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An Innovative Multi-Resolution Approach for DOA Estima-

tion based on a Support Vector Classification

M. Donelli, F. Viani, P. Rocca, and A. Massa

Abstract

The knowledge of the directions of arrivaD(Q As) of the signals impinging on an an-
tenna receiver enables the use of adaptive control algostnitable for limiting the effects
of interferences and increasing the gain towards the dksignals in order to improve
the performances of wireless communication systems. fghper, an innovative multi-
resolution approach for the real-tinieO A estimation of multiple signals impinging on a
planar array is presented. The method is based on a supmbor wassifier and it exploits
a multi-scaling procedure to enhance the angular resolutfahe detection process in the
regions of incidence of the incoming waves. The data acdudi@m the array sensors are
iteratively processed with a support vector machifi& (/) customized to the problem at
hand. The final result is the definition of a map of the prolighihat a signal impinges on
the antenna from a fixed angular direction. Selected num@ledsults, concerned with both
single and multiple signals, are provided to assess patiigs and current limitations of

the proposed approach.

Key words: Planar Arrays, DO A Estimation, Classification, Multi-Resolution, Supporcier

Machine.



1 Introduction

In the last decades, the technology of adaptive antenngsani@s been greatly advanced and
applied to many mobile and wireless communication systetfj&][ Within this framework,
the antenna beam-forming plays an important role and thmatbn of the directions of arrival
(DO As) of signals impinging on the array is a crucial task in orderehhance the spatial
diversity and consequently the spectral efficiency. As atenaif fact, such an information
enables the generation or steering of the radiation pattéma maximum towards the desired
signals and nulls along the directions of interfering slgrid][4]. The effects of interferences
are mitigated and both the gain and the performance of thdendwnmunication system are
enhanced. For such reasons, the estimation oftteds of unknown interfering and desired
signals is of great interest and it is still an open problematirmed by the number of papers
published on this topic.

In the scientific literature, several methods have beenqgweg for the direction finding of multi-
ple signals impinging on an array of narrow band sensors. dgtbem, the most widely known
and used aré& S PRIT (Estimation of Signal Parameters via Rotational Invareahechnique)
[5]-[7] and MU SIC (MUItiple Signal Classification) [8][9]. Other approachleased on the
maximum likelihood (/L) DO A estimation have been proposed [10][11], as well.

In the last years, great attention has been also paid to thefusarning-by-exampled.(BE)
techniques. LBE-based approaches are able to provide a good trade-off betaecuracy
and convergence, which is mandatory for real time systenmeyevfast reactions are required.
Furthermore, they satisfactory deal with unknown configare (i.e., different from those
“learned” during the training process) thanks to their gaheation capability. Within this
framework, the benefits of using radial basis function nenetworks R BF' N N) have been
carefully analyzed in [12]. As a matter of fact, neural netikgo(V [V s) are suitable in approxi-
mating non-linear functions as thoselrO As estimation. Moreover, they can be easily imple-
mented in analog circuits. An improve®lBF' N N-based approach has been presented by the
same authors of [12] in [13] to address the problem of tragkin unknown number of multiple
sources when na-priori information on the number of impinging signals is availal\ore

specifically, the region above the antenna has been paddiinto angular sectors and each



sector “assigned” to a simplé¥ N, thus reducing with respect to [12] the problem complexity
as well as the computational burden of the learning phassaiis this end, each network has
been trained to detect the subset of incoming signals thaihige on the corresponding angular
sector. Accordingly, only thos® N's of the regions where the signals have been detected in the
first stage of the process are activated in the second onditwe¢s theD O As of the incoming
signals.

More recently, some techniques based on support vectorineckb'V Ms) [14] have been
analyzed to profitably exploit their solid mathematicalridation in statistical learning theory
[15]. The main advantages of those approaches lie in thdityato deal with various and
complex electromagnetic problems [16][17], and, anal@fjoto N Ns, in an easy hardware
implementation [18]. As far as thBO A estimation is concerned, a support vector regression
(SV R) procedure has been presented in [19] when dealing witladiagays. In such a case,

a SV M has been used to estimate thé) A of each impinging electromagnetic wave starting
from a set of known input-output examples where @ As of the signals were uniformly
distributed in the whole angular region above the receildaspite the generalization capabil-
ity of the SV R-based method, aa-priori information on the number of sources and pre-fixed
angular separations between thé As (as in [12]) have been considered to increase the relia-
bility of the estimation procedure. An extension of such aleidas been presented in [20] and
experimentally validated in [21] successively.

In this paper, an innovative procedure for real-time digatfinding of signals impinging on a
planar array of electromagnetic sensors is presented. fidi#gm of theDO As estimation is
formulated as a two step procedure, where the first step iechigh determining the decision
function that correctly classifies whatever input patteymieans of &'V M -based approach. In
the second step, the output of the decision function is nhpye thea-posterioriprobability
that a signal impinges on the antenna from a fixed directiororéler to increase the accuracy
of the estimation process and to reduce the computatiomdebuaffecting otheDO As pro-
cedures, the proposed two-step strategy is nested inte@eativie multi-scaling process [22].
Accordingly, the resolution accuracy is improved only im$ke angular regions where the un-

known sources are supposed to be located at the previoasaoterMore specifically, the algo-



rithm first determines a coarse probability map of Ih@ As starting from a training set where
the incoming signals are non-uniformly distributed alohg &levation directiorf], and the az-
imuthal oneg. Then, theSV M is used to classify the input test dataset at successivieiteso
levels by performing a kind of synthetic zoom in the anguégyions of interest{ Rols) where

a higher probability is detected and considering the saaieitg set, thus performed only once
and off-line. Concerning the antenna architecture ankaifli3] and [20], planar arrays of sen-
sors are considered since linear arrays lack the abilitycém sn3 D-space and the estimation
of both the elevatiofl and the azimutlkp angles is crucial and has many applications in various
fields of engineering. For instance, a complet® A information it is possible to improve the
coverage of transmission in wireless communications bydavg interferences and enhancing
the system capacity [23]. More specifically, planar arrangets are very attractive in mobile
communications with portable devices where the main beast tbeiscanned in any direction
[24]. Moreover, the number of impinging signals is unknovenveell as their directions be-
longing to the whole angular range above the planar anteysters (i.e..f € [0 : 90°] and

¢ € [0 : 360°)).

