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An Adaptive Multi-Scaling Imaging Technique
based on a Fuzzy-Logic Strategy for dealing with

the Uncertainty of Noisy Scattering Data

Manuel Benedetti, Aronne Casagranda, Massimo Donelli, and Andrea Massa

Abstract

Inverse scattering data, even though collected in a controlled-environment, are usu-
ally corrupted by electromagnetic noise, which strongly affects the effectiveness of
the reconstruction techniques because of the intrinsic ill-positioning of the problem.
In order to limit the effects of the noise on the retrieval procedure and to fully ex-
ploit the limited information content available from the measurements, an innovative
inversion scheme based on the integration of an adaptive multi-scale procedure and
a fuzzy-logic-based decision strategy is proposed. The main goal of the approach
is to reduce the complexity of the problem as well as to improve the robustness
of the inversion procedure allowing an accurate retrieval of the profile under test.
The approach is based on an adaptive, coarse-to-fine successive representation of
the unknown object obtained through a sequence of nonlinear reconstructions where
suitable weighting coefficients are defined through a fuzzy logic. Key elements of
the theoretical analysis are given and several numerical examples, concerned with
synthetic and experimental test cases, illustrate the consequences of the proposed
approach in terms of both resolution accuracy and robustness as well as computa-

tional costs.
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1 Introduction

Imaging an unknown object from the field scattered by the same object when probed by
an electromagnetic source is a very interesting and challenging topic [1|. Let us consider
the wide range of possible applications from subsurface imaging [2] to biomedical and
diagnostic applications [3]. However, several theoretical difficulties occur in developing
a practical imaging system based on inverse scattering phenomena [4]. As a matter of
fact, inverse scattering problems are intrinsically ill-posed and their numerical counterpart
ill-conditioned because of the limited amount of information collectable from scattering
experiments [5][6]. To limit/overcome these drawbacks several approaches have been

proposed. Two main paths of research seem to be usually taken into account:

e Some methods, taking into account the achievable spatial resolution in relation to
the amount of data |7| and the nonlinearity of the problem in hand, define suitable
representations of the unknowns in order to allow reliable reconstructions through

effective optimization methods both deterministic |8] and stochastic |9]|10];

e Other approaches consider multi-resolution strategies in order to enhance the achiev-

able resolution accuracy fully exploiting all the scattering information |7|[11]-|13].

Nevertheless, such techniques do not consider or partially address the problem of the
reliability /uncertainty of the data. As a matter of fact, if quantifying the number of
informative (i.e., independent) data [6] is a key-issue in solving inverse scattering problems,
on the other hand the effectiveness of a retrieval procedure strongly depends on the level

of reliability of such data.

In collecting the electromagnetic measurements, experimental and environmental noises
add to the scattered signals because of the mechanical positioning of the electromagnetic
field sensors or the electromagnetic interferences in the test-site. The presence of these
corrupting factors, because of the high intrinsic instability caused by the ill-posedness of
inverse scattering problems, strongly affects the accuracy of the reconstruction without

proper countermeasures.



Certainly, a direct estimation of the uncertainty/reliability associated with scattering
measurements would be really useful. But, because of the cost and the complexity of
such an estimate, it is quite hard to be obtained (e.g., multiplexing and time averaging of
multiple measurements could be a solution strategy |14][15][16], but notwithstanding an
a-priori knowledge on the noise type is needed). Moreover, such a knowledge usually is
available not as an objective knowledge (i.e., in terms of a mathematical model or numerical
values), but as a subjective knowledge (e.g., “data are affected by low noise” or “data are
affected by much noise” or “data are quite reliable”), which represents an information that
is usually difficult or complex (and expensive) to quantify using traditional mathematics
or experimental methods. Because of these problems, subjective information is usually
ignored or partially taken into account. In general, the impact of corrupted data because
of the ill-posedness of the inverse problem is handled by looking for a regularized solution,
which better fits all the available data (corrupted or not by the noise and characterized
by a different degree of reliability) by minimizing the discrepancy function composed
by two terms, namely the Data term and the State term. These terms depend on the
scattered field collected in the observation domain and on the incident field measured
in the investigation domain, respectively. Suitable weighting parameters heuristically
defined [17][10] or iteratively tuned [18] allow one to weight more the one or the other
term, depending on the uncertainties associated with both of them. In such a way, these
techniques allow a “global” control on the whole set of data and they do not consider
each measure individually with its degree of reliability. Moreover, the arising control is
“indirect” since it does not quantify the reliability of the scattering data, but their impact

on the cost function.

As far as the use of the subjective information for effectively exploiting the “clean” in-
formation (i.e., without noise and independent) contained in noisy scattering data is
concerned, the following considerations should be taken into account. If the amplitude of
the total field scattered by the target under test is small, then the collected samples might
be easily and irremediably affected by e.m. experimental and environmental noises. On
the contrary, the higher is the amplitude of the field samples, the lower is the risk of being

heavily corrupted. Starting from these physical bases, this paper proposes an innovative



automatic approach preliminary assessed in [19] and here integrated with a customized it-
erative multi-scaling procedure, which takes into account the uncertainty on the reliability
of the measured data, due to the presence of the noise, through a fuzzy-logic-based strat-
egy [20]. To the best of the authors’ knowledge, although fuzzy theory has been widely
employed especially in the framework of automated controls [21]|[22] where uncertainty
and subjective knowledge play an important role, its use in the framework of electromag-
netics has been limited for example to the fuzzy partitioning of ANNs input space [23],
to the combination of competing objective functions [24], and to determine the values of
regularization parameters in ECT applications [25]. Therefore, in the authors’ opinion,
the use of a fuzzy-based strategy for dealing with the uncertainty on the reliability of

noisy scattered data represents a novelty in the framework of microwave imaging.

