
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE
  

38123 Povo – Trento (Italy), Via Sommarive 14 
http://www.disi.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
AN INNOVATIVE MULTI-RESOLUTION APPROACH FOR DOA 
ESTIMATION BASED ON A SUPPORT VECTOR CLASSIFICATION
 
Donelli, F. Viani, P. Rocca, and A. Massa 
 
 
January 2011 
 
Technical Report # DISI-11-027 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



An Innovative Multi-Resolution Approach for DOA Estima-

tion based on a Support Vector Classification

M. Donelli, F. Viani, P. Rocca, and A. Massa

Department of Information and Communication Technology,

University of Trento, Via Sommarive 14, 38050 Trento - Italy

Tel. +39 0461 882057, Fax +39 0461 882093

E-mail: andrea.massa@ing.unitn.it,

{ massimo.donelli, federico.viani, paolo.rocca}@dit.unitn.it

Web-site:http://www.eledia.ing.unitn.it

1



An Innovative Multi-Resolution Approach for DOA Estima-

tion based on a Support Vector Classification

M. Donelli, F. Viani, P. Rocca, and A. Massa

Abstract

The knowledge of the directions of arrival (DOAs) of the signals impinging on an an-

tenna receiver enables the use of adaptive control algorithm suitable for limiting the effects

of interferences and increasing the gain towards the desired signals in order to improve

the performances of wireless communication systems. In this paper, an innovative multi-

resolution approach for the real-timeDOA estimation of multiple signals impinging on a

planar array is presented. The method is based on a support vector classifier and it exploits

a multi-scaling procedure to enhance the angular resolution of the detection process in the

regions of incidence of the incoming waves. The data acquired from the array sensors are

iteratively processed with a support vector machine (SV M ) customized to the problem at

hand. The final result is the definition of a map of the probability that a signal impinges on

the antenna from a fixed angular direction. Selected numerical results, concerned with both

single and multiple signals, are provided to assess potentialities and current limitations of

the proposed approach.

Key words: Planar Arrays,DOA Estimation, Classification, Multi-Resolution, Support Vector

Machine.

2



1 Introduction

In the last decades, the technology of adaptive antenna arrays has been greatly advanced and

applied to many mobile and wireless communication systems [1][2]. Within this framework,

the antenna beam-forming plays an important role and the estimation of the directions of arrival

(DOAs) of signals impinging on the array is a crucial task in order to enhance the spatial

diversity and consequently the spectral efficiency. As a matter of fact, such an information

enables the generation or steering of the radiation patternwith a maximum towards the desired

signals and nulls along the directions of interfering signals [3][4]. The effects of interferences

are mitigated and both the gain and the performance of the whole communication system are

enhanced. For such reasons, the estimation of theDOAs of unknown interfering and desired

signals is of great interest and it is still an open problem asconfirmed by the number of papers

published on this topic.

In the scientific literature, several methods have been proposed for the direction finding of multi-

ple signals impinging on an array of narrow band sensors. Among them, the most widely known

and used areESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique)

[5]-[7] andMUSIC (MUltiple SIgnal Classification) [8][9]. Other approachesbased on the

maximum likelihood (ML) DOA estimation have been proposed [10][11], as well.

In the last years, great attention has been also paid to the use of learning-by-examples (LBE)

techniques.LBE-based approaches are able to provide a good trade-off between accuracy

and convergence, which is mandatory for real time systems where fast reactions are required.

Furthermore, they satisfactory deal with unknown configurations (i.e., different from those

“learned” during the training process) thanks to their generalization capability. Within this

framework, the benefits of using radial basis function neural networks (RBFNN) have been

carefully analyzed in [12]. As a matter of fact, neural networks (NNs) are suitable in approxi-

mating non-linear functions as those inDOAs estimation. Moreover, they can be easily imple-

mented in analog circuits. An improvedRBFNN-based approach has been presented by the

same authors of [12] in [13] to address the problem of tracking an unknown number of multiple

sources when noa-priori information on the number of impinging signals is available. More

specifically, the region above the antenna has been partitioned into angular sectors and each
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sector “assigned” to a simplerNN , thus reducing with respect to [12] the problem complexity

as well as the computational burden of the learning phase. Towards this end, each network has

been trained to detect the subset of incoming signals that impinge on the corresponding angular

sector. Accordingly, only thoseNNs of the regions where the signals have been detected in the

first stage of the process are activated in the second one to estimate theDOAs of the incoming

signals.

More recently, some techniques based on support vector machines (SVMs) [14] have been

analyzed to profitably exploit their solid mathematical foundation in statistical learning theory

[15]. The main advantages of those approaches lie in their ability to deal with various and

complex electromagnetic problems [16][17], and, analogously toNNs, in an easy hardware

implementation [18]. As far as theDOA estimation is concerned, a support vector regression

(SV R) procedure has been presented in [19] when dealing with linear arrays. In such a case,

aSVM has been used to estimate theDOA of each impinging electromagnetic wave starting

from a set of known input-output examples where theDOAs of the signals were uniformly

distributed in the whole angular region above the receiver.Despite the generalization capabil-

ity of theSV R-based method, ana-priori information on the number of sources and pre-fixed

angular separations between theDOAs (as in [12]) have been considered to increase the relia-

bility of the estimation procedure. An extension of such a model has been presented in [20] and

experimentally validated in [21] successively.

In this paper, an innovative procedure for real-time direction finding of signals impinging on a

planar array of electromagnetic sensors is presented. The problem of theDOAs estimation is

formulated as a two step procedure, where the first step is aimed at determining the decision

function that correctly classifies whatever input pattern by means of aSVM-based approach. In

the second step, the output of the decision function is mapped into thea-posterioriprobability

that a signal impinges on the antenna from a fixed direction. In order to increase the accuracy

of the estimation process and to reduce the computational burden affecting otherDOAs pro-

cedures, the proposed two-step strategy is nested into an iterative multi-scaling process [22].