The paper is organized as follows. The formulation of theatiee two-step multi-resolution
DO A approach (in the following denoted by the acronyid S A — SV M) is described in Sec-
tion 2. In order to show the innovative features of the appincand to assess its effectiveness,
a selected set of numerical results concerned with botHesengd multiple signals is reported
and discussed (Sect. 3). Moreover, some comparisons \aité-sf-the-art techniques are also

reported. Finally, some conclusions are drawn in Sect. 4.

2 Mathematical Formulation

Let us consider a planar array 6f isotropic elements displaced on a regular and rectangular
grid with inter-element spacingon thex — y plane. A set off electromagnetic waves impinge
on the array from unknown angular directio(®, ¢;), i = 1, ..., I, as sketched in Fig. 1.
The signals, supposed to be narrow-band and centered aatter drequencyf (\ being the
corresponding free-space wavelength), are generateddtyohalectromagnetic sources placed

in the far-field of the receiving antenna. The open-circultage at the output of the:-th

5



sensor can be expressed as [20]

I
= Z {a’m (‘927¢z> [Ez ('Tm7 ym) ' Qm]} _'_gmv m = 17 ceny M (l)

wherea,, (0;, ¢;) = el X sindilemeosditymsings) (1o ) peing the location of then-th sensor
expressed in wavelength, apg is the background random noise at theth locations. The
noise samples are supposed to be statistically indepeaddmharacterized by a random Gaus-
sian distribution with zero mean value. Moreov&rf,ande,, are the electric field associated to
thei-th impinging wave and the effective length of theth array element.

According to the guidelines described in [3] and [4] abowt tlontrol of adaptive/smart anten-
nas, the solution of th® O As estimation problem is based also in this work on the measeme

of the total correlation matrix, defined as
@ =F{v-v'} 2)

wherev = {v,,; m = 1,..., M} and the superscript stands for complex conjugation, at the
output of the planar array since it contains sufficient infation on the received signals [13].
From a statistical point of view, the problem at hand can bmtdated as the definition of the
probability map of the angular incidence of the incoming asgtarting from the knowledge
of the total correlation matri. Towards this end, let us partition the angular region above
the array into a two-dimensional lattice &f = H, x H, cells, each one corresponding to
an angular sector of side&d and A¢ [Fig. 2(@)]. The statusy, of each cell can bempty
[xn = x (0, ¢n) = —1], if any signal impinges on the array from the angular regaentified
by the same cell, ooccupied[x;, = x (0,,¢n) = 1], otherwise. Accordingly, the original
problem can be stated as followdind the a-posteriori probability functio® (¢, ¢) given a
measured value of the total correlation matsixat the receivet. Mathematically,Q (¢, #)can
be also expressed as the linear combination of the nonaprig basis functions), (0, ¢),

h =1, ..., H defined over the angular lattice

Mm

q (On, on) B (0, 9) (3

h=1



where the weighting coefficient(d,,, ¢,) is the probability value that a wave impinges on the
array from theh-th angular sector [i.eq (6, ¢,) = Pr{x,=1;|2}]1and B, (0,¢) = 1 if

(0, ¢) belongs to thé-th cell andB,, (6, ¢) = 0 otherwise.

In order to improve the achievable angular resolution, atirmesolution representation of the
unknown function® (6, ¢) is looked for [Fig. 2b) - » = 1] by exploiting an iterative process
analogously to [22]. More specifically, the probability tiion is expressed at theth step of
the iterative procedure as a twofold summation of shifted ditated spatial basis functions

R(s) H(r)

Q(S) (97 ¢) = Z Z q(S) (eh(r)a ¢h(7")) Bh(r) (97 ¢) ;8 = 17 ) Sopt (4)

r=0 h(r)=1

r being the resolution index anll(s) = s — 1. The summation over ranges from) [Fig.
2(a)], which corresponds to the largest characteristic lersgthle, toR(s) [Fig. 2(b)], which
corresponds to the smallest angular basis-function stipdines-th scaling step. For a given
value ofr, H (r) = Hy” x H{"” is the number of non-overlapped basis functions centered
in the angular sub-domain represented atrthi resolution. Accordingly, the iterativBO A
detection procedure is aimed at locating the terms of sraaljth scale at thoséRoIs [e.g.,

the yellow cells in Figs. Z)-2(b)] where the signals are supposed to impinge with higher
probability.

In order to profitably exploit the multiresolution represation of thea-posteriori probabil-

ity function (4) and solving the arisin@O A problem, the following multistep classification

process is performed by means of & M -based technique. More in detail,

e Step 0- SVM Training PhaseThe SV M is trained once and off-line starting from the

knowledge of a set of known examples (i.e, input/outputi@teships)

{[2, O &) s X = X Ons ) s n=1,..,N]W s £ =1, T} (5)

calledtraining set whereT' is the number of training data. Th¥ samples of each
training data are composed By(¢) examples concerned with angular positigs ¢;),
i=1,...,1(t),I(t) < I,.. Wwhere a signal impinges on the array [i@cupieddirections

-x(0i,0;) = 151 =1,...,1(t)], while the remainingF’ (t) = N — I (t) are related to
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emptydirections [i.e.x (07, ¢;) = —1; f=1,..., F (t)].