The underlying idea of the proposed approach is that of defining a system able to react
automatically to any noisy condition providing a degree of reliability of the scattering data
so that they can be usefully employed during the retrieval process and for an “amount”
related to their accuracy [i.e., by properly weighting the required fitting between each
sample of measured and reconstructed data, see Eq. (6)]. The system is required to
give such an indication starting from the same measured data without other a-prior:

information or constraints both on scatterers and on the acquisition setup.

The paper is structured as follows. A brief description of a standard two-dimensional
microwave imaging problem will be given in Sect. 2 where a suitable weighted multi-
resolution cost function will be defined in order to conveniently take into account the
presence of corrupted scattering data fully exploiting the available information content.
Then, a detailed explanation of the fuzzy-logic-based strategy and of its customization to
the microwave imaging framework will be presented in Sect. 3. Sect. 4 will be devoted
to the calibration and numerical testing of the fuzzy logic system (F'LS). The criterion
for selecting the F'LS descriptive parameters will be briefly summarized and the results
of a sensitive analysis will be discussed in order to define the optimal setting (Sub-Sect.
4.1). In Sub-Sect. 4.2, a numerical assessment will be performed by considering different
scattering scenarios (synthetic as well as experimental) and various environmental con-

ditions. Moreover, a comparative study among the proposed approach and the standard
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IMSA as well as with state-of-the-art regularization methods will be carried out. Finally

some conclusions will be drawn and future developments will be proposed (Sect. 5).

2 Inverse Problem Formulation

Let us consider a cylindrical two-dimensional geometry where a set of V' transverse-
magnetic (T'M) plane waves EY (z,y) = E}, . (x,y)z, v =1,..V, successively illuminates
an investigation domain denoted by I';,, where an unknown inhomogeneous dielectric
object is supposed to lie. Without loss of generality, the host medium is a homoge-
neous, non-magnetic and lossless background with dielectric properties equal to that of

the vacuum (g9, po). The dielectric inhomogeneity that identifies the unknown scatterer

is described by means of the distribution of the object function 7 given by

1) - %Y )

T(flf,y):[ﬁR(fL’,y)— 27Tf50

where ¢ and o, are the relative dielectric permittivity and the electric conductivity of

the scatterer, respectively, and f is the working frequency of the probing source.

The field scattered by the scenario under test EY. . (z,y) = EY . (x,y)2z, v = 1,...,V,
is collected in an external observation domain ', where a set of M(v), v = 1,...,V,
measurement points are uniformly distributed. Starting from the knowledge of the scat-
tered field and of the incident field radiated by the electromagnetic source, the scatterer

is usually reconstructed/imaged by solving the nonlinear inverse scattering equations:

Eleart (Tmw)s Ymw)) = K Jr.,, G20 (T Ymw 12, 9) 7 () By (2 y) da'dy’
(l’m(v), ym(v)) € L'ops m(v) =1,.., M(U), v=1,..., \%4

B} (x,y) = By (v,y) = kg fp,  Gop (z,yla',y') 7 (2, y') By (2, y) da'dy’
(x,y) € Tinw v=1,..,V

where Gp denotes the Green function of the background medium and E}), is the field

with the object. Towards this end, since a closed-form solution is generally not available,
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a suitable discretization is performed for allowing a numerical solution. As far as the
well-known Richmond’s procedure [26] is concerned, the investigation domain is equally

partitioned into N sub-domains of area A,,, n=1,..., N.

However, because of the limited information content available from scattering data |[6],
multi-resolution strategies are necessary [11]-[12] for achieving a suitable resolution of the
object function in I';,, keeping a limited number of unknowns at the same time. In such a
framework, the iterative multi-scaling approach [13| can be profitably used. By assuming

a multi-resolution representation of the problems unknowns, namely the object function

R(s) N(r)
T(QE‘, y) = Z Z T (xn(r)v yn(r)) Bn(r) (LU, y) (LU, y) S Finv (4)
r=1 n(r)=1
and of the total field
R(s
Eiy(z, y) Z Z Efot Ln(r) n(r)) By (z,y) (2, y) € Tino (5)
=1 n(r)=1

where 7 is the resolution index at the s-th step of multi-scaling process, n(r) denotes
the corresponding discretization sub-domain in Djy,, and By is a known rectangular
basis function defined over the n(r)-th sub-domain, the M S A consists of a sequence of S
successive reconstructions (s = 1, ..., S) of the unknown coefficients coded into the array
F = {7 (Tnrys Unm) s B (Tn(e)s Yn() s n(r) = 1, .., N(r); 7 =1, ..., R(s)}, R(s) =

being the current resolution index. Towards this end and at each step s, the following

multi-resolution cost function is minimized

(6)

iirsa

2
{f(s)} . Zv 1 Zm(v ‘Escatt m(v)s ym(v)) — Pputa {i(S)H
B ZU 1 Zm(v =1 ‘Escatt (xm(v) ym(v)) ‘2

2
ZU 1 Zr 1 Zn(r Y (xn(r) yn(r ‘ inc (xn(r)a yn(r)) - (I)State {i(s)}’
Sy SR SN w (Tatr) Uni) Ele (Zair): Uni) |

where the first term represents the normalized global mismatch between estimated (from




the reconstruction of f (S))

R(s) N(r)

D pata {i(s)} = Z Z w ($n(r)7 yn(r)) T ($n(r)7 yn(r)) Etvot (xn(r)7 yn(r)) Gap (kopm(v)n(r))
r=1 n(r)=1
(7)

and measured data in T [i.e., EY, (xm(v),ym(v))], while the second term is the normal-

scatt

ized global error in matching the State Equation since
N(r)
D s1ate {[(s)} = Epy (Ta(r), Ynr)) — T (Tptrys Up(r)) Ero (o) Yp(r)) Gap (Kopnirip(r)
p(r)=1
(8)

determines the estimated value of the incident field in I';,,.

