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1 Introduction

In the last years, the learning methodology has been inspired by theory of statistical learning leading up to
solutions with good performance and firm mathematical properties. In this framework, the theory of support
vector machine (SVM) is based on the interaction between optimization theory and kernel theory [1].
Recently, widely used machine learning algorithms have been successfully applied in the framework of
wireless communication problems [2] and inverse scattering problems [3][4] in order to exploit their general-
ization capabilities and real-time characteristics. Moreover, when a close solution to the problem at hand
does not exist, SVM appears to be a good candidate to solve the optimization problem with a trial and
error approach. As for the Synthetic-Impulse Microwave Imaging System (SIMIS) developed at LEAT, the
learning methodology adopted for the detection of target position can be considered a supervised learning
since it exploits input/output examples that are referred to as the training data. When an underlying func-
tion from inputs to outputs exists, it is referred to as the target function. In the framework of classification
theory, this function is called decision function and gives binary outputs if a binary classification problem is
dealt with, otherwise it gives a finite number of categories for multi-class classification. The computational
time saving provided by an online binary classification approach justifies some limitations like the qualitative
reconstruction of the object position instead of the quantitative estimation of the electromagnetic properties.
Within the integration of a SVM classifier and the SIMIS for objects detection and more in general for the
reconstruction of the invetigation area, the main goal consists in the definition of a risk map of the presence

of the targets.

2 SVM Input Data

The classification procedure is based upon training and testing data. In the training set each instance consists
in a target value, that is the label of the class, to which data belongs, and several attributes, named features.
The learning machine requires that all data instances are represented as a vector of real numbers. In order to
define the format of the processed data, let us briefly introduce the SVM basics. The training set is composed
by L observations, each of them consists of pairs (z;,y;), ¢ = 1, ..., L, where z; € R" is the vector of attributes
that determines the input space and y; € {1, —1} is the associated target value given by a trusted source.
The vectors z;, ¢ = 1, ..., L are mapped in a higher dimensional feature space where a separating hyperplane
has to be found in order to maximize the margin between the training data that belong to different classes.

This procedure is called training phase and the final output is the decision function that, in the following



testing phase, predicts the target values of the testing set of which only the attributes are given

As far as the SIMIS data have been concerned, the fields collected by the measurement system become a
part of the input vectors z,, ¢ =1, ..., L. In order to exploit the UWDB properties of the M exponential tapered
slots (ETS) antenna, the input data I, are the time-gated differential time-domain Ss; data [5] obtained by
the application of the inverse fourier transform. The position of the n-object, identified by its barycenter
(X2b3v,0b7), is also a feature that belongs to the input vector. The adopted binary classification requires
that input data z; are labeled both to the positive class y; = +1 and negative class y; = —1. Towards this
end, for each input data I,, K training data are labeled with negative class and, instead of the features
related to the object position, random spatial points (szty, Ykempty) , k =1, ..., K where the object does

not reside are used as shown in Tab. I.
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Tab. I - Input data format of a i-th input data I, .
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