Behavior of the 
ost fun
tion duringthe multi-s
aling minimization pro
ess: (a) f = 3 GHz, (b) f = 6 GHz, and (
)

f = 8 GHz. 28



Table Captions
• Table I. FLS Calibration - Set of rules. Average values of the error indexes (ζj ,

j = tot, int, ext) for di�erent sets of rules when SNR = 5 dB for (a) S
enario 1and (b) S
enario 2 .
• Table II. Re
onstru
tion of an o�-
entered square (l = 1.2 λ0) homogeneous diele
-tri
 (τ = 1.5) 
ylinder - Average re
onstru
tion errors ( ζtot, ζ int, and ζext) obtainedby the IMSA and IMSA − Fuzzy for di�erent values of SNR.
• Table III. Re
onstru
tion of an o�-
entered homogeneous 
ir
ular 
ylinder (Realdataset �Marseille� [39℄ - �dielTM_de
8f.exp�). A
tual and estimated s
atterer pa-rameters (f = 3 GHz, f = 6 GHz, and f = 8 GHz).
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Set of Rules ζ tot ζ int ζext#1 5.73 19.55 5.20#2 6.97 18.85 6.47#3 5.63 18.24 5.05#4 6.06 26.18 5.22#5 7.15 22.22 6.52(a)
Set of Rules ζ tot ζ int ζext#1 10.00 32.62 8.39#2 9.56 30.86 8.30#3 9.01 28.29 7.69#4 9.56 32.57 8.00#5 9.36 29.31 7.95(b)

Tab. I - M. Benedetti et al., �An adaptive multi-s
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SNR = 20 dB SNR = 10 dB SNR = 5 dB

Errors IMSA IMSA Fuzzy IMSA IMSA Fuzzy IMSA IMSA Fuzzy

ζ tot 5.98 5.45 6.18 6.17 14.49 8.07

ζ int 11.78 10.40 11.63 8.09 10.84 8.77

ζext 5.77 5.16 6.09 5.92 14.66 8.03

Tab.II-M.Benedettietal.,�Anadaptivemulti-s
alingimagingte
hnique...�
44



xc

λ0

yc

λ0

LRoI

2λ0

f = 3 GHz

Actual 0.0 −0.30 0.150

IMSA Fuzzy 0.02 −0.27 0.144

IMSA 0.02 −0.27 0.140

f = 6 GHz

Actual 0.0 −0.60 0.30

IMSA Fuzzy 0.03 −0.52 0.33

IMSA 0.02 −0.68 0.74

f = 8 GHz

Actual 0.0 −0.80 0.40

IMSA Fuzzy 0.0 −0.95 0.91

IMSA −0.16 −1.08 1.43

Tab. III - M. Benedetti et al., �An adaptive multi-s
aling imaging te
hnique ...�45
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