Accordingly, the resolution accuracy is improved only in those angular regions where the un-

known sources are supposed to be located at the previous iteration. More specifically, the algo-
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rithm first determines a coarse probability map of theDOAs starting from a training set where

the incoming signals are non-uniformly distributed along the elevation direction,θ, and the az-

imuthal one,φ. Then, theSVM is used to classify the input test dataset at successive resolution

levels by performing a kind of synthetic zoom in the angular regions of interest (ARoIs) where

a higher probability is detected and considering the same training set, thus performed only once

and off-line. Concerning the antenna architecture and unlike [13] and [20], planar arrays of sen-

sors are considered since linear arrays lack the ability to scan in3D-space and the estimation

of both the elevationθ and the azimuthφ angles is crucial and has many applications in various

fields of engineering. For instance, a completeDOA information it is possible to improve the

coverage of transmission in wireless communications by avoiding interferences and enhancing

the system capacity [23]. More specifically, planar arrangements are very attractive in mobile

communications with portable devices where the main beam must be scanned in any direction

[24]. Moreover, the number of impinging signals is unknown as well as their directions be-

longing to the whole angular range above the planar antenna system (i.e.,θ ∈ [0 : 90o] and

φ ∈ [0 : 360o]).

The paper is organized as follows. The formulation of the iterative two-step multi-resolution

DOA approach (in the following denoted by the acronymIMSA−SVM) is described in Sec-

tion 2. In order to show the innovative features of the approach and to assess its effectiveness,

a selected set of numerical results concerned with both single and multiple signals is reported

and discussed (Sect. 3). Moreover, some comparisons with state-of-the-art techniques are also

reported. Finally, some conclusions are drawn in Sect. 4.

2 Mathematical Formulation

Let us consider a planar array ofM isotropic elements displaced on a regular and rectangular

grid with inter-element spacingd on thex− y plane. A set ofI electromagnetic waves impinge

on the array from unknown angular directions(θi, φi), i = 1, ... , I, as sketched in Fig. 1.

The signals, supposed to be narrow-band and centered at the carrier frequencyf (λ being the

corresponding free-space wavelength), are generated by a set of electromagnetic sources placed

in the far-field of the receiving antenna. The open-circuit voltage at the output of them-th
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sensor can be expressed as [20]

vm =

I
∑

i=1

{am (θi, φi) [Ei (xm, ym) · em]}+ gm, m = 1, ...,M (1)

wheream (θi, φi) = ej 2π
λ

sinθi(xmcosφi+ymsinφi), (xm, ym) being the location of them-th sensor

expressed in wavelength, andgm is the background random noise at them-th locations. The

noise samples are supposed to be statistically independentand characterized by a random Gaus-

sian distribution with zero mean value. Moreover,Ei andem are the electric field associated to

thei-th impinging wave and the effective length of them-th array element.

According to the guidelines described in [3] and [4] about the control of adaptive/smart anten-

nas, the solution of theDOAs estimation problem is based also in this work on the measurement

of the total correlation matrix, defined as

Φ = E {v · v∗} (2)

wherev = {vm; m = 1, ...,M} and the superscript∗ stands for complex conjugation, at the

output of the planar array since it contains sufficient information on the received signals [13].

From a statistical point of view, the problem at hand can be formulated as the definition of the

probability map of the angular incidence of the incoming waves starting from the knowledge

of the total correlation matrixΦ. Towards this end, let us partition the angular region above

the array into a two-dimensional lattice ofH = Hθ × Hφ cells, each one corresponding to

an angular sector of sides△θ and△φ [Fig. 2(a)]. The statusχh of each cell can beempty

[χh = χ (θh, φh) = −1], if any signal impinges on the array from the angular regionidentified

by the same cell, oroccupied[χh = χ (θh, φh) = 1], otherwise. Accordingly, the original

problem can be stated as follows: “find the a-posteriori probability functionQ (θ, φ) given a

measured value of the total correlation matrixΦ at the receiver”. Mathematically,Q (θ, φ)can

be also expressed as the linear combination of the non-overlapping basis functionsBh (θ, φ),

h = 1, ..., H defined over the angular lattice

Q (θ, φ) =

H
∑

h=1

q (θh, φh)Bh (θ, φ) (3)
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where the weighting coefficientq (θh, φh) is the probability value that a wave impinges on the

array from theh-th angular sector [i.e.,q (θh, φh) = Pr
{

χh = 1 ;
∣

∣Φ
}

] andBh (θ, φ) = 1 if

(θ, φ) belongs to theh-th cell andBh (θ, φ) = 0 otherwise.

In order to improve the achievable angular resolution, a multi-resolution representation of the

unknown functionQ (θ, φ) is looked for [Fig. 2(b) - r = 1] by exploiting an iterative process

analogously to [22]. More specifically, the probability function is expressed at thes-th step of

the iterative procedure as a twofold summation of shifted and dilated spatial basis functions

Q(s) (θ, φ) =

R(s)
∑

r=0

H(r)
∑

h(r)=1

q(s)
(

θh(r), φh(r)

)

Bh(r) (θ, φ) ; s = 1, ..., Sopt (4)

r being the resolution index andR(s) = s − 1. The summation overr ranges from0 [Fig.

2(a)], which corresponds to the largest characteristic lengthscale, toR(s) [Fig. 2(b)], which

corresponds to the smallest angular basis-function support at thes-th scaling step. For a given

value of r, H (r) = H
(r)
θ × H

(r)
φ is the number of non-overlapped basis functions centered

in the angular sub-domain represented at ther-th resolution. Accordingly, the iterativeDOA

detection procedure is aimed at locating the terms of small length scale at thoseARoIs [e.g.,

the yellow cells in Figs. 2(a)-2(b)] where the signals are supposed to impinge with higher

probability.

In order to profitably exploit the multiresolution representation of thea-posterioriprobabil-

ity function (4) and solving the arisingDOA problem, the following multistep classification

process is performed by means of aSVM-based technique. More in detail,

• Step 0- SVM Training Phase.TheSVM is trained once and off-line starting from the

knowledge of a set of known examples (i.e, input/output relationships)

{

[

Φ, (θn, φn) , χn = χ (θn, φn) ; n = 1, ..., N
](t)

; t = 1, ... , T
}

(5)

called training set, whereT is the number of training data. TheN samples of each

training data are composed byI (t) examples concerned with angular positions(θi, φi),

i = 1, ..., I (t), I(t) ≤ Imax where a signal impinges on the array [i.e.,occupieddirections

- χ (θi, φi) = 1 ; i = 1, ..., I (t)], while the remainingF (t) = N − I (t) are related to
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emptydirections [i.e.,χ (θf , φf) = −1 ; f = 1, ..., F (t)].