Moreover, w is a weighting function

0 Zf ($n(r)a yn(r)) ¢ D(S_l)
W (Zn(r)s Yn(r)) = 9)

Loif (%), ynin) € DY
and D=1 the support of the Region-of-Interest (Rol) where the unknown scatterer has
been detected at the (s — 1)-th step [13]. Starting from the coarse reconstruction achieved

at the first step (s = 1, D61 = [iny), the iterative “zooming” process is repeated until

the “stationary” condition 13| holds true (s = Sop).

Although such a formulation allows an effective use of the available scattering data in
terms of the achievable spatial resolution, it does not take into account the uncertainty
on the reliability of the scattering data [E?, ., (xm(v), ym(v)) and E?Y (xn(r), yn(r))], which

mc

in real applications are usually corrupted by equivalent sources of noise.

In order to fully exploit the available subjective knowledge on the scattering data and
to take into account the uncertainty /reliability associated with the measurements, let us
represent /quantify the uncertainty/reliability-degree of the data by introducing in (6) a
set of suitable weighting parameters o, and B,(),,. Thus, the arising IMSA — Fuzzy

cost function is expressed as follows



2
\% M (v v S
Zv:l Zm((v))zl {O&m(v) Escatt (xm(v)7ym(v)) - (I)Data {i( )}’ }

St St | Bt (2mw)s Yo |

égi\)/[SA—Fuzzy {i(S) }
(10)
2
\% R(s N(r) v s
DD ih B {%r)mw (Z0(r): Ynr) )En (Ta(r): Yn(r)) = Lstate {i( )H }

Zz‘;/:l Zfz(sl) ZnN((;;):1 }U) (xn(r)u yn(r)) Ezvnc (xn(r)u yn(r)) }2

where the weighting parameters are computed starting from a fuzzy representation of

+

the uncertainty associated with the measurements and by means of a fuzzy logic based

strategy described in the following section (Sect. 3).

3 The Fuzzy-Logic Strategy

The framework of fuzzy logic (F'L) is unique in its ability to represent subjective or
linguistic knowledge in terms of a mathematical model. Furthermore, its coupling with
rule-based systems is enabling the modeling of the approximate and imprecise reasoning
processes common in human problem solving [21]. Therefore, F'LSs have been widely used
in the last decades especially in the field of automatic controls after Zadeh introduced the
basic principles of F'L and approximate reasoning in his pioneering work [20|. For an
overview, the interested reader is suggested to refer to the dated and classical references
on FL and systems. For example, [27][28| as well as [29][30]|31][32] and the references

cited therein.

Generally speaking, a F'LS system can be described through the block-diagram in Fig.
1(a). The FLS maps a crisp input (or a collection of crisp inputs) into a crisp output. At
the heart of the F'LS Fig. 1 |[Fig. 1(a)] there is a fuzzy rule base, which contains fuzzy
rules expressed in the form of IF' — THEN statements. The mapping of the input data
to the desired output is generally performed in three stages. These are the fuzzification
of the input data (assuming this data is crisp), the fuzzy inference using fuzzy rules, and
a defuzzification stage used for producing a crisp scalar output. Usually, if the rule base
of the F'LS includes several rules, their individual outputs are combined in the inference

stage for producing a single fuzzy output set.



3.1 The FLS for Electromagnetic Imaging

Let us refer to the block diagram shown in Fig. 1(b). The proposed implementation of a
fuzzy-logic strategy for automatically evaluating the level of uncertainty on the reliability
of measured data needs of a normalization step before the fuzzy-logic system. The nor-
malization block, characterized by the transfer function N {.}, defines the crisp inputs
to the fuzzy system starting from the knowledge of the total and scattered electric field
in the observation domain and of the incident electric field in the investigation domain.
Such normalized values are computed as follows

ES ot (mm(U) "Ym(v) )
E;Jot (IM(U) "Ym(v) )

M) = N { Eeae (Tm)s Ym)) » Biog (Tmw)s Ymw)) } =

Egcatt (xm(v) "Ym(v) )
Efo (xm(v) "Ym(v) )

max, {maxm(v)
(1

| B (2a0r)s Ynin) |
max, {max, [max,() | Ef. (Tne): Yuir))|] }

~— —

Entrw = N A{Eje (Tt Yn() } = (12

in order to “rank” the whole set of scattering data in terms of their relative amplitudes
according to the idea that the higher is the normalized amplitude of a sample, the lower
is its risk of being heavily corrupted as well as the uncertainty on its reliability for re-
construction purposes. Then, in order to obtain a reliability index for each measurement,
the normalized coefficients 7,,(,) and &,(),, are mapped into the crisp coefficients a;, )
and (3,(),» by means of the transfer function & {.} schematically-described in the block
diagram shown in Fig. 1(a). More in detail, given a set of rules (R;, i = 1,...,I, I being
the number of rules) defined by a set of antecedents/premises (A;, i = 1, ..., I) and relative

consequences/conclusions (Cj, i = 1, ..., I), the inference process proceeds in five steps.

1. Inputs Fuzzification - The fuzzifier Q{.} applies to the actual values of the
coefficients 7,y and &), the Gaussian membership function i (.) in order to
determine the degree to which they belong to the appropriate fuzzy sets F; defined

in each premise A;. The Gaussian function is defined as

g

1 (1= M)’
11 (105 M) 0) = exp | ————— (13)



or

2 (5; gn(r),v; U) = Gy o2

2
exp <_ (5 gn(r),v) ) (14)
centered in correspondence with the actual value of the input coefficient (7, or
&n(r),w) and characterized by a variance value o proportional to the uncertainty level

associated to the current measure;

. Rule Activation - Once the crisp input has been fuzzified, the i-th rule ®; is
activated when there is a non-zero degree of similarity between the fuzzy input
1 (7 Ningwy; 0) ot 11 (& &niryoi 0)] and the antecedent A;. Mathematically, it can be

expressed as follows
1t (173 Mmwy; ) N A () # {0} = Ry activated (15)

