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Abstract

In this contribution, an analytical procedure for building the non-radiating part of the equivalent cur-
rent in inverse scattering problems is presented. The mathematical formulation, concerned with a 2D

configuration and T'M illumination, is provided and discussed.
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1 Introduction

In the framework of inverse scattering techniques, several techniques consider the introduction of an equivalent
current density defined into the dielectric domain. Accordingly, the problem is formulated in terms of an
“inverse source” one through the introduction of an equivalent current in order to linearize the original inverse
scattering problem [1][2][3][4]. Unfortunately, a typical drawback of inverse source problems relies in their
non-uniqueness due to the presence of non-radiating components of the equivalent currents. As far as the
presence of non-radiating currents in a volume formulation is concerned, the issue has been discussed in [5]
and an approach is presented for the reconstruction of the non-radiating part of the equivalent volumetric
source. Moreover, in [6], a wide review and some representative results on the presence of non-radiating
currents as well as about the relationship between non-radiating sources and scattering objects that could
be invisible under particular illumination conditions are reported. As a matter of fact, although it has been
proved in [7] that a perfectly invisible object does not exist, on the other hand, it has been also demonstrated
that a scattering object can be nonscattering at particular directions of illumination [8], thus the equivalent
inverse source problem include non-radiating components (i.e. the null space of the operator is not empty).

In the following, a preliminary procedure for building a non-radiating current is reported.

2 Mathematical Formulation

In the framework of inverse source problems, non-radiating currents, Qng(7), are currents that “produce
fields that are identically zero outside their source volume” [9], hence they satisfy the following integral

relationship

Qur(M)Go(Ir —=')dr' =0 7 eV, r ¢V (1)
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where the Gy (|7 — 7|) is the free-space Green’s function. In the following, let us consider a current Q(7)

whose support is a two dimensional domain D. As far as 2D problems with 7'M illuminations are concerned,

Q(7) is non radiating |Q(7) = Qnr(7)| if

1) = /D Jolkols — FNQF)dF =0, Vp (2)

Jo(z) being the (cylindrical) Bessel function of the first kind and zero-th order and |p| = p = /a2 + y2.



2.1 Building Non-Radiating Currents

It is well known that a set of non radiating currents can be defined for a spherical domain in 3D case [6][10].
Concerning the 2D T M case, let us consider a current whose support is a circular domain of radius a, and

having the following expression:

QD) = Q(p,9) = [rJn(lip/a) + azJy(lap/a)] /™’ )

where I; and lp are two different zeroes of J,(z) and «; and ag are constants. In order to analyze the

non-radiating condition (2), let us compute f(p)

f(p) = /D Jo(kolp — p')Q(p')dp" D={p:p<a} (4)

Towards this end, let us consider that
—+o0
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and since dp’ = p'dp’dd¥’, by substituting (5) in (4), we get
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Moreover, let us recall that
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By rearranging all terms, it turns out that

2 2

N ) a a
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lQJn(ka)JnJrl(lQ) 3 (10)
According to (2), Q(p) = Qnr(p) if f(p) = 0, therefore since the following condition

o @R =Bl T ()
Ya2k2 — 12y Joy(lo)

(11)

Qg =

nulls (10), then a non-radiating current is obtained by substituting (11) in (3), thus obtaining the following

expression
a2k2 — l% ll Jn+1 (ll)
a2k2 — l% lg Jn+1 (lz)

Qnr(p) = ar |Jn(lip/a) — Tn(lap/a)| e/ (12)

2.2 Testing the Non-Radiating Condition

Let us consider a 2D T'M problem where a cylindrical scatterer of circular cross-section of radius a lies in
free-space. Our aim is to verify whether (1) is satisfied when considering Q yr(p) defined in (12).

In such a scenario, the integral in (1) turns out to be equal to

/ / ) HSY (kolp — 7')Q(7)di (13)

since Go(|p—7'|) = Hé2) (ko lp— 7', H( ) being the Hankel function of the second kind of order zero. Thus,

we should verify that
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with Q(p) = Qur(p) = a1 [Ju(lip/a) — = it 21T, (1ap/a) | e

Towards this end, let us consider the following relationships
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and let us first substitute (15) and then (16) into equation (14).



In particular, when p > a
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Since the two integrals within the square bracket in the last row of (17) are the same of Eq. (6), where
their sum has been made null by imposing condition (11), it has been proved that the field radiated by a
non-radiating current is null outside its support.

Otherwise, the field inside the support of the current (p < a) is given by
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Since

H7(12) (z) = Ju(x) — jYn(2) (19)

where J,(z) and Y, (x) are the Bessel functions of the first and second kind of order n, respectively, by

substituting (19) into (18) it results that

. a , a2k? — 121y Juyq(l
21.J, (kp)e!™” / [akp') = §Vu (ko) | Ju(lip' Ja) = =55 TS T (lap! fa) | pldp! =
0 a k l 12 n+1 lg

(L)
(I2)
CL2k 12 ll n+1(ll)
an —lz 12 n_:,_l(lg)

(ke [ |1t ) -

Jn(l2p'/ a)} pdp’ # 0
0

where for the real part the same conclusions as obtained in (17) holds true, while the imaginary part is not
negligible and generally it is different to zero, thus demonstrating that the scattered field inside the support

of the current is not necessarily null. Hence a current defined as in (12) in a 2D T'M problem does not radiate



outside its support, but it provides a field that is not null inside the source domain. This is a non-radiating

current.

3 Conclusions

In this paper, a procedure for indicating the non-radiating part of the equivalent current in inverse scattering
problems when formulated in terms of an inverse source and concerned with a 2D configuration and T'M

illumination, is presented.
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