Starting from the knowledge of thetraining set, the problem turns out to be the definition

of a suitable discriminant function̂ℑ

ℑ̂ : Φ→ [χ (θh, φh) ; h = 1, ..., H ] (6)

that separates the two classesχ (θ, φ) = 1 andχ (θ, φ) = −1 on the basis of the total

correlation matrixΦ measured at the output of the planar array. In order to approach the

problem with a single classifier, the problem at hand is reformulated as that of building

the following single output function

ℑ̂ :
[

Φ, (θn, φn) ; n = 1, ... , N
]

→ χ (θh, φh) , h = 1, ..., H. (7)

Towards this purpose and according to theSVM theory [15], the following linear deci-

sion function is adopted

ℑ̂
{

ϕ
(

Φ, (θn, φn)
)}

= w · ϕ
(

Φ, (θn, φn)
)

+ b, n = 1, ..., N. (8)

ℑ̂ is determined in a space (called “feature space”) with a higher dimensionality than the

original input data space and obtained through the non-linear operatorϕ (·) [15]. The

unknown termsw andb, which unequivocally define the decision hyperplaneℑ̂, are the

normal vector and a bias, respectively. They are computed during theTraining Phase

according to the guidelines described in [17];

• Step 1- Low-OrderDOA Estimation(s = 1). At the first step, a coarse probability map

[Eq. (4) - s = 1] is determined by means of theSVM classifier mapping the decision

functionℑ̂ into thea-posterioriprobability function.

The unknown probability coefficientsq(s) (θh, φh)
⌋

s=1
, h = 1, ..., H are approximated

with a sigmoid function [15] as follows
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q(s) (θh, φh) =
1

1 + exp
[

γℑ̂
{

ϕ
(

Φ, (θh, φh)
)}

+ ν
] (9)

whereγ andν are two parameters computed according to a fitting process [17] starting

from a subset of theT training data of theTraining Set;

• Step 2- IMSA− SVM Process(s ≥ 1).

– Step 2.a- Angular Regions of Interest(ARoIs) Identification(s← s+ 1). Starting

from the probability map previously (i.e., at thes− 1-th iteration) determined, such

a step is aimed at identifying the angular sectorsD
(s)
ℓ , ℓ = 1, ..., L(s) where the

signals are supposed to impinge in order to improve the resolution only in those

regions and enhance the accuracy of theDOA estimation. Towards this end, first

the values of the functionQ(s−1) (θ, φ) are scaled, thus defining the following new

set of normalized probability coefficients

p(s−1)
(

θh(r), φh(r)

)

=
q(s−1)

(

θh(r), φh(r)

)

qM − qm
+

qm
qm − qM

,
h(r) = 1, ..., H(r)

r = 0, ..., R(s)
.

(10)

where qM = maxr=0,...,R(s)

{

maxh(r)=1,...,H(r)

[

q(s−1)
(

θh(r), φh(r)

)]}

and qm =

minr=0,...,R(s)

{

minh(r)=1,...,H(r)

[

q(s−1)
(

θh(r), φh(r)

)]}

. Successively, the new prob-

ability function

P (s−1) (θ, φ) =
∑R(s−1)

r=0

∑H(r)
h(r)=1 p

(s−1)
(

θh(r), φh(r)

)

Bh(r) (θ, φ)

is thresholded by nulling the scaled coefficients greater than a user-defined threshold

η. Finally, the thresholded function

P
(s−1)
th (θ, φ) =

R(s−1)
∑

r=0

H(r)
∑

h(r)=1

pth

(

θh(r), φh(r)

)

Bh(r) (θ, φ) (11)

wherepth

(

θh(r), φh(r)

)

= p(s−1)
(

θh(r), φh(r)

)

if p(s−1)
(

θh(r), φh(r)

)

> η andpth

(

θh(r), φh(r)

)

=
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0 otherwise, allows one to identify theARoIs,D(s)
ℓ , ℓ = 1, ..., L(s) defined as those

angular sub-domains whereP (s−1)
th (θ, φ) 6= 0;

– Step 2.b - MultiresolutionDOA Estimation. A synthetic zoom is performed by

refining the representation of the unknown functionQ(s) (θ, φ) and increasing the

angular resolution (r ← r + 1) only in theARoIs identified at (Step 2.a). There-

fore, the multiresolutiona-posterioriprobability function (4) is updated(1) by set-

ting Q(s) (θ, φ) = P
(s−1)
th (θ, φ) and computing the new highest resolution coeffi-

cients,q(s)
(

θh(r), φh(r)

)

, when(θ, φ) ∈ D
(s)
ℓ , ℓ = 1, ..., L(s) as in (9);

• Step 3 - Termination Criterion(s = Sopt). The sequence of operations ofStep 2is

repeated until both the dimensions and the number ofARoIs between two consecutive

cycles are stationary [i.e.,L(s) = L(s − 1) and the variations of the dimensions of

theARoIs are not greater than the highest angular resolution at thes-th step,△(s)
min =

min
{

△θ
(s)
R(s), △φ

(s)
R(s)

}

].

3 Numerical Simulations and Results

In order to assess the effectiveness and reliability of the proposed approach, an exhaustive set

of numerical experiments has been performed and some selected results will be reported in the

following for illustrative purposes. The remaining of thissection will firstly (Sect. 3.1) illus-

trate the behavior of the multi-scaling procedure also in comparison with other state-of-the-art

approaches forDOA estimation. The second part (Sect. 3.2) will be devoted to analyze the

potentialities and current limitations of theIMSA − SVM approach when dealing with var-

ious and challenging electromagnetic scenarios. In such a framework, some configurations in

which conventional state-of-the-art signal subspace-based array processing techniques cannot

be applied are also dealt with in order to point out the enhanced range of applicability ofSVM

approaches. Finally, a uniform array ofλ
2
-dipoles is considered (Sect. 3.3) to verify the suitabil-

ity and reliability of the proposed method in correspondence with a realistic array modelling.