Starting from the knowledge of theaining set the problem turns out to be the definition

of a suitable discriminant functioty
S @ — [x(On,én); h=1,..., H] (6)

that separates the two classe8, ¢) = 1 andx (0,¢) = —1 on the basis of the total
correlation matrixp measured at the output of the planar array. In order to ajghrtee
problem with a single classifier, the problem at hand is refdated as that of building

the following single output function
S [ (O gn);n=1,...,N] = x(On,n), h=1,.. H 7)

Towards this purpose and according to €M theory [15], the following linear deci-

sion function is adopted

S (2, (0n,00))} = w- @ (@, (B, 00)) +b, n=1,...,N. (8)

S is determined in a space (callefi4ture spach with a higher dimensionality than the
original input data space and obtained through the noratioperatory (-) [15]. The
unknown termsy andb, which unequivocally define the decision hyperplé}leare the
normal vector and a bias, respectively. They are computeahglthe Training Phase

according to the guidelines described in [17];

Step 1- Low-Order DO A Estimation(s = 1). At the first step, a coarse probability map
[Eq. (4) -s = 1] is determined by means of thel/ M classifier mapping the decision

function$ into thea-posterioriprobability function.

The unknown probability coefficients® (6, ¢5) | h = 1,..., H are approximated

s=1"

with a sigmoid function [15] as follows



1

©) (O, ) = "
! 1+ exp [v% {f (g, (O, <bh))} + V:|

(9)

where~ andv are two parameters computed according to a fitting procegssfarting

from a subset of th&’ training data of thdraining Set

e Step 2- IMSA — SV M Procesqs > 1).

— Step 2.a- Angular Regions of Intere$td Rol s) Identification(s < s + 1). Starting
from the probability map previously (i.e., at the- 1-th iteration) determined, such
a step is aimed at identifying the angular sectbl§, ¢ = 1, ..., L(s) where the
signals are supposed to impinge in order to improve the uéisol only in those
regions and enhance the accuracy of i@ A estimation. Towards this end, first
the values of the functio®®~Y (#, ¢) are scaled, thus defining the following new

set of normalized probability coefficients

) (Qh(r)7¢h(r)) N Gm h(r)=1,...,H(r) |

(s=1) (g =
P r 7¢ r)) — 7
( h(r) h( )) qym — Qm dm — dm 7":0’,.,7R(5)

ability function

PG (9, ¢) = SR ZhH(%)zl P (i), D)) Brry (0, 0)
is thresholded by nulling the scaled coefficients greatam thuser-defined threshold
n. Finally, the thresholded function

R(s—1) H(r

PV (0.0)= Y Do (On(r), Sr)) By (6, ) (11)

r=0 h(r)=1

~

wherepy, (Ouey, dniry) = P (Oaiy, dnery) I D (Oniry, Suiry) > nandpu, (Oney, nery) =

9



0 otherwise, allows one to identify théRols, DI, ¢ =1, ..., L(s) defined as those
angular sub-domains Whe}e(i_l) (0,9) #0;

— Step 2.b- Multiresolution DO A Estimation A synthetic zoom is performed by
refining the representation of the unknown functigff) (9, ¢) and increasing the
angular resolutionr/{ < r + 1) only in the ARoIs identified at $tep 2.& There-
fore, the multiresolutiora-posterioriprobability function (4) is updatéd by set-
ting Q@ (8, ¢) = P (8, ¢) and computing the new highest resolution coeffi-
cients,¢"® (Ouey, dnry), When(d, ¢) € DY, 0 =1,.. L(s) asin (9);

e Step 3- Termination Criterion(s = S,,:). The sequence of operations $tep 2is
repeated until both the dimensions and the numbet 86/s between two consecutive

cycles are stationary [i.el(s) = L(s — 1) and the variations of the dimensions of
(s)

min

the ARols are not greater than the highest angular resolution at-thestep,A

min { 805, D611

3 Numerical Simulations and Results

In order to assess the effectiveness and reliability of top@sed approach, an exhaustive set
of numerical experiments has been performed and some eélexgults will be reported in the
following for illustrative purposes. The remaining of tlgsction will firstly (Sect. 3.1) illus-
trate the behavior of the multi-scaling procedure also imparison with other state-of-the-art
approaches foDO A estimation. The second part (Sect. 3.2) will be devoted alyae the
potentialities and current limitations of tHel/SA — SV M approach when dealing with var-
ious and challenging electromagnetic scenarios. In sucamework, some configurations in
which conventional state-of-the-art signal subspacedasray processing techniques cannot
be applied are also dealt with in order to point out the enedmange of applicability o'V M
approaches. Finally, a uniform arraygﬁfdipoles is considered (Sect. 3.3) to verify the suitabil-

ity and reliability of the proposed method in correspondewith a realistic array modelling.

(M1t is worth noting that at the-th step of the multi-scaling procedure only the angulagesbelonging to
the ARols are processed by tl#8/ M classifier with a non-negligible saving of computationalrerces.
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With reference to the geometry shown in Fig. 1, a square plamay of M/ = 16 isotropic
radiators spaced by = g is considered. The power of the impinging signals has beetose
P, =30dB,i=1,...,I above the level of the background noise.

Concerning the training set, the following setlip= 400 and I,,,, = 4 has been assumed
and theSV M classifier has been trained once and off-line on the sameseatahatever the
test experiment. As regards to tiie= 3"/ T; training examples, different scenarios have
been considered; = 100 being the number of configurations wittsignals. Moreover, the
actualDO As of the signals of the training data have been randomly chiose discrete grid of
locations(6,,, ¢,,), n = 1, ..., N belonging to the the angular region above the antenna

0, = 0 + LHJ Af

N

bu=dot [22] 26

B

n=1,.,N 12)

5

|| and[-] being the floor function and the ceiling function, respeslify Moreover, in order
to fully assess the generalization properties of§hé&\/-based approach, theO As of the test

examples are different from those of the training dataset.

