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Abstract. This paper is aimed at presenting an overview of Evolutionary Algorithms
(EAs) as applied to the solution of inverse scattering problems. The focus of
this work is on the use of different population-based optimization algorithms for
the reconstruction of unknown objects embedded in an inaccessible region when
illuminated by a set of microwaves. Starting from a general description of the
structure of EAs, the classical stochastic operators responsible for the evolution
process are described. The extension to hybrid implementations when integrated
with local search techniques and the exploitation of the “domain knowledge”, either
a-priori obtained or collected during the optimization process, are also presented.
Some theoretical discussions concerned with the convergence issues and a sensitivity
analysis on the parameters influencing the stochastic process are reported, as well.
Successively, a review on how various researchers have applied or customized different
evolutionary approaches to inverse scattering problems is carried out ranging from the
shape reconstruction of perfectly conducting objects to the detection of the dielectric
properties of unknown scatterers up to applications to sub-surface or biomedical

imaging. Finally, open problems and envisaged developments are discussed.
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1. Introduction

Optimization techniques are generally classified into deterministic and stochastic

methods. For example, the greedy, the steepest descent, and the tree search algorithms
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[111]]119] belong to the former class. Although effective in terms of convergence speed,
these methods generally require a “domain knowledge” since in case of non-linear and
multi-mimina functionals the initial trial solution must lie in the so-called “attraction
basin” of the global solution to avoid the convergence solution being trapped into local
minima of the functional (i.e., wrong solutions of the problem at hand). On the contrary,
stochastic algorithms [59][144][136] are global search approaches potentially able to find
the global optimum of the functional whatever the initial point/s of the search.

The goal of optimization is the knowledge of the global solution. The solution is
fully described when its descriptors (i.e., its descriptive features), which quantify the
information content of the solution itself, are defined. This can be mathematically done
by determining the problem unknowns (i.e., the coded representation of the solution
descriptors) through the optimization of a suitable cost function. It should be observed
that, the number of unknowns is different in each problem and proportional to the
information content of the solution.

Since on one hand the descriptors are different (e.g., discrete/continuous variables)
as well as the number of unknowns to be determined can vary among the optimization
problems, the choice of a proper optimization algorithm is a key issue and a general
rule for this choice does not exist. From a practical point of view, the main features
necessary to an optimization algorithm are the ability to deal with complex functionals
or cost functions, the “simplicity of use”, a limited number of control parameters, good
convergence properties, and the exploitation of the parallelism offered by modern PC
clusters. In this sense, Evolutionary Algorithms (EAs) seem to be good candidates.
They have been applied to a huge variety of problems in different and very heterogeneous
fields ranging from engineering to economics, up to business and natural science.

For example, in biomedical and natural science, several researches are concerned
with the use of evolutionary algorithms for the prediction of protein structures [84]
and the design of drugs [91]. In the framework of engineering, they have been
applied to the design of aircrafts [19], the synthesis of electromagnetic systems [161]
and microwave devices [160]. As far as combinatorial optimization is concerned,
routing [135], assignment [45], and scheduling [102] problems have been dealt with,
as well. Although the number of works published in economy and business is limited,
evolutionary algorithms have demonstrated to work effectively as shown in [74] and [70].

This work is aimed at discussing the use of evolutionary algorithms on a class

of problems in electromagnetic engineering, namely the inverse scattering problems.
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The first population based algorithm applied to this topic was the Genetic Algorithm
(GA) [39]. Several versions of GAs have been implemented and effectively used in
electromagnetic inversion [100][24|[174][79]. In order to cope with the drawbacks of
G As, different kinds of evolutionary algorithms has been successively developed. Among
them, let us recall the differential evolution (DE) algorithm [130]|97] and the particle
swarm optimizer (PSO) [49][81]. More recently, the ant colony optimizer (ACO) has
been also applied |118|. Besides “bare” techniques, a non-negligible number of hybrid
approaches has been implemented to improve the convergence rate of global optimizers.

The paper is organized as follows. In Section 2, an introduction on the genesis of
nature-inspired optimization algorithms and some motivations on their use and efficiency
when dealing with real world problems are given. A general description of the structure
of E'As is presented in Sect. 3, while different implementations are detailed in Sect. 4.
Section 5 is devoted to some theoretical discussions on the convergence properties as
well as on E'As sensitivity to the values of the control parameters. The inverse scattering
problems is briefly formulated in Sect. 6 and an overview on the application of EAs is
provided. Some conclusions on the role of EAs in inverse scattering are drawn in Sect.

7, whereas open problems and possible future developments are discussed in Sect. 8.

2. The Origin of EAs - Adaptation in Artificial Systems

In early 1970s [75], Holland showed that nature-inspired evolutionary algorithms can
be adopted as suitable learning or searching procedures for the solution of artificial
problems. The first example of an algorithm modelling natural systems was the so-called
Genetic Algorithm. The algorithm was based on the concepts of natural selection and
genetic pressure. Its implementation was inspired by the studies of Darwin and Mendel
on the higher possibility for an individual or “agent” that better fit the surrounding
environment to generate offspring and preserve its genetic features throughout successive
generations. The success obtained by this optimization approach was immediate and it
received a wide and rapid diffusion. Different versions of the original binary GA were
developed for the optimization of functionals [47] and they have been applied to real-
world applications. The first text book on GGAs and related applications was published
by Goldberg [69] in 1989.