(1)It is worth noting that at thes-th step of the multi-scaling procedure only the angular ranges belonging to
theARoIs are processed by theSV M classifier with a non-negligible saving of computational resources.
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With reference to the geometry shown in Fig. 1, a square planar array ofM = 16 isotropic

radiators spaced byd = λ
2

is considered. The power of the impinging signals has been set to

Pi = 30 dB, i = 1, ..., I above the level of the background noise.

Concerning the training set, the following setupT = 400 andImax = 4 has been assumed

and theSVM classifier has been trained once and off-line on the same dataset whatever the

test experiment. As regards to theT =
∑Imax

i=1 Ti training examples, different scenarios have

been considered,Ti = 100 being the number of configurations withi signals. Moreover, the

actualDOAs of the signals of the training data have been randomly chosen in a discrete grid of

locations(θn, φn), n = 1, ..., N belonging to the the angular region above the antenna











θn = θ0 +
⌊

n−1√
N

⌋

∆θ

φn = φ0 +
⌈

n−1√
N

⌉

∆φ
, n = 1, ..., N (12)

⌊·⌋ and⌈·⌉ being the floor function and the ceiling function, respectively. Moreover, in order

to fully assess the generalization properties of theSVM-based approach, theDOAs of the test

examples are different from those of the training dataset.

3.1 Single Signal Scenario - Comparative Assessment

The first experiment deals with theDoA detection of a single signal and atest setof T (test)
1 =

100 examples related to the single-signal scenario has been considered. An illustrative descrip-

tion of the behavior of the proposedIMSA − SVM approach is shown in Fig. 3 dealing with

the “representative” (of the method performance on the whole test dataset) configuration of a

signal coming from(θ1 = 53o, φ1 = 260o). At the first step (s = 1), the planar angular region

D(1) is partitioned intoH(s) = 81 cells (being∆θ(s)
(r) = 10o and∆φ

(s)
(r) = 40o, r = 0, the angular

steps along the elevation direction,θ, and the azimuthal one,φ, respectively) and a coarseDOA

probability map is determined following the procedure described in Sect. 2 (Step 1). Then, the

multi-scaling procedure takes place (s ≥ 2). TheARoIs are identified and partitioned into

H
(2)
R(s)

⌋

R(s)=s−1
= 81 cells with an angular resolution of∆θ(2)

(1) = 5o and∆φ
(2)
(1) = 20o. For the

sake of space, only theDOA probability map obtained at the end of the second step (s = 2)
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is shown in Fig. 3(a). The procedure is then iterated untils = Sopt = 4 [R(Sopt) = 3] with

the final result reported in Fig. 3(b) characterized by an angular resolution inD(4)
1 equal to

∆θ
(4)
(3) = 1.25o and∆φ

(4)
(3) = 5o. As it can be observed (Fig. 3), the region with higher proba-

bility of incidence turns out to be closer and closer to the actual angular location of the signal

when increasing the step number. Quantitatively such an event can be analytically quantified by

computing the values of thelocation indexς(s) (Fig. 1) and of theincidence areaψ(s) defined

as follows

ς(s) =
Φ(s)

max {Φ(s)}
× 100 (13)

whereΦ(s) ,

√

(

sinθcosφ− sinθ̂(s)cosφ̂(s)
)2

+
(

sinθsinφ − sinθ̂(s)sinφ̂(s)
)2

+
(

cosθ − cosθ̂(s)
)2

and

ψ(s) = π















∑R(s)
r=0

∑H(r)
h(r)=1

{

ς
(s)
h(r)

q(s)(θh(r),φh(r))
maxh(r){q(s)(θh(r),φh(r))}

}

∑R(s)
r=0

∑H(r)
h(r)=1

{

q(s)(θh(r),φh(r))
maxh(r){q(s)(θh(r),φh(r))}

}















2

(14)

beingς(s)
h(r) =

[

(

sinθh(r)cosφh(r) − sinθ̂
(s)cosφ̂(s)

)2

+
(

sinθh(r)sinφh(r) − sinθ̂
(s)sinφ̂(s)

)2

+

(

cosθh(r) − cosθ̂
(s)

)2
]

1
2

, (θ, φ) are the actual coordinates of the signal incidence point, whereas
(

θ̂, φ̂
)

θ̂(s) =

∑R(s)
r=0

∑H(r)
h(r)=1

{

θh(r)q
(s)

(

θh(r), φh(r)

)}

∑R(s)
r=0

∑H(r)
h(r)=1

{

q(s)
(

θh(r), φh(r)

)}
φ̂(s) =

∑R(s)
r=0

∑H(r)
h(r)=1

{

φh(r)q
(s)

(

θh(r), φh(r)

)}

∑R(s)
r=0

∑H(r)
h(r)=1

{

q(s)
(

θh(r), φh(r)

)}

(15)

identify the center of theℓ-thARoI where the signal/signals is/are supposed to impinge. As a

matter of fact, the value of the location index reduces fromς(1) = 13.17 down toς(Sopt) = 2.53

(beingς(2) = 4.10 andς(3) = 2.87). Analogously,ψ(1) = 2.74, ψ(2) = 0.94, ψ(3) = 0.36, until

ψ(Sopt) = 0.14. As regards to the whole set of test examples, the statisticsof the “convergence”

values of the indexes (13) and (14) are given in the first blockof Tab. I.

In order to get an insight into the advantages of the proposedmulti-resolution approach over the

classification single-step techniques, a bareDOASVM-based method has been considered and

applied to the same test example. To fairly compare the two methods, the same training dataset

has been used. Moreover, the same angular resolution has been adopted in both cases. Towards
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this purpose, an angular lattice characterized by a uniformgrid whose cell side was equal to the

finest discretization of the multi-resolution procedure (i.e.,∆θ = ∆θ
(4)
(3) and∆φ = ∆φ

(4)
(3)), has

been defined over the whole angular investigation domain of the single stepSVM approach. As

it can be observed [Fig. 4(a)], although the value ofς is quite close to that of theIMSA strategy

(i.e., ς⌋IMSA−SV M = 2.53 vs. ς⌋SV M = 3.14), the extension of the incidence area turns out

to be significantly wider (ψ⌋IMSA−SV M = 0.14 vs. ψ⌋SV M = 2.79). On the other hand, it

cannot be neglected that theCPU-time of the test phase of the bare procedure is approximately

fifty times the one of theIMSA − SVM because of the need to obtain a detailed map in the

whole investigation areaD(1)
1 instead of in a limitedARoI, D(Sopt)

1 , only. As a matter of fact,

the number of test points used by theIMSA approach turns out to be widely reduced.