3.1 Single Signal Scenario - Comparative Assessment

The first experiment deals with thieoA detection of a single signal andest sef Tl(t“t) =
100 examples related to the single-signal scenario has beesidewad. An illustrative descrip-
tion of the behavior of the proposdd/SA — SV M approach is shown in Fig. 3 dealing with
the “representative” (of the method performance on the whest dataset) configuration of a
signal coming from(#; = 53°, ¢; = 260°). At the first step { = 1), the planar angular region
DW is partitioned inta// *) = 81 cells (beingA@Eji = 10° andAgb(f;; = 40°,r = 0, the angular
steps along the elevation directigh and the azimuthal one, respectively) and a coargeO A
probability map is determined following the procedure digsal in Sect. 2%tep ). Then, the

multi-scaling procedure takes place & 2). The ARols are identified and partitioned into

H(2)

R(s) = 81 cells with an angular resolution af6;) = 5° andA¢{}) = 20°. For the

JR(S)ZS—l
sake of space, only thBO A probability map obtained at the end of the second steg 2)
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is shown in Fig. 34). The procedure is then iterated until= S,,; = 4 [R(S,,t) = 3] with

the final result reported in Fig. B) characterized by an angular resolutionmﬁ‘” equal to
Aeg = 1.25° andAnggg = 5°. As it can be observed (Fig. 3), the region with higher proba-
bility of incidence turns out to be closer and closer to thiialcangular location of the signal
when increasing the step number. Quantitatively such ant@as be analytically quantified by
computing the values of tHecation index® (Fig. 1) and of théncidence area)®) defined

as follows
o)

O SV 13
maz {6} X 100 (13)

S

2

R N2 R R N2
whered®) £ \/(sin9005¢ — sinﬁ(s)cosgﬁ(s)) + <sin95in¢ — sine(s)siné(s)) + (cos@ — 0059(3)>

and

ZR(S E g}i?)r-)‘l(s) (6h(r') 7¢h(7-)) 2
h(r marh(r){fI(S) (Gh(r)7¢h(r))}

A ) (14)
R(s) 4 (On(r)Pn(r)
Z Zh { maxh(7.){q(s) (9h(7‘)7¢h(f')>} }

P =7

. N2 . N2
beinggf(f(l) = [(sinﬁh(r)cosgﬁh(r) — sin9(5)005¢(5)> + <sin9h(7«)sin¢h(7«) — sinﬁ(s)sin¢(5)> +
1
2

~ 2
(cos@h(r) - cose<s>) } , (0, ¢) are the actual coordinates of the signal incidence poingyads
(6:4)

é(s)_ZR(s Syt 1000 Oronr )} - S S {00690 (O Onen) }

T ¢ - T
P Zf& Ly 14 (Ongrys dneny) PO Zf(i L 1a® (9h<r>v¢h<z>l)5})

identify the center of thé-th ARol where the signal/signals is/are supposed to impinge. As a
matter of fact, the value of the location index reduces fréth= 13.17 down tog(%#t) = 2,53
(beings® = 4.10 and<® = 2.87). Analogously™ = 2.74, ¢® = 0.94, ¥ = 0.36, until
Ypert) = (0.14. As regards to the whole set of test examples, the statistitte “convergence”
values of the indexes (13) and (14) are given in the first btdckab. I.

In order to get an insight into the advantages of the proposdd-resolution approach over the
classification single-step techniques, a bare A SV M-based method has been considered and
applied to the same test example. To fairly compare the twibhodks, the same training dataset

has been used. Moreover, the same angular resolution hasiepted in both cases. Towards
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this purpose, an angular lattice characterized by a unifichwhose cell side was equal to the
finest discretization of the multi-resolution procedure.(iAf = Aeg)) andA¢ = A(bgg), has
been defined over the whole angular investigation domaineo$ingle ste'V M approach. As

it can be observed [Fig. 4], although the value af is quite close to that of thelM/ S A strategy
(i.e., S rsa_svm = 253 Vs. ¢, = 3.14), the extension of the incidence area turns out
to be significantly wider ¢'|,,,¢4 gy = 0.14 vs. ¥] gy, = 2.79). On the other hand, it
cannot be neglected that theP?U-time of the test phase of the bare procedure is approxigatel
fifty times the one of thd M SA — SV M because of the need to obtain a detailed map in the
whole investigation are@%l) instead of in a limitedd Rol, Dis"pt), only. As a matter of fact,
the number of test points used by th&/ S A approach turns out to be widely reduced.

For completeness, the results from other standard nomlol@ssification methods, such as the
multilayer perceptron/ L P) and the radial basis function& 8 F’) neural network, have been
analyzed, as well. More specifically, tih&) A probability maps obtained with the L P-based
and RBF N N-based classifiers are reported in Figh)&nd 4€), respectively. Whatever the
method, the achieved estimate does not appear to be adeandatzertainly not comparable
neither with that of thee M SA — SV M [Figs. 40)-4(c) vs. Fig. 3p)] nor with that of the
bareSV M [Figs. 40)-4(c) vs. Fig. 4@)] as also confirmed by the values of the location index:
¢l ppr = 1021 andc|,,, p = 25.91.