1 (& &nryos 0) N A; (€) # {0} = R; activated. (16)

The activation value of each rule, R;, is computed evaluating the highest value
among the intersection points between the membership function of the ¢-th an-

tecedent A; and the membership function associated to the input. Analytically,

R; = max {p(n) : g (1 nmwy;0) = A (1)} (17)
n€l0,1]
Ri= max {() 1 (€:6u00070) = 4:(©)} (18)

. Rule Implication - The output fuzzy subset GG, to be assigned to each output vari-
able of each rule, is computed by defining the corresponding membership function
[C! (a) or C! ()] through the MIN inferencing rule [33] starting from the activation
value R;. The output membership function C; (defining the fuzzy set G;) is clipped

off at a height corresponding to the degree of truth R; of the premise A;

Cl (o) = mln {C’( ), R}, a€]0,1] (19)
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C(8) = min {Ci(9), R}, B o,1); (20)

B€[0,1

4. Qutput Fuzzy Subsets Aggregation - Since decisions are based on the testing of

the whole set of rules {;, i = 1, ..., I'}, the rules must be combined in order to make

a decision. The list of truncated output fuzzy sets {G%, i = 1, ..., I'} returned by the

implication process for each rule are combined (“aggregation” process) into a single

output fuzzy set O. The membership function ¢ of the aggregate output fuzzy set O

is computed taking the maximum value among all the output membership functions
{Cli=1,..,1}

J(a) = max, {Cl ()}, a€]0,1] (21)

-----

9(8) = max {CL()}, Ae0,1]; (22

5. Defuzzification - The defuzzification block © {.} is used for converting the ag-
gregate fuzzy output set O into the reliability coefficient o,y (or B),») concerned
with the normalized coefficient 7,y (0r &,()0), respectively. For its simplicity, let
us consider the so-called height defuzzifier [34]. Let g, denote the center of grav-
ity of the fuzzy set G;, then the defuzzifier computes the cost function weighting

coefficients as follows

(23)

(24)

4 Numerical Analysis and Testing

The aim of this section is twofold. Firstly, a sensitivity analysis on the impact of some F LS

parameters on the reconstruction performance are reported to determine their optimal
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setting for microwave imaging. Then, by considering such an optimal configuration, the
effectiveness and robustness of the F'L-based approach are assessed in reconstructing
different scattering scenarios starting from synthetically-generated as well as experimental

inverse scattering data.

4.1 FLS Calibration

Several choices could be made in defining each block of the diagram of the F'LS shown in
Fig. 1(a). As a matter of fact, the F'LS user is requested to decide on the type of fuzzi-
fication (singleton or non-singleton), mathematical expression of the membership func-
tions (triangular, trapezoidal, Gaussian, etc...), descriptive parameters of the membership
functions, implication (MIN inference or PRODUCT inference rule), aggregation rule

(MAX or SUM), and defuzzifier (maximum, mean-of-maxima, centroid, height, etc...).

In our implementation, a non-singleton fuzzifier has been selected for the fuzzification
procedure. Unlike the singleton fuzzifier, such a fuzzifier is characterized by a Gaussian
membership function x (¢;S; o) (centered in ¢ and with variance o) in order to take into ac-
count the uncertainty concerned with the reliability of measured data [33]. Concerning the
other choices for the inference block, because of our interest in the engineering application
of F'L, the criterion of the computational simplicity has been adopted. Therefore, triangu-
lar /trapezoidal membership functions {C;, i = 1, ..., I} have been used by representing lin-
guistic variables (e.g., reliability of measured data, amplitude € {slight, low, medium, strong, high})
in terms of fuzzy sets [33]-[37]. Moreover, simple inference rules (MIN inference and
MAX composition) have been considered in the implication and aggregation phase, re-
spectively. Furthermore, the height defuzzifier has been adopted for simplicity since the
centers of gravity {g;, i =1,...,1} of triangular/trapezoidal membership functions are

a-priort known.

Nevertheless these assumptions/simplifications, the F'LS needs of a careful tuning of the
remaining parameters, which are expected to affect the imaging performances. Therefore,
a sensitivity study on the effects of the parameter o of the non-singleton Gaussian fuzzifier

and of the fuzzy rules has been performed for presenting a reliable F'L-based approach for
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microwave imaging. Towards this end, the following experiments have been carried out:

o Erperiment 1 - Different sets of rules, defined according to the suggestions in the

reference literature, have been analyzed;

o Erperiment 2 - The value of o has been varied in a range of admissible values,
o € [107°, 107!, for attributing the more appropriate level of uncertainty to the

scattering data.

As a measure of effectiveness, the values of the quantitative error indexes ((;r = total
reconstruction error, (;,; = internal reconstruction error, and (.,; = external reconstruc-
tion error) defined in 13| have been used and the following reference scenarios have been

considered:

e Scenario 1 - A square homogeneous investigation domain I';,,, Li,, = 1.125 \o-
sided, where an off-centered dielectric homogeneous scatterer of side [ = 0.2\
and object function 7 = 1.5 is located at x. = y. = 0.3 \g. Moreover, a multi-
illumination /multi-view imaging setup characterized by V' = 4 views and M (v) =
20, v = 1,...,V equally-spaced sensors on a circular domain I' s (of radius 7.ps =

1.125 \g) has been used for probing the scattering configuration under test.;

e Scenario 2 - A square homogeneous dielectric (7 = 1.5) cylinder of side [ = 1.2 \g
located in a L;,, = 4 A\g-sided investigation domain at x. = 0.4 \g and y. = 1.0 \,.
[';n» has been illuminated by V' = 8 plane waves and the scattering data have been
collected in M (v) = 50, v = 1,...,V measurement points on a circular observation

domain I',,, with radius 7., = 2.93 A.