For completeness, the results from other standard nonlinear classification methods, such as the

multilayer perceptron (MLP ) and the radial basis functions (RBF ) neural network, have been

analyzed, as well. More specifically, theDOA probability maps obtained with theMLP -based

andRBFNN-based classifiers are reported in Figs. 4(b) and 4(c), respectively. Whatever the

method, the achieved estimate does not appear to be adequateand certainly not comparable

neither with that of theIMSA − SVM [Figs. 4(b)-4(c) vs. Fig. 3(b)] nor with that of the

bareSVM [Figs. 4(b)-4(c) vs. Fig. 4(a)] as also confirmed by the values of the location index:

ς⌋RBF = 10.21 and ς⌋MLP = 25.91.

The last analysis is concerned with the comparison between the IMSA − SVM and those

state-of-the-art methods forDOA estimation aimed at determining the angular incidence of

the signals, namelyMUSIC,ESPRIT (i.e., two one-dimensionalESPRITs independently-

applied to the arrays followed by an alignment procedure to associate the estimated azimuth

and elevation angle),2D-unitaryESPRIT [7], and a support vector regression-based (SV R)

approach. Towards this end, the azimuthal direction of the actual signal has been fixed to

φ = 260o, while the elevation angle has been varied in the rangeθ ∈ [20o ÷ 80o]. Moreover,

theSV R algorithm has been previously trained with a dataset composed byT = T1 = 100

examples concerned with only one signal (I = 1). The methods are then compared by means

of the resulting signal location error,ς.

Because of the planar array of isotropic elements and as expected [25], the performances of the
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DOA techniques inθ elevation-estimation turn out to better at high elevations(θ → 0o) [Tab.

II], while theφ azimuth-estimation is greatest at low elevations (θ → 90o). Moreover, the values

of the estimation indexes point out that theIMSA − SVM (last column - Tab. II) is able to

obtain similar results, in terms of angular resolution, than those provided by theSV R and of the

same order in magnitude ofMUSIC andESPRITs except for wider angles (θ ≥ 60o), even

though these latter need moreCPU-time (i.e., an optimizedIMSA − SVM implementation

just needs few milliseconds on aPC equipped with a3.0GHz processor and2GHz ofRAM).

As regards to the growing of the location index around60o, its mainly depends on the training

set. As a matter of fact, it can be avoided by modifying the off-line training phase. For instance,

the choice of a uniform angular distribution of the trainingsamples (Fig. 5), instead of a non-

uniform arrangement, allows one to obtain a behavior ofς almost invariant toθ for medium-high

elevations.

In order to point out the generalization capabilities of theproposed approach as well as its

robustness to the model tolerances [14][26], the effect of the array failure has been evaluated and

the arising results compared to those with2D-unitaryESPRIT which demonstrated several

advantages overMUSIC and the standardESPRIT implementation. Towards this end, an

increasing number of array elements has been switched off. Moreover, thea-priori information

on the failure of some array elements has not been exploited through the definition of an ad-

hoc training set, but the same non-uniform set of input-ouptut examples concerned with the

unperturbed array structure has been used. The results of the comparative assessment when

(θ1 = 53o, φ1 = 260o) are reported in Fig. 6.

3.2 Complex Scenarios - Performance Analysis

The following experiments are aimed at assessing the effectiveness of theIMSA − SVM in

detecting theDOAs of multiple signals.

Dealing with the detection of two different incidence points, the first example is concerned with

test signals coming from(θ1 = 12o, φ1 = 165o) and(θ2 = 82o, φ2 = 165o), respectively. The

probability maps estimated by theIMSA−SV M at different steps are shown in Fig. 7 together

with those obtained with the single-stepSVM classification procedure [Fig. 7(d)], theMLP -
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based approach [Fig. 7(e)], and theRBF technique [Fig. 7(f )]. As expected and confirming

the outcomes from the study of the single-signal detection,the multi-scaling process allows

one to significantly enhance the performances of the single-step classification approaches as

pictorially shown in Fig. 7 and quantitatively confirmed by the indexes in Tab. III. Moreover,

it is worth noting that this conclusion is not limited to a particular configuration of incidence

angles, but it holds true whatever the two-signals scenariounder test.

In order to assess the stability of the proposed approach, a test set composed byT (test)
2 = 100

examples has been considered. The results obtained with theIMSA − SVM are summarized

in Tab. I (second block). As expected, the mean values of the averaged performance indexes

(ς̂I ,
∑I

i=1 ς
(i) andψ̂I ,

∑I

i=1 ψ
(i)) turn out to be very close to those of the previous test

example [i.e.,avg (ς̂2) = 4.51, avg
(

ψ̂2

)

= 0.28 versusς(Sopt)
1 = 4.55, ψ(Sopt)

1 = 0.23 and

ς
(Sopt)
2 = 3.90, ψ(Sopt)

2 = 0.25].

The second numerical experiment, concerned with multiple incidences, considers three-signals

configurations. As regards to the results for a test set ofT
(test)
3 = 50 three-signals examples,

the values in the third block of Tab. I indicate that the resolution accuracy of the proposed

approach does not significantly reduce with respect to the single-signal or two-signals scenarios

[avg (ς̂3) = 5.55, avg
(

ψ̂3

)

= 0.15 vs. avg (ς̂2) = 4.51, avg
(

ψ̂2

)

= 0.28 and ς̂1 = 2.81,

ψ̂1 = 0.25]. As an illustrative example, let us consider the case of a set of signals impinging

on the array from(θ1 = 8o, φ1 = 85o), (θ2 = 68o, φ2 = 95o), (θ3 = 55o, φ3 = 290o). Starting

from the coarse map determined, three differentARoIs are successively identified [Fig. 8(a)]

and better resolved thus iteratively improving theDOA resolution accuracy as pointed out by

the indexes in Tab. IV where the values estimated by the otherclassification approaches are

reported [Fig. 8(b)], as well. By comparing the distribution at theSopt-th step of theIMSA

and the one from the bareSVM , it is evident the improvement guaranteed by the multi-scaling

process both in resolving and properly locating a number ofARoIs equal to the number of

signals (I).