The last analysis is concerned with the comparison betweed ¥/SA — SV M and those
state-of-the-art methods fapO A estimation aimed at determining the angular incidence of
the signals, namely/USIC, ESPRIT (i.e., two one-dimensiond S PRIT's independently-
applied to the arrays followed by an alignment proceduresspeiate the estimated azimuth
and elevation angleRD-unitary ESPRIT [7], and a support vector regression-basétl ?)
approach. Towards this end, the azimuthal direction of tttead signal has been fixed to
¢ = 260°, while the elevation angle has been varied in the rahge[20° <+ 80°]. Moreover,

the SV R algorithm has been previously trained with a dataset coegphby 7 = 77 = 100
examples concerned with only one signal= 1). The methods are then compared by means
of the resulting signal location errar,

Because of the planar array of isotropic elements and aseegh 5], the performances of the

13



DO A techniques irf elevation-estimation turn out to better at high elevatifhs- 0°) [Tab.

[1], while the ¢ azimuth-estimation is greatest at low elevatiahs{ 90°). Moreover, the values
of the estimation indexes point out that th& SA — SV M (last column - Tab. Il) is able to
obtain similar results, in terms of angular resolution ntkf@ose provided by th€V R and of the
same order in magnitude afUSIC and ESPRITs except for wider angle® (> 60°), even
though these latter need mar&”U-time (i.e., an optimized M SA — SV M implementation
just needs few milliseconds onfaC' equipped with &.0 G H z processor and GH z of RAM).

As regards to the growing of the location index aroud, its mainly depends on the training
set. As a matter of fact, it can be avoided by modifying thdiof training phase. For instance,
the choice of a uniform angular distribution of the trainsemples (Fig. 5), instead of a non-
uniform arrangement, allows one to obtain a behavigralmost invariant t@ for medium-high
elevations.

In order to point out the generalization capabilities of freposed approach as well as its
robustness to the model tolerances [14][26], the effedi@&trray failure has been evaluated and
the arising results compared to those with-unitary £S P RIT which demonstrated several
advantages ovel/USIC and the standard’'S P RIT implementation. Towards this end, an
increasing number of array elements has been switched affe®er, the-priori information

on the failure of some array elements has not been explditedigh the definition of an ad-
hoc training set, but the same non-uniform set of input-oupkamples concerned with the
unperturbed array structure has been used. The resulteafdimparative assessment when

(01 = 53°, ¢1 = 260°) are reported in Fig. 6.

3.2 Complex Scenarios - Performance Analysis

The following experiments are aimed at assessing the eféedss of thd M SA — SV M in
detecting theDO As of multiple signals.

Dealing with the detection of two different incidence pairthe first example is concerned with
test signals coming fronf¥; = 12°, ¢; = 165°) and (0, = 82°, ¢» = 165°), respectively. The
probability maps estimated by tié/ S A— SV M at different steps are shown in Fig. 7 together

with those obtained with the single-st8y’ M classification procedure [Fig. d)], the M L P-
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based approach [Fig. 8, and theRBF technique [Fig. /)]. As expected and confirming
the outcomes from the study of the single-signal detectiba,multi-scaling process allows
one to significantly enhance the performances of the sisiglp-classification approaches as
pictorially shown in Fig. 7 and quantitatively confirmed Inetindexes in Tab. Ill. Moreover,

it is worth noting that this conclusion is not limited to a paular configuration of incidence
angles, but it holds true whatever the two-signals scenarder test.

In order to assess the stability of the proposed approaastaet composed b@(t“t) = 100
examples has been considered. The results obtained with\itiA — SV M are summarized

in Tab. | (second block). As expected, the mean values oftheaged performance indexes
& 2 L @ andy; 2 S2L @) turn out to be very close to those of the previous test
example [i.e..avg (&) = 4.51, avg (%) = 0.28 versuse®) = 4.55, !5 = 0.23 and
%) — 3.90, %) = 0.25],

The second numerical experiment, concerned with multiptedences, considers three-signals
configurations. As regards to the results for a test sdfgfffft) = 50 three-signals examples,
the values in the third block of Tab. I indicate that the refioh accuracy of the proposed
approach does not significantly reduce with respect to tiglesisignal or two-signals scenarios
[avg ($3) = 5.55, avg (1/;3> = 0.15 vs. avg (&) = 4.51, avg (@52) = 0.28 and¢; = 2.81,

Un = 0.25]. As an illustrative example, let us consider the case oftabsignals impinging

on the array from(6; = 8%, ¢1 = 85°), (A2 = 68°, ¢y = 95°), (03 = 55°, ¢3 = 290°). Starting
from the coarse map determined, three differéiio/ s are successively identified [Fig. &{

and better resolved thus iteratively improving thé A resolution accuracy as pointed out by
the indexes in Tab. IV where the values estimated by the atlassification approaches are
reported [Fig. 8)], as well. By comparing the distribution at ti$5,,-th step of the/ M/ SA
and the one from the bareV M, it is evident the improvement guaranteed by the multiiagal
process both in resolving and properly locating a numbeA&b/s equal to the number of
signals ().

In the third experiment] = 4 (I = I,,,.,) Signals impinge on the planar array. Figure 9 shows
the results provided by theA/ SA — SV M and in correspondence with a set of representative

examples. More in detall, the first exampl@anfiguration1/1/1/1) refers to a configuration
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where four separated signals can be recognig@d+ 35°, ¢; = 35°), (02 = 20°, ¢ = 115°),