In order to simulate noisy conditions, the scattering data have been corrupted by adding
a synthetic Gaussian noise characterized by an assigned signal-to-noise ratio (SN R) [13].
Consequently, in order to take into account the stochastic nature of the noise, each test

case has been repeated P = 100 times with the same parameters setup and the average

14



values of the error indexes
1 L
Zj =5 ;Cj j = tot, int, ext (25)

have been recorded.

Furthermore, because of the needs of focusing on FLS by evaluating the effects of its
characteristic parameters, “bare” reconstructions (i.e., single-step homogeneous-resolution
inversions) have been carried out neglecting the “overboost” effect of the multi-step pro-
cedure. Accordingly, I';,, has been uniformly-partitioned into N = 15 x 15 (Scenario 1)

and N = 45 x 45 (Scenario 2) square sub-domains.

4.1.1 Experiment #1

As a general criterion for defining the set of rules, let us consider that a greater resolution
is generally achieved by using more membership functions at the price of greater compu-
tational complexity. Moreover, membership functions can be made to overlap in order to
distribute our decision on the data reliability over more than one input class making the
FLS more robust. Concerning the definition of customized rules for the imaging problem,
the following key-points have been taken into account: (i) the smallest is the amplitude
of the measured field, more relevant could be the blurring/masking effect of the noise;
(77) the greater is the amplitude of the field scattered by the object (i.e., E}.,) compared

to the incident field (i.e., EY,

vt - Where a sort of “print” of the scatterer is “coded” - is

not negligible), the higher is usually the information on the scatterer collectable from

scattering data.

Starting from these considerations and from known reference configurations, the sets of
rules pictorially-represented in Fig. 2 have been deduced by interpreting, according to the
guidelines in [33]-|37|, the linguistic variables concerned with the amplitudes of the field
samples for the antecedents, and the value of the reliability coefficient auy, ) (or Bner),w) for
the consequences. More in detail, the sets of rules (i.e., antecedents and consequences) of
Figs. 2(a)-(1) have been generated by varying position and shape of their fuzzy sets. Then,

the most suitable rule has been chosen by using each pair of antecedents/consequences
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in reconstructing both reference scenarios and by evaluating its effectiveness in terms of
inversion accuracy. Table 1 summarizes the obtained results in a representative situation
when SNR = 5dB [Tab. I (a) - Scenario 1 and Tab. I (b) - Scenario 2]. As it can be
noticed, the smallest values of the error indexes occur in correspondence with the set of

rules #3. Such a situation usually verifies whatever the SN R value.

4.1.2 Experiment #2

Under the assumption of a non-singleton Gaussian fuzzifier, the level of uncertainty on
inputs depends on the variance o. Let us consider that the higher is the o value, the
greater is the uncertainty of data. Otherwise, when the reliability of the measures is high,
then o reduces to 0 and the Gaussian membership function becomes of singleton type.
However, no analytical rules for defining the optimal variance value exist (to the best of
the authors’ knowledge), thus a heuristic calibration must be carried out. Towards this
end, o has been varied in the range between 10™° and 107! by considering various noisy
conditions (i.e., different SN R values). Since the positive effect of the F'L-based strategy
is expected to occur when significant levels of noise are present, the situation characterized
by a SNR = 5dB has been assumed as a representative test case. Fig. 3 illustrates the
behavior of the F'LS in terms of averaged error figures when dealing with Scenario 1.
Although non-so-significant differences arise, the value of ¢ = 10™* guarantees the best
reconstruction providing the smallest values of the error figures ((,,, = 6.38, (;,,, = 23.10,

and (,,, = 5.68). The same considerations hold true for the Scenario 2, as well.

In conclusion, the following parametric configuration will be our reference F'LS setup: set

of rules #3 and o = 1074

4.2 Testing

In this section, the potentialities of the proposed F'L-based microwave imaging technique

will be assessed by presenting a selected set of results from several numerical experiments.
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The behavior of the proposed method will be illustrated by considering different scatterers
and synthetic noisy conditions (Sect. 4.2.1). Moreover, the inversion of experimentally-

acquired data will be dealt with for a check in a real framework (Sect. 4.2.2).

The obtained results will be mainly compared with those from the standard implementa-
tion of the IMSA [13] in order to show the enhancement in the reconstruction accuracy
allowed by the F'L strategy when dealing with noisy /corrupted data. As far as the IMSA
is concerned, the Rol has been partitioned into N(R) = 10 x 10 square sub-domains.
Moreover, the minimization of (10) has been iteratively performed with a deterministic
conjugate-gradient procedure 13| with a maximum number of iterations at each step fixed
to K) = 2000, s =1, ..., Sopt- The use of a deterministic technique for this analysis is
motivated by the need of focusing on the improvement guaranteed by the use of a FLS
neglecting the randomness arising from the integration of the reconstruction procedure
with a stochastic optimizer (more effective in avoiding the solution is trapped in the local

minima of the cost function).

4.2.1 Numerical Assessment

The first example is aimed at showing the effect of the reliability indexes ;) and B0
on the reconstruction capabilities of the imaging procedure in different noisy conditions.
The grey-scale representations(!)of the reconstructions obtained without and exploiting
the F'LS are reported in Fig. 4 for different SN R values when the so-called Scenario 2
is taken into account. As requested in defining the guidelines of the F'LS, when the noise
level is non-so-significant (SNR > 20dB), the F'L block behaves in a “transparent” way
and its effect in terms of reconstruction accuracy appears almost negligible as pictorially
shown in Figs. 4(a) and 4(b) and quantitatively confirmed by the averaged values of the

error figures in Tab. II (ZtotJ = 5.98 vs. Zth

IMSA—Fuzzy - 5457 CextJ IMSA — 5.77
— 10.40).