In the third experiment,I = 4 (I = Imax) signals impinge on the planar array. Figure 9 shows

the results provided by theIMSA − SVM and in correspondence with a set of representative

examples. More in detail, the first example (Configuration1/1/1/1) refers to a configuration
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where four separated signals can be recognized [(θ1 = 35o, φ1 = 35o), (θ2 = 20o, φ2 = 115o),

(θ3 = 70o, φ3 = 135o), (θ4 = 80o, φ4 = 260o) - Figs. 9(a)-9(c)]. The second example [Fig.

9(d)] deals with a two-clusters setup [Configuration2/2 - (θ1 = 15o, φ1 = 75o), (θ2 = 25o, φ2 = 120o),

(θ3 = 75o, φ3 = 270o), (θ4 = 65o, φ4 = 300o)], while a single signal and a cluster of three-

signals are present in the last example [Configuration1/3 - (θ1 = 15o, φ1 = 105o), (θ2 = 80o, φ2 = 275o),

(θ3 = 85o, φ3 = 300o), (θ4 = 75o, φ4 = 315o)]. Whatever the example, the multi-scaling pro-

cess is able to identify with an ever increasing resolution from s = 1 [Fig. 9(a)] up to

s = Sopt = 3 [Fig. 9(c)] the ARoIs to which the incidence directions of the actual signals

belong as pointed out by the numerical indexesψ(i), i = 1, ..., I in Tab. V. On the other

hand, it should be noticed that theDOA estimation process tends to cluster multiple regions-

of-incidence in a singleARoI when the angular separations among the signals reduce. Such

an event takes place also in correspondence with the “Configuration2/2” [Fig. 9(d) - Tab. VI]

where twoARoIs are identified. It is even more evident in Fig. 9(e) (Tab. VII) where the

angular incidences of three signals are detected in only oneARoI. The “clustering” effect is

quantitatively pointed out by the behavior of the averaged localization index (Tab. I - fourth

block) when dealing with the complete test set (T
(test)
4 = 50) to which previous examples be-

long. As a matter of fact, there is a significant increase of the avg (ς̂) compared to the values

of the same quantity whenI = 1, 2, 3 [avg (ς̂4) = 17.29 vs. avg (ς̂1) = 2.81, avg (ς̂2) = 4.51,

avg (ς̂3) = 5.55], even though the value ofavg
(

ψ̂
)

remains close to those of other multiple-

signals configurations since the estimatedARoIs still carefully identify the actual incidence

areas.

The fourth and fifth experiments deal with more critical testscenarios since the examples under

test are concerned with a number of signals different from that in the training set (i.e.,I 6=

1, 2, 3, 4). More specifically, let us consider theClustered Distributionof I = 18 signals with

incidence directions indicated by the white points in Fig. 10. It is worth noticing that such

a configuration turns out to be not admissible (i.e.,I = 18 estimates cannot be obtained) for

signal subspace-based array processing techniques as2D-unitaryESPRIT when the planar

array structure at hand is used. As a matter of fact, the maximum number of sources2D-unitary
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ESPRIT can handle is equal to [7]

I2D ESPRIT
max = min {U × (V − 1) ; V × (U − 1)} (16)

beingM = U × V . On the other hand, it should be considered that an high dimensional array

processing is enabled widening the size of the planar array (i.e., the number of array sensors) at

the expense of the computational complexity that, unlikeSVM-based methods, exponentially

grows.

Figure 10 compares the “convergence” (s = Sopt = 3) map provided by theIMSA − SVM

and the ones from other single-step classifiers. As it can be observed, the multi-scaling process

is still able to carefully estimate theARoI to which the actual signals belong with a degree

of accuracy higher than that from the other techniques both in terms of localization and area

extension (Tab. VIII). Similar conclusions hold true when dealing with the detection of the

signals distribution displayed in Fig. 11, although the detection of the single signal on the

bottom of the region of analysis appears to be more critical probably because of the absence of

similar spatial configurations in the training set.

Finally, the last experiment is concerned with a scenario where there are not signals that impinge

on the array and the noise level has been varied from the reference value used for theSVM

training [Pn = 20 dB (Test Set) vs. Pn = 0 dB (Training Set)] thus further complicating the

test case. As a matter of fact, neither the free-case exampleis present in the training set nor the

same noise level has been “learned”. Nonetheless, theSVM-based classifier did not detected

the presence of any signal thus defining a uniform distribution of probability [Fig. 12(a)].

Otherwise, the other methods give color-maps with some “artifacts” [see Figs. 12(b)-12(c)]

although characterized by very small values of the probability of signal incidence.

3.3 Dipole Array Antenna

In the last experiment, a uniform array ofλ
2
-dipoles is taken into account with dipoles oriented

along thex axis. Therefore, the effective length [24] of the array element turns out to be
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em =
λ

π

[

cos
(

π
2
sinθcosφ

)

1− sin2θcos2φ

]

[

(cosθcosφ) θ − (sinφ)φ
]

(17)

Moreover, the inter-element distance has been chosen equalto dx = 0.65λ anddy = 0.5λ

[27]. Then, a subset of the experiments of the previous sections, but with the dipole array,

has been dealt with to evaluate the applicability of theIMSA − SVM approach to non-ideal

electromagnetic scenarios, as well.

In the first example (I = 1), the multi-scaling procedure stops afterSopt = 4 iterations and the

final result is shown in Fig. 13. Likewise the case with point-like sources, the estimations of

both the location and the incidence area improve at each iteration starting fromς(1) = 43.19

andψ(1) = 2.48 down toς(Sopt) = 2.96 andψ(Sopt) = 0.06, whereς(2) = 12.65, ς(3) = 5.41

andψ(2) = 0.75, ψ(3) = 0.21. In this case, the performance are comparable to that in Sect. 3.1.