(03 =70, p3 = 135°), (0, = 80°, ¢4 = 260°) - Figs. 9@)-9(c)]. The second example [Fig.
9(d)] deals with a two-clusters setu@dnfiguratior2 /2 - (6; = 15°, ¢ = 75°), (62 = 25°, ¢y = 120°),
(03 = 75°, ¢35 = 270°), (6, = 65°, ¢, = 300°)], while a single signal and a cluster of three-
signals are presentin the last exam@effigurationl /3 - (6; = 15°, ¢; = 105°), (6, = 80°, ¢ = 275°),
(03 = 85°, ¢35 = 300°), (0, = 75°, ¢4 = 315°)]. Whatever the example, the multi-scaling pro-
cess is able to identify with an ever increasing resolutimmfs = 1 [Fig. 9(@)] up to

s = Sept = 3 [Fig. 9(c)] the ARols to which the incidence directions of the actual signals
belong as pointed out by the numerical indexé8, i = 1,....1 in Tab. V. On the other
hand, it should be noticed that tlié0O A estimation process tends to cluster multiple regions-
of-incidence in a singlel Rol when the angular separations among the signals reduce. Such
an event takes place also in correspondence with@wafiguration2/2” [Fig. 9(d) - Tab. VI]
where twoARols are identified. It is even more evident in Fig.eP(Tab. VII) where the
angular incidences of three signals are detected in onlyAiRe/. The “clustering” effect is
quantitatively pointed out by the behavior of the averagezhlization index (Tab. | - fourth
block) when dealing with the complete test SEf?St) = 50) to which previous examples be-
long. As a matter of fact, there is a significant increase efathy () compared to the values

of the same quantity wheh= 1, 2, 3 [avg (¢4) = 17.29 vs. avg (1) = 2.81, avg (S2) = 4.51,

avg ($3) = 5.55], even though the value afvg <1/)> remains close to those of other multiple-
signals configurations since the estimatéfols still carefully identify the actual incidence
areas.

The fourth and fifth experiments deal with more critical t&stnarios since the examples under
test are concerned with a number of signals different froat th the training set (i.e] #

1, 2, 3, 4). More specifically, let us consider tii@ustered Distributiorof I = 18 signals with
incidence directions indicated by the white points in Fid. 1t is worth noticing that such

a configuration turns out to be not admissible (/e 18 estimates cannot be obtained) for
signal subspace-based array processing techniqugB-amiitary £SPRIT when the planar

array structure at hand is used. As a matter of fact, the maximumber of sourcexsD-unitary
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ESPRIT can handle is equal to [7]

[2DESPRIT — pin {U x (V = 1); V x (U — 1)} (16)

max

beingM = U x V. On the other hand, it should be considered that an high diroeal array
processing is enabled widening the size of the planar ary the number of array sensors) at
the expense of the computational complexity that, untiké\/-based methods, exponentially
grows.

Figure 10 compares the “convergence’ S,,; = 3) map provided by thd M/ SA — SV M
and the ones from other single-step classifiers. As it carbBerved, the multi-scaling process
is still able to carefully estimate thé Rol to which the actual signals belong with a degree
of accuracy higher than that from the other techniques hotierims of localization and area
extension (Tab. VIII). Similar conclusions hold true whesating with the detection of the
signals distribution displayed in Fig. 11, although theed&bn of the single signal on the
bottom of the region of analysis appears to be more criticatb@bly because of the absence of
similar spatial configurations in the training set.

Finally, the last experiment is concerned with a scenarier@lthere are not signals that impinge
on the array and the noise level has been varied from theerafervalue used for th&V M
training [P, = 20dB (Test Setvs. P, = 0dB (Training Se}] thus further complicating the
test case. As a matter of fact, neither the free-case exasptesent in the training set nor the
same noise level has been “learned”. NonethelessSthe/-based classifier did not detected
the presence of any signal thus defining a uniform distrdsutf probability [Fig. 128)].
Otherwise, the other methods give color-maps with someféats” [see Figs. 12()-12(c)]

although characterized by very small values of the proligitaf signal incidence.

3.3 Dipole Array Antenna

In the last experiment, a uniform array g)fdipoles is taken into account with dipoles oriented

along ther axis. Therefore, the effective length [24] of the array ed@rturns out to be
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Em =

A [ cos (g sin@cosqﬁ)

7w | 1 — sin?6cos?¢p

] [(cosOcosg) O — (sing) ¢] (17)
Moreover, the inter-element distance has been chosen &mdal = 0.65\ andd, = 0.5\
[27]. Then, a subset of the experiments of the previous aestibut with the dipole array,
has been dealt with to evaluate the applicability of idéS A — SV M approach to non-ideal
electromagnetic scenarios, as well.

In the first example X = 1), the multi-scaling procedure stops aftey,; = 4 iterations and the
final result is shown in Fig. 13. Likewise the case with pdiké sources, the estimations of
both the location and the incidence area improve at eachtier starting fromg) = 43.19
andy(® = 2.48 down tog%rt) = 2.96 and)(%») = 0.06, wherec® = 12.65, ¢®) = 5.41
andy® = 0.75, ¢ = 0.21. In this case, the performance are comparable to that in Seict
Different conclusions arise when processing the data ofitieesignal scenario [Fig. 14]]. In
such a case, only thg (i.e., the signal with the lowest elevatipis detected [Fig. 14)]. Such
an event does not depend on thé A detection method, but from the antenna array at hand.
As a matter of fact, the radiation pattern of the array elemeomnidirectional in the: — y
plane (i.e.,p = 90° and¢ = 270°) with a 65,5 angle of almosB0° degrees [24]. Therefore,
the gain of the dipole is lower along the direction with higlis, beingg;, = ¢, = 165°.
Otherwise, when the actual configuration is described bytabfsignals coming from the
directions(#; = 30°, ¢; = 60°) and (0, = 30°, ¢ = 300°), the IMSA — SV M method still

gives accurate estimates [Fig. bj(although with non-ideal isotropic receiving sensors.