IMSA

=5.16, and Cip) 1794 = 1178 V5. Co

VS gextJIMSA—Fuzzy IMSA—Fuzzy
On the other hand and as expected, the fuzzy data processing, which acts before the

cost function minimization, significantly impacts when SNR < 20dB, that is in those

(1) The actual support of the scatterer is denoted by the dashed line and the black pixel in the lower
right border is used for reference.
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situations where the measured data are seriously corrupted by the noise. Such an event
can be clearly observed comparing the representative samples of reconstructed profiles
shown in Figs. 4(¢)-(d) (SNR = 10dB) and Figs. 4(e)-(f) (SNR = 5dB). As a matter
of fact, when the level of noise increases, the dielectric profile reconstructed by means
of the standard /M SA presents some inhomogeneities [SNR = 10dB - Fig. 4(c¢)] and
some artifacts adds in heavy noise conditions |[SNR = 5dB - Fig. 4(e)|. Whereas, the
images retrieved by the F'L-based system are more homogeneous and quite faithfully fit
the actual shape of the scatterer whatever the SNR value [Figs. 4(d)-(f)]. For com-

Ci”tJ IMSA

parison purposes, let us consider that on average — ~ 1.5 and

it | [N SA—Fuzzy

~ 1.8.
SNR=5dB

The performances of the IMSA — Fuzzy and IMSA are summarized in Fig. 5 where the

B B SNR=10dB
Cinfj IMSA ~ 1.3 . and —C‘mJ IMSA
~ 1.3, =

Cint IMSA—Fuzzy | SN R=5dB ert | IMSA—Fuzzy

plots of both qualitative error indexes (6 and A defined as in [13]) and the quantitative er-
ror figures Zj (7 = {tot, int, ext}) versus SN R are shown. On average, the IMSA—Fuzzy
usually overcomes the standard approach in locating as well as in shaping |[Fig. 5(a)|
the scatterer. Such a behavior is more and more evident as the noise level increases.

.. . 3
As far as the localization error is concerned, we have %
IMSA—Fuzzy

~ 1.5,

SNR=15dB

) 5 - i
= Lassa ~ 2.0, and % ~ 3.0. Similarly, it happens for
IMSA—Fuzzy | SNR=10 dB IMSA—Fuzzy | SNR=5dB
. . — A A
the area-estimation error A: % ~ 1.2, _J% ~ 2.0,
IMSA—Fuzzy | SNR=15 dB IMSA—Fuzzy | SNR=10 dB
A ) .
and MJ% ~ 2.7. On the other hand, Fig. 5(b) further points out the
IMSA—Fuzzy |[SNR=5dB

positive effect of the F'L-based strategy in the faithful reconstruction of the dielectric

avsnr{ Cint ) ;pre ) ~ 1.7.
aszR{ ZzntJ

distribution of the scatterer since on average
IMSA—Fuzzy

For comparison purposes, let us consider the inversion results of the same configuration
by using, for example, two regularization methods, namely the Tikhonov |38] [Figs. 6(a),
(¢), and (e)] and the Landweber [5] [Figs. 6(b), (d), and (f)] methods. Whatever the
noise level, the actual square cylinder is neither localized nor shaped. On the other hand,
since the condition of “weak scatterer” does not hold true, also the Born approach (even

though in noiseless conditions) is not able at achieving a satisfactory reconstruction [Fig.

6(g))-
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From the computational point of view, the IMSA — Fuzzy technique favorably compares
with the standard multi-resolution approach and the minimization of the IMSA cost
function benefits of the action of the reliability coefficients o, and B, as pointed
out in Fig. 7 where some representative samples of the cost function versus the iteration
number k are shown [Fig. 7(a) - SNR = 20dB, Fig. 7(b) - SNR = 10dB, and Fig.
7(¢) - SNR = 5dB|. As it can be observed, the total number of iterations needed for
achieving the stationary condition defined as K, = Zf;”f kS (K, being the number
of iterations needed to achieve “convergence” at the s-th step of the multi-scaling process,
ke < K (#)) usually increases when the noise level grows and the IMSA is used, while
it keeps an almost constant value (K, ~ 1200) when the F'L-based strategy is adopted.
In order to numerically analyze the convergence issue, let us consider the behavior of the

convergence index AK,, defined as follows

{Kopt}IMSA - {Kopt}IMSA—Fuzzy

AKO t —
g {Kopt}IMSA

x 100 (26)

for different noisy conditions (Fig. 8). As expected, because of the positive effect of the
FLS in dealing with corrupted scattering data, the value of AKj, grows as the SNR
value decreases. Moreover, in correspondence with low levels of noise (SNR > 30dB), the
computational performances of the two approaches are very similar further confirming the
“transparent” behavior of the F'LS in these conditions. Therefore, the proposed approach
allows a saving of the total number of iterations especially dealing with noisy data. Such a
reduction guarantees a computational saving greater than the computational load due to

the use of the I'LS since the coefficients a,(,) and 3, are computed once and off-line.

The second experiment is aimed at evaluating the dependence of the reconstruction ca-
pability of the proposed F'L-based approach on the dimension of the object under test.
Towards this purpose, the side of the homogeneous (7 = 1.5) square cylinder has been var-
ied from [ = 0.24 \g up to I = 0.72 \¢ and a noise characterized by SNR = 5dB has been
added to scattering data. Although the values of the error indexes increase as the support
of the actual scatterer enlarges (Fig. 9), it should be noticed that the dynamics of these
€ [10.5,11.5] and (|

variations is very limited ((;,,| €[0.2,1.1)).

IMSA—Fuzzy IMSA—Fuzzy
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Such an event seems to indicate a substantial invariance of the reconstruction effective-
ness of the IMSA — Fuzzy versus the scatterer dimension. For comparison purposes, the

same plots concerned with the standard /M SA are shown.