Different conclusions arise when processing the data of thetwo-signal scenario [Fig. 14(a)]. In

such a case, only theI1 (i.e., the signal with the lowest elevationθ) is detected [Fig. 14(a)]. Such

an event does not depend on theDOA detection method, but from the antenna array at hand.

As a matter of fact, the radiation pattern of the array element is omnidirectional in thez − y

plane (i.e.,φ = 90o andφ = 270o) with a θ3dB angle of almost80o degrees [24]. Therefore,

the gain of the dipole is lower along the direction with higher θs, beingφ1 = φ2 = 165o.

Otherwise, when the actual configuration is described by a set of signals coming from the

directions(θ1 = 30o, φ1 = 60o) and(θ2 = 30o, φ2 = 300o), theIMSA − SVM method still

gives accurate estimates [Fig. 14(b)] although with non-ideal isotropic receiving sensors.

4 Conclusions

In this paper, a multi-resolution approach for theDOA estimation of multiple signals based on

a support vector classifier has been presented. The procedure is aimed at defining a probability

map of the incidence of an electromagnetic signal on a planararray of sensors. Starting from a

coarse map, a synthetic zoom is iteratively performed in theangular sector where the incidence

of a signal has been detected with higher probability at the previous step of the multi-scaling

procedure.
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The effectiveness of the proposed approach has been assessed dealing with different scenarios

and working conditions. Moreover, a comparative analysis has been carried out by considering

state-of-the-artDOA methods. The obtained results have shown that:

• the use of a classifier based onSVM allows one to estimate theDOA probability map in

real time;

• thanks to theSVM generalization capability, theIMSA−SV M behaves properly when

dealing with complex electromagnetic scenarios non-necessarily belonging to the set of

training examples;

• theSVM-based approach is able to estimate theDOAs of a number of sources greater

than the maximum allowed by conventional eigenvalue decomposition methods for a fixed

planar array geometry;

• unlike2−D subspace-based algorithms, the computational complexitydoes not increase

with the size of the rectangular array;

• the proposedLBE technique adapts to element failure or other source of errors coming

from the tolerances in the array structure that cause non-negligible performance degrada-

tion in conventional estimation techniques which require highly calibrated antennas with

identical radiation properties;

• the a-priori knowledge (deterministic or statistical) on the array configuration and ra-

diation pattern characteristics can be easily and usefullyexploited by defining suitable

IMSA− SVM training sets;

• the multi-scaling procedure (IMSA) provides good results dealing with both single-

signal and multiple-signals configurations with an angularresolution comparable to that

of other state-of-the-artDOA algorithms;

• system complexity, classifier architecture, and computational costs significantly reduce

with respect to the “bare” classification.
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FIGURE CAPTIONS

• Figure 1. Planar array geometry.

• Figure 2. IMSA − DOA Procedure- Angular region partitioning andARoIs identifi-

cation at the stepss = 1 (a) ands = 2 (b).

• Figure 3. Single signal scenario, I = 1 - Probability map determined by theIMSA −

DOA procedure at: (a) s = 2, (b) s = Sopt = 4.

• Figure 4. Single signal scenario, I = 1 - Probability maps obtained with different clas-

sification approaches: (a) single-stepSVM , (b) multi layer perceptron (MLP ) neural

network, and (c) radial basis function (RBF ) neural network [∆θ = 1.25o and∆φ = 5o].

• Figure 5. Single signal scenario, I = 1 - Uniform (red points) and non-uniform (green

triangles) angular training sets.

• Figure 6. Single signal scenario, I = 1 - Behavior of the location index versus the

number of failed array elements.

• Figure 7. Multiple signals scenario, I = 2 - Probability maps obtained with different

classification approaches:IMSA − SVM [(a) s = 1, (b) s = 2, (c) s = Sopt = 3], (d)

single-stepSVM , (e) multi layer perceptron (MLP ) neural network, and (f ) radial basis

function (RBF ) neural network [∆θ = ∆θ
(3)
(2) = 2.5o and∆φ = ∆φ

(3)
(2) = 10o].

• Figure 8. Multiple signals scenario, I = 3 (Configuration1/1/1) - Probability maps

obtained with different classification approaches: (a) IMSA−SVM [s = Sopt = 3] and

(b) single-stepSVM [∆θ = ∆θ
(3)
(2) and∆φ = ∆φ

(3)
(2)].

• Figure 9. Multiple signals scenario, I = 4 - Probability maps obtained with theIMSA−

SVM . Configuration1/1/1/1: step (a) s = 1, (b) s = 2, and (c) s = Sopt = 3;

Configuration2/2: steps = Sopt = 3 (d); Configuration1/3: steps = Sopt = 3 (e).

• Figure 10. Multiple signals scenario(I = 18 - Clustered Distribution) - Probability maps

obtained with different classification approaches: (a) IMSA−SV M (s = Sopt = 3), (b)
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single-stepSVM , (c) multi layer perceptron (MLP ) neural network, and (d) radial basis

function (RBF ) neural network [∆θ = ∆θ
(3)
(2) and∆φ = ∆φ

(3)
(2)].

• Figure 11. Multiple signals scenario(I = 18 - Sparse Distribution) - Probability maps

determined by theIMSA − SVM at the convergence (s = Sopt = 2 - ∆θ
(2)
(1) = 5o and

∆φ
(2)
(1) = 20o).

• Figure 12. No-signals scenario[I = 0; Pn = 20 dB (Test Set) - Pn = 0 dB (Training

Set)] - Probability maps obtained with different classification approaches: (a) IMSA −

SVM (s = Sopt = 1), (b) multi layer perceptron (MLP ) neural network, and (c) radial

basis function (RBF ) neural network.

• Figure 13. Dipole Array,I = 1 - Probability map determined by theIMSA − DOA

[s = Sopt = 4].