4 Conclusions

In this paper, a multi-resolution approach for thé& A estimation of multiple signals based on
a support vector classifier has been presented. The prazedaimed at defining a probability
map of the incidence of an electromagnetic signal on a plamay of sensors. Starting from a
coarse map, a synthetic zoom is iteratively performed iratigular sector where the incidence
of a signal has been detected with higher probability at tlegipus step of the multi-scaling

procedure.
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The effectiveness of the proposed approach has been adsiesdmg with different scenarios
and working conditions. Moreover, a comparative analyaslheen carried out by considering

state-of-the-arDO A methods. The obtained results have shown that:

e the use of a classifier based 8# M allows one to estimate theO A probability map in

real time;

e thanks to the5'V M generalization capability, theM/ S A — SV M behaves properly when
dealing with complex electromagnetic scenarios non-reseég belonging to the set of

training examples;

e the SV M-based approach is able to estimate fh@ As of a number of sources greater
than the maximum allowed by conventional eigenvalue deasitipn methods for a fixed

planar array geometry;

e unlike2 — D subspace-based algorithms, the computational compleaéy not increase

with the size of the rectangular array;

e the proposed.BFE technique adapts to element failure or other source of £xoming
from the tolerances in the array structure that cause ngfigiele performance degrada-
tion in conventional estimation techniques which requighly calibrated antennas with

identical radiation properties;

¢ the a-priori knowledge (deterministic or statistical) on the array ogumfation and ra-
diation pattern characteristics can be easily and useéxploited by defining suitable

IMSA — SV M training sets;

e the multi-scaling procedurel (/S A) provides good results dealing with both single-
signal and multiple-signals configurations with an anguaolution comparable to that

of other state-of-the-a®O A algorithms;

e system complexity, classifier architecture, and compomati costs significantly reduce

with respect to the “bare” classification.
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FIGURE CAPTIONS

Figure 1. Planar array geometry.

Figure 2. IMSA — DO A Procedure- Angular region partitioning andl Ro/s identifi-

cation at the steps= 1 (a) ands = 2 (b).

Figure 3. Single signal scenarid = 1 - Probability map determined by the\/SA —
DOA procedure at:d) s = 2, (b) s = Sppe = 4.

Figure 4. Single signal scenarid = 1 - Probability maps obtained with different clas-
sification approaches:a) single-stepSV M, (b) multi layer perceptron X/ LP) neural

network, and¢) radial basis function® BF") neural network A9 = 1.25° andA¢ = 5°].

Figure 5. Single signal scenarid = 1 - Uniform (red points) and non-uniform (green

triangles) angular training sets.

Figure 6. Single signal scenario/ = 1 - Behavior of the location index versus the

number of failed array elements.

Figure 7. Multiple signals scenariol/ = 2 - Probability maps obtained with different
classification approachesM SA — SVM [(a) s =1, (b) s = 2, (C) s = Sopr = 3], (d)
single-stepSV M, (e) multi layer perceptron/ L P) neural network, and § radial basis

function (RBF) neural network Ng = Aeg’)) =25°andA¢ = Agbg’; =107].

Figure 8. Multiple signals scenario/ = 3 (Configuration1/1/1) - Probability maps
obtained with different classification approachey:[(M/SA— SV M [s = S, = 3] and
(b) single-stepSV M [Af = Aeg’)) andA¢ = Agbg].

Figure 9. Multiple signals scenarial = 4 - Probability maps obtained with thel/ S A —
SV M. Configuration1/1/1/1: step @) s = 1, (0) s = 2, and €) s = Syt = 3;
Configuration2/2: steps = S,,x = 3 (d); Configurationl/3: steps = S,,: = 3 (€).

Figure 10. Multiple signals scenari¢/ = 18 - Clustered Distributioi- Probability maps
obtained with different classification approachey:[(M/ SA — SV M (s = Sope = 3), (D)
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single-stepSV M, (c) multi layer perceptron/ L P) neural network, andd) radial basis

function (RBF) neural network N0 = Aﬁg’)) andA¢ = A¢8§]-

e Figure 11. Multiple signals scenari@/ = 18 - Sparse Distributioh- Probability maps
determined by thd M SA — SV M at the convergence (= S, = 2 - A@Ef)) = 5% and

Al = 20%).

e Figure 12. No-signals scenarip/ = 0; P, = 20dB (Test Sét- P, = 0dB (Training
Se)] - Probability maps obtained with different classificatiorpagaches: &) IMSA —
SVM (s = Sy = 1), (b) multi layer perceptron/ L P) neural network, andc] radial

basis function R BF') neural network.

e Figure 13. Dipole Array, I = 1 - Probability map determined by the\{SA — DOA
[S = Sopt = 4]

e Figure 14. Dipole Array, I = 2 - Probability map determined by the\{SA — DOA
when e) I, = (61 = 120, (bl = 1650), I, = (62 = 820, ¢2 = 165O> [S = Sopt = 3] and
(b) I; = (61 = 30°, ¢1 = 60°), Iy = (6 = 30°, o = 300°) [s = St = 3].

TABLE CAPTIONS

e Tab. I. Statistics of the averaged performance indexes (>__, < andy) = .7, )

for different signal configurationd (= 1, 2, 3, 4).

e Table Il. Single signal scenarid = 1 - Comparative assessmeialues of the location

indexc when applyingl MSA — DOA, SVR, MUSIC, andESPRIT.

e Table lll. Multiple signals scenariad, = 2. Performance indexes when applyihty S A—
DOA, single-ste'V M, multi layer perceptronX/ L P) neural network, and radial basis

function (RBF) neural network.

e Table IV. Multiple signals scenariol = 3 (Configurationl /1/1). Performance indexes
when applyingf M'SA — DO A, single-stes'V M, multi layer perceptronX/ L P) neural

network, and radial basis functio®B F') neural network.
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Table V. Multiple signals scenarial = 4 (Configurationl /1/1/1). Performance indexes
when applyingf M'SA — DO A, single-stes'V M, multi layer perceptronX/ L P) neural

network, and radial basis functio®B F') neural network.

Table VI Multiple signals scenaripl = 4 (Configuration2/2). Performance indexes
when applying M SA — DOA, single-ste'V M, multi layer perceptronX/ L P) neural

network, and radial basis functio®B F') neural network.