For completeness, the last experiment deals with a scenario (Scenario 8) characterized
by an homogeneous (7 = 3) circular cylinder [ in diameter with a significant noise level
(SNR = 5dB) blurring the scattering data. Fig. 10 shows some inversion samples ob-
tained without [Figs. 10(a)(c)] and with the F'LS [Figs. 10(b)(d)| when [ = 0.26 Ay [Figs.
10(a)(b)] and | = 1.46 Ao [Figs. 10(c)(d)|. Such results further confirm the effectiveness

as well as the enhancement of the F'L-based approach (M ~ 6.9 and

tot IMSA—Fuzzy %:026
0

Cuoul s ~ 4.34) also in dealing with strong scatterers (beyond the “weak

Ctot IMSA—Fuzzy /\L —1.46
0

scatterer” condition).

4.2.2 Experimental Validation

The last part of the numerical testing is devoted at assessing the effectiveness of the
IMSA — Fuzzy technique when experimental scattering data are dealt with. Towards
this end, the multiple-frequency angular-diversity bistatic data provided by the Institut
Fresnel, Marseille, France [39] have been used as reference benchmark. The experimental
imaging setup consists of a 2D bistatic measurement system with an emitter placed at a
fixed position, while a receiver is rotating with an arm along the vertical axis of the cylin-
drical scatterer under test. Such a system allows to implement a multi-illumination /multi-
view acquisition procedure characterized by V' = 36 views and M(v) =49, v =1,...,V,

sample measurement points.

The considered experimental dataset (“dielTM dec8f.exp”) is concerned with an off-
centered homogeneous circular cylinder d = 30 mm in diameter. Such an object is char-
acterized by a nominal value of the object function equal to 7(z,y) = 2.0 £ 0.3 and it
is located at z. = 0.0, y. = —30mm. As far as the investigation domain D;,, is con-
cerned, a square domain 30 x 30 cm? has been assumed and because of the aspect-limited
nature of the experimental setup, the complete set of measures has been used, but only

mono-frequency data have been considered.
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The first computational test has been performed by using the scattering data at f =
3GHz. Even though the retrieved distributions are smoothed versions of the actual
profile [Figs. 11(a)-(b)], it is possible to clearly detect the object under test as well as
its location and shape (Tab. III). As far as the comparison between the IMSA and
the IMSA — Fuzzy is concerned, the F'L-based approach allows one to obtain a more
homogeneous representation of the dielectric profile under test. However, non-so-relevant
differences can be observed and the improvement in the reconstruction accuracy are not
as large as for synthetic test cases. Moreover, the computational costs required by the two
approaches for reaching the stationary condition [13| appear almost equivalent as shown

in Fig. 12(a).

Such a behavior can be justified by a better SINR (greater than that of previous syn-
thetic test cases) for the low-frequency scattering data when collected in a controlled-
environment (as pointed out in [40]). On the other hand, it is well known that an enhanced

corruption of the scattering data occur as the frequency increases.

In order to verify such a hypothesis, some reconstructions at higher frequencies (f =
6 GHz and f = 8 GHz) have been carried out and the results are shown in Figs. 11(¢)-
11(f). As shown in [13], the reconstruction accuracy reduces apart from the IMSA
strategy used. However, because of the decreasing of the SN R in correspondence with the
increasing of f, the improvement in the reconstruction allowed by the F'LS is considerable
in terms of both quantitative imaging [Fig. 11(¢) vs. Fig. 11(d) and Fig. 11(e) vs. Fig.
11(f) - Tab. III| and convergence rate |Figs. 12(b)-(c)].

5 Conclusions

In this paper, an innovative technique that integrates the iterative multi-scaling approach
with an automatic strategy for estimating the uncertainty associated with the results of
scattering measurements has been developed for microwave imaging purposes. By consid-
ering a multi-resolution representation of the profile under test, the proposed methodology

allows one to yield a reliable reconstruction by means of the exploitation of the informa-
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tion content available from noisy-corrupted scattering data.Towards this end, a fuzzy-
logic-based decision strategy has been adopted in order to associate to each scattering

sample a degree of “reliability”.

The main features of the proposed system are the following:

e capability to estimate the uncertainty associated with scattering measurements in
an automatic fashion (allowing a “transparent” behavior when noise levels are neg-

ligible) thanks to the F'L-based decision strategy;

e capability to exploit the amount of information collectable from scattering data
thanks to a multi-resolution representation of the dielectric profile of the object

under test;

e reduction of the computational costs thanks to the integration of the multi-scaling

reconstruction scheme and the F'L approach;
e robustness to corrupted data and noise;

e capability to deal with complex nonlinear cost functions.

Concerning the methodological novelties of this work, besides the definition of the global
architecture of the whole system, they mainly rely on the combination of the innovative
F'L-based decision scheme within the multiresolution inversion architecture in order to
contemporaneously and fully exploit limited and noisy scattering data characterized by

an a-priori unknown degree of reliability.

In the numerical assessment, carried out on different conditions and datasets concerned
with various scattering configurations and data (synthetic as well as experimental), the
proposed architecture proved effective, providing both acceptable reconstruction accuracy
and robustness to the noise. Final reconstructions have usually shown a general agreement
with actual profiles and they confirm the enhanced inversion accuracy (compared to the
state-of-the-art approaches) in correspondence with a decreasing of the SN R. Moreover,

the numerical results pointed out that, as requested, the F'L-based inversions are very
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close and essentially identical to those obtained with a standard multi-resolution approach

in the presence of low (or negligible) levels of noise.

Because of the preliminary positive results and the favorable trade-off between complex-
ity /costs and reconstruction effectiveness, the proposed approach seems a promising tool
to be extended to layered/stratified media as well as inhomogeneous backgrounds for
dealing with biomedical and more realistic industrial applications where the reliability of

scattering data is a critical key-issue.
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Figure Captions

Figure 1. (a) Block diagram of the F'LS. (b) System architecture of the F'L-based

Approach.

Figure 2. Antecedents (left) and consequences (right). Pictorial representation of

the set of rules (a)(b) #1, (c)(d) #2, (e)(f) #3, (9)(h) #4, and (i)(I) #5.