• Figure 14. Dipole Array,I = 2 - Probability map determined by theIMSA − DOA

when (a) I1 = (θ1 = 12o, φ1 = 165o), I2 = (θ2 = 82o, φ2 = 165o) [s = Sopt = 3] and

(b) I1 = (θ1 = 30o, φ1 = 60o), I2 = (θ2 = 30o, φ2 = 300o) [s = Sopt = 3].

TABLE CAPTIONS

• Tab. I. Statistics of the averaged performance indexes (ς̂ =
∑I

i=1 ς
(i) andψ̂ =

∑I

i=1 ψ
(i))

for different signal configurations (I = 1, 2, 3, 4).

• Table II. Single signal scenario, I = 1 - Comparative assessment. Values of the location

indexς when applyingIMSA−DOA, SV R,MUSIC, andESPRIT .

• Table III. Multiple signals scenario,I = 2. Performance indexes when applyingIMSA−

DOA, single-stepSVM , multi layer perceptron (MLP ) neural network, and radial basis

function (RBF ) neural network.

• Table IV. Multiple signals scenario, I = 3 (Configuration1/1/1). Performance indexes

when applyingIMSA−DOA, single-stepSVM , multi layer perceptron (MLP ) neural

network, and radial basis function (RBF ) neural network.
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• Table V. Multiple signals scenario, I = 4 (Configuration1/1/1/1). Performance indexes

when applyingIMSA−DOA, single-stepSVM , multi layer perceptron (MLP ) neural

network, and radial basis function (RBF ) neural network.

• Table VI Multiple signals scenario, I = 4 (Configuration2/2). Performance indexes

when applyingIMSA−DOA, single-stepSVM , multi layer perceptron (MLP ) neural

network, and radial basis function (RBF ) neural network.

• Table VII. Multiple signals scenario, I = 4 (Configuration1/3). Performance indexes

when applyingIMSA−DOA, single-stepSVM , multi layer perceptron (MLP ) neural

network, and radial basis function (RBF ) neural network.

• Table VIII. Multiple signals scenario,I = 18 (Clustered Distribution). Performance

indexes when applyingIMSA−DOA, single-stepSVM , multi layer perceptron (MLP )

neural network, and radial basis function (RBF ) neural network.
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Min Max Avg V ar

Single Signal (I = 1)

ς̂ 0.16 43.25 2.81 8.76

ψ̂ 0.02 9.14 0.25 1.35

Multiple Signals (I = 2)

ς̂ 0.31 58.47 4.51 8.56

ψ̂ 0.007 11.05 0.28 1.54

Multiple Signals (I = 3)

ς̂ 0.38 17.35 5.55 2.14

ψ̂ 0.009 0.37 0.15 0.34

Multiple Signals (I = 4)

ς̂ 0.47 70.72 17.29 13.58

ψ̂ 0.005 1.89 0.17 0.69

Tab. I - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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DOA Method

θ1 ESPRIT 2DESPRIT MUSIC SV R IMSA− SVM (unif) IMSA− SVM

20o 0.16 0.08 0.34 1.21 0.75 0.52

40o 0.51 0.22 0.59 1.38 1.17 0.83

60o 0.51 0.27 0.68 1.64 1.52 2.22

80o 0.68 0.36 0.74 1.56 1.64 4.93
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Method DOA Indexes

ς1 ψ1 ς2 ψ2

IMSA− SVM

s = 1 8.91 2.33 10.27 3.08

s = 2 5.90 0.54 8.46 0.82

s = Sopt = 3 4.55 0.23 3.90 0.25

Bare SVM 6.04 0.67 16.78 3.78

MLP 17.54 0.27 30.53 2.21

RBF 17.19 0.28 27.77 0.99

Tab. III - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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DOA Indexes

Method ς1 ψ1 ς2 ψ2 ς3 ψ3

IMSA− SVM

s = 1 5.50 0.2 5.59 1.43 4.61 1.56

s = 2 4.15 0.06 5.42 0.74 4.43 0.55

s = Sopt = 3 4.24 0.009 5.19 0.33 3.10 0.14

Bare SVM 10.11 0.35 4.34 1.44 16.52 1.55

MLP 2.45 0.6 21.77 1.09 22.82 2.36

RBF 28.31 1.35 37.34 0.49 29.57 0.67

Tab. IV - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM

s = 1 6.84 0.40 24.37 0.40 23.31 1.48 25.47 1.56

s = 2 5.85 0.31 28.01 0.31 16.96 0.91 8.08 0.68

s = Sopt = 3 3.44 0.16 29.33 0.16 12.31 0.21 7.42 0.24

Bare SVM 8.37 2.89 24.71 2.89 26.52 2.89 25.68 2.89

MLP 38.98 0.52 8.91 0.52 35.34 1.82 17.46 1.69

RBF 15.19 0.32 18.69 0.32 40.65 1.81 22.01 0.91

Tab. V - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM

s = 1 15.50 0.89 11.51 0.89 45.50 2.98 57.71 2.98

s = 2 12.78 0.39 10.65 0.39 10.80 0.72 24.12 0.72

s = Sopt = 3 12.91 0.16 10.55 0.16 4.71 0.26 17.01 0.26

Bare SVM 15.46 0.91 11.64 0.91 46.53 3.17 58.66 3.17

MLP 9.35 0.29 8.66 0.29 13.75 1.75 27.43 1.75

RBF 8.06 0.26 8.77 0.26 14.84 0.57 9.50 0.57

Tab. VI - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM

s = 1 16.98 0.88 39.13 2.81 54.57 2.81 64.78 2.81

s = 2 16.51 0.62 6.04 1.70 22.43 1.70 35.70 1.70

s = Sopt = 3 8.13 0.59 6.18 1.46 11.84 1.46 28.89 1.46

Bare SVM 17.38 0.87 39.45 2.85 54.87 2.85 65.72 2.85

MLP 11.62 0.19 27.46 1.08 11.41 1.08 8.15 1.08

RBF 6.51 0.10 16.85 0.10 3.01 0.10 20.63 0.10

Tab. VII - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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Method DOA Indexes

ς̂ ψ̂

IMSA− SVM 1.20 0.21

Bare SVM 2.82 1.94

MLP 13.78 1.66

RBF 13.62 1.21

Tab. VIII - M. Donelli et al., “An Innovative Multi-Resolution Approach...”
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