Table VII. Multiple signals scenariol = 4 (Configuration1/3). Performance indexes
when applyingf M'SA — DO A, single-stes'V M, multi layer perceptronX/ L P) neural

network, and radial basis functio®B F') neural network.

Table VIII. Multiple signals scenario/ = 18 (Clustered Distributioh Performance
indexes when applyingM SA— DO A, single-ste'V M, multi layer perceptronX/ L P)

neural network, and radial basis functiaR 8 ') neural network.
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Min | Max | Avg | Var
Single Signal (I =1)
S 0.16 | 43.25 | 2.81 | 8.76
v | 0.02 | 914 | 0.25 | 1.35
Multiple Signals (I = 2)
S 0.31 | 58.47 | 4.51 | 8.56
¢ | 0.007 | 11.05 | 0.28 | 1.54
Multiple Signals (I = 3)
S 0.38 | 17.35 | 5.55 | 2.14
¢ | 0.009] 0.37 | 0.15 | 0.34
Multiple Signals (I = 4)
S 0.47 | 70.72 | 17.29 | 13.58
z@ 0.005 | 1.89 | 0.17 | 0.69

Tab. 1 - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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DOA Method
01 ESPRIT | 2D ESPRIT | MUSIC SVR | IMSA—SVM®WH) | IMSA—SVM
20° 0.16 0.08 0.34 1.21 0.75 0.52
40° 0.51 0.22 0.59 1.38 1.17 0.83
60° 0.51 0.27 0.68 1.64 1.52 2.22
80° 0.68 0.36 0.74 1.56 1.64 4.93




Method DOA Indexes
S1 ¢1 <2 1?2

IMSA—-SVM
s=1 8.91 | 2.33 | 10.27 | 3.08
5 =2 5.90 | 0.54 | 8.46 | 0.82

s = Sopt = 3 455 10.23 | 3.90 | 0.25
Bare SV M 6.04 | 0.67 | 16.78 | 3.78

MLP 17.54 1 0.27 | 30.53 | 2.21
RBF 17.19 1 0.28 | 27.77 | 0.99
Tab. 111 - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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DOA Indexes

Method <1 (U1 S | o G| s
IMSA—SVM

s=1 5.50 | 0.2 5.9 | 1.43| 4.61 | 1.56

s=2 4.15 | 0.06 || 5.42 | 0.74| 4.43 | 0.55

s = Sopt = 3 4.24 10.009 || 5.19 [ 0.33 | 3.10 | 0.14

Bare SV M 10.11] 0.35 | 4.34 | 1.44 | 16.52 | 1.55

MLP 245 | 0.6 || 21.77]1.09 | 22.82 | 2.36

RBF 28.31 | 1.35 || 37.34|0.49 | 29.57 | 0.67

Tab. IV - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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Method DOA Indexes
| Y| o2 | Y| ss | Y3 | s | Y
IMSA—-SVM

s=1 6.84 1 0.40 | 24.37 | 0.40 || 23.31 | 1.48 || 25.47 | 1.56

s =2 5.85 | 0.31 | 28.01 | 0.31 | 16.96 | 0.91 || 8.08 | 0.68

s = Sopt = 3 3.44 10.16 | 29.33 | 0.16 | 12.31 | 0.21 | 7.42 | 0.24
Bare SVM 8.37 | 2.89 || 24.71|2.89 | 26.52 | 2.89 | 25.68 | 2.89
MLP 38.9810.52] 891 | 0.52| 35.34 | 1.82 | 17.46 | 1.69
RBF 15.19 1 0.32 || 18.69 | 0.32 | 40.65 | 1.81 || 22.01 | 0.91

Tab. V - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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Method DOA Indexes
| Y| o2 | Y| ss | Y3 | s | Y
IMSA—-SVM

s=1 15.50 | 0.89 || 11.51 | 0.89 | 45.50 | 2.98 | 57.71 | 2.98

s =2 12.78 1 0.39 || 10.65 | 0.39 | 10.80 | 0.72 | 24.12 | 0.72

s = Sopt = 3 12.91 1 0.16 || 10.55 | 0.16 | 4.71 | 0.26 || 17.01 | 0.26
Bare SVM 15.46 | 0.91 || 11.64 | 0.91 || 46.53 | 3.17 | 58.66 | 3.17
MLP 9.35 [0.29 || 8.66 |[0.29 | 13.75 | 1.75 | 27.43 | 1.75
RBF 8.06 [ 0.26 | 8.77 [0.26 | 14.84 | 0.57 | 9.50 | 0.57

Tab. VI - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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Method

DOA Indexes

1| W S | Ve 3| Vs Sa | Yy
IMSA—SVM

s=1 16.98 | 0.88 || 39.13 | 2.81 | 54.57 | 2.81 | 64.78 | 2.81
§s=2 16.5110.62 | 6.04 | 1.70 | 22.43 | 1.70 | 35.70 | 1.70

s = Sopt = 3 8.13 1 0.09| 6.18 | 1.46 || 11.84 | 1.46 || 28.89 | 1.46
Bare SVM 17.38 | 0.87 | 39.45 | 2.85 || 54.87 | 2.85 || 65.72 | 2.85
MLP 11.62 1 0.19 || 2746 | 1.08 | 11.41 | 1.08 | 8.15 | 1.08
RBF 6.51 [ 0.10| 16.85| 0.10 | 3.01 | 0.10 || 20.63 | 0.10

Tab. VII - M. Donelli et al., "“An Innovative Multi-Resolution Approach...”
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Method DOA Indexes

S | @
IMSA—-SVM | 1.20 | 0.21
Bare SVM 2.82 1.94
MLP 13.78 | 1.66

RBF 13.62 | 1.21

Tab. VIII - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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