Figure 3. FLS Calibration (Scenario 1 - SNR = 5dB). Behaviors of the error
indexes (Zj, J = tot, int, ext) versus the value of the variance o of the fuzzification

Gaussian membership function.

Figure 4. Reconstruction of an off-centered square (I = 1.2 \g) homogeneous di-
electric (7 = 1.5) cylinder - Samples of the dielectric profiles reconstructed by using
the IMSA (left column) and the IMSA — Fuzzy method (right column): (a)(b)
SNR =20dB, (¢)(d) SNR=10dB, and (e)(f) SNR =5dB.

Figure 5. Reconstruction of an off-centered square (I = 1.2 \g) homogeneous di-

electric (7 = 1.5) cylinder - Average values of the error figures versus SNRs: (a)

27



localization error 0, (b) area-estimation error A, (¢) total reconstruction error (,,,,

(d) internal reconstruction error (,,;, and (e) external reconstruction error ¢

int? ext"

Figure 6. Reconstruction of an off-centered square (I = 1.2 \g) homogeneous di-
electric (7 = 1.5) cylinder - Samples of the dielectric profiles reconstructed by using
the Tikhonov (left column) and the (b) Landweber (right column) regularization
methods: (a)(b) SNR = 20dB, (¢)(d) SNR = 10dB, and (e)(f) SNR = 5dB.

Born approach (Noiseless case) (g).

Figure 7. Reconstruction of an off-centered square (I = 1.2 \g) homogeneous di-
electric (7 = 1.5) cylinder - Behavior of the cost function during the multi-scaling

minimization process: (a) SNR =20dB, (b)) SNR =10dB, and (¢) SNR = 5dB.

Figure 8. Reconstruction of an off-centered square (I = 1.2 A\g) homogeneous di-

electric (7 = 1.5) cylinder - Behavior of the convergence index AK, versus SNR.

Figure 9. Reconstruction of an off-centered square homogeneous dielectric (7 =
1.5) cylinder (SNR = 5dB) - Average values of the reconstruction error figures

versus object side I: (a) (s, (b) Cinpy and (¢) €

int) ext®

Figure 10. Reconstruction of an off-centered circular homogeneous dielectric (7 =
3) cylinder (SN R = 5dB) - Samples of the dielectric profiles reconstructed by using
the IMSA (left column) and the IMSA — Fuzzy method (right column): (a)(b)

+- = 0.26 and (¢)(d) 5 = 1.46.

Figure 11. Reconstruction of an off-centered homogeneous circular cylinder (Real
dataset “Marseille” [39] - “diel TM__ dec8f.exp”). Dielectric distributions reconstructed
at the convergence by means of (left column) the standard IMSA and (right col-
umn) the IMSA — Fuzzy method. (a)(b) f = 3GHz, (¢)(d) f = 6GHz, and
(e)(f) f=8GHz.

Figure 12. Reconstruction of an off-centered homogeneous circular cylinder (Real
dataset “Marseille” [39] - “dielTM_ dec8f.exp”). Behavior of the cost function during
the multi-scaling minimization process: (a) f = 3GHz, (b) f = 6GHz, and (c)
f=8GHz.

28



Table Captions

e Table I. FLS Calibration - Set of rules. Average values of the error indexes ((;,

J = tot, int, ext) for different sets of rules when SNR = 5dB for (a) Scenario 1

and (b) Scenario 2.

e Table II. Reconstruction of an off-centered square (I = 1.2 \¢) homogeneous dielec-
tric (7 = 1.5) cylinder - Average reconstruction errors ( (,,;, C;np, and C,,;) obtained

by the IMSA and IMSA — Fuzzy for different values of SNR.

e Table III. Reconstruction of an off-centered homogeneous circular cylinder (Real
dataset “Marseille” |39] - “dielTM _dec8f.exp”). Actual and estimated scatterer pa-

rameters (f =3GHz, f =6GHz, and f =8GHz).
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Fig. 5 - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...
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Fig. 6(I) - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...
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Fig. 6(II) - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...
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Fig. 7 - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...
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Fig. 8 - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...*
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Fig. 9 - M. Benedetti et al., “Microwave imaging technique based on ...*
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Fig. 10 - M. Benedetti et al., “ An adaptive multi-scaling imaging technique ...
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Fig. 11 - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...
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Fig. 12 - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...“
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Set of Rules Ciop Cint Ceut
#1 5.73 19.55 9.20
2 6.97 18.85 6.47
#3 563 | 1824 | 5.05
4 6.06 206.18 5.22
5 7.15 22.22 0.52
(a)
Set of Rules Ewt th Zext
#1 10.00 32.62 8.39
2 9.56 30.86 8.30
3 9.01 28.29 7.69
4 9.56 32.57 8.00
5 9.36 29.31 7.95

Tab. I - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...
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SNR =20dB SNR =10dB SNR =5dB

Errors|| IMSA |IMSA Fuzzy| IMSA |IMSA Fuzzy| IMSA |IMSA Fuzzy
Crur 5.98 5.45 6.18 6.17 14.49 8.07
Cns 11.78 10.40 11.63 8.09 10.84 8.77
Comt 5.77 5.16 6.09 5.92 14.66 8.03




e Ye Lot
o A 2\
f=3GHz
Actual 0.0 —0.30 0.150
IMSA Fuzzy 0.02 —0.27 0.144
IMSA 0.02 —0.27 0.140
f=6GHz
Actual 0.0 —0.60 0.30
IMSA Fuzzy 0.03 —0.52 0.33
IMSA 0.02 —0.68 0.74
f=8GHz
Actual 0.0 —0.80 0.40
IMSA Fuzzy 0.0 —0.95 0.91
IMSA —0.16 —1.08 1.43
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Tab. III - M. Benedetti et al., “An adaptive multi-scaling imaging technique ...
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