As compared to previous optimization algorithms, the GA showed many interesting

features. More specifically, (a) the GA does not require neither the analytical knowledge
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nor the differentiation of the functions to be optimized, but only the values of the fitness
are enough to pursue the evolutionary process, (b) the algorithm tends to move towards
the most attractive region of the solution space by means of an “almost” blind search
technique since the operators are applied in a probabilistic way instead of considering
definite rules, (¢) sampling the search space not in a single point but in several locations
at each iteration and the way the operators recombine the information coded in the
population of solutions foster the global search capability of the optimization.

Besides the explicit parallelism guaranteed by its multiple-agent nature as for other
population-based stochastic algorithms successively developed, the G As is also related
to the concept of schemata (i.e., the building blocks coding each trial solution) and the
“implicit parallelism”. In [75] and [69], it has been shown that the effective number
of schemata [69] processed by the GA at each iteration of the evolutionary process is
greater than the number of individuals P of the population. Such a property guarantees
that, also in a serial implementation, multiple characteristics (i.e., the corresponding
schemata) of the solution are processed in parallel. A well-known result is the Holland’s
inequality stating a lower bound on the order of P3/ev/l to the number of schemata
processed in a population of P = £2' strings, ¢ and [ being a small integer [17] and the
string length of binary digits, respectively. This result has been generalized in [11] for a
population of P = 28 individuals by proving that the schemata bound is a monotonically
decreasing function of # and that when 3 > 4/3, the expected number of processed
schemata is a constant and its lower bound is proportional to P®°923)/8 /. /Tog, P.

After the diffusion of G A-based algorithms, the development of artificial systems
based on the concepts of swarm intelligence has been more recently considered [16] and
new implementations of innovative metaheuristics exploiting the cooperation paradigm,
instead of the competitive one of the GAs, have been proposed. In this framework,
the Particle Swarm Optimizer [87] and the Ant Colony Optimizer |[54] have been
successfully applied to an increasing number of problems and applications. These
algorithms artificially model the social interaction and cooperation of swarm of bees
or colony of ants. Accordingly, the activity of each agent is guided not only by the
work in progress (namely, its fitness to the environment) but also taking into account
the information coming from the interactions with other agents or present in the local

environment (i.e., the stigmergy 1 ).

1 The concept of stigmergy, whose meaning and implications will be better specified in the following,
is widespread and quite important in artificial intelligence. As a matter of fact, it is related to the self-
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3. Evolutionary Algorithms - General Framework

E As are iterative procedures, where a pool of P solutions, F' = {i(p); p=1, ...,P},
evolves to find the solution of the problem at hand through the optimization of a suitable
function ® <i(p)> or functions &, <i(p)>, t =1,...,T, (multi-objective optimization |43])
aimed at measuring the “goodness” of the trial solution under given constraints. The
cost function is the unique link between the optimization problem and the physical one
and great attention should be paid to the define ® in order to obtain representative
and reliable solutions at the end of the optimization process. Moreover, the complexity
of the cost function as well as the computational burden of its minimization strongly
influence the use of a class of optimization algorithms rather than others.

As far as the the design of an F A-based optimization technique is concerned, the

key points to be addressed are:

e the representation of the solution, f = {f,;n=1,..,N}, coding a set of N
parameters f,, n=1,..., N, to be optimized;

e the design of the evolutionary operators, £, for generating the succession (ideally
infinite) of trial solutions, ik, k =0,...,00, k being the iteration index;

e the evolution procedure, namely the criteria and guidelines to generate new

solutions by means of the evolutionary operators.

At the initialization of the iterative process, the initial set of solutions Fy =

{ f (p); p=1,.., P} is usually randomly-generated within the search space

fao=r e+ (L=r) f" (1)
starting from the knowledge of the upper ™ and lower f™" bounds of the parameter
fn that limit the admissible search space Q (ie., f € Q with f, e [fim™, fmaer]).
Moreover, r € [0, 1] is a uniformly-distributed random variable. Otherwise, the initial
population can be defined on the basis of some a-prior: information on the problem at
hand and its solutions. In such a case, the solutions are statistically-generated around

a reference trial solution f = {fn, n=1,.., N} by considering either a uniform

ho= i (25 ®)

organization process [16]. In the framework of optimization, it means that the surrounding architecture

(i.e., the environment/solution space) provides a sufficient amount of information and constraints to
control the low level actions (i.e., those of the single agents) such that the general activity of the entire
swarm/colony seems being governed by a global plan. The notion has been first introduced by Grassé
in 1959 about the termites’ behavior [71] and an interesting review on the subject can be found in [155].
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or a normal distribution

L exp — fon— I 2
G (f) = Nor ( \/%L) (3)

G, being a real index controlling the statistical distribution of the parameter values.

Successively (k > 1), a sequence of trial solutions is generated by applying the
operators L in a stochastic fashion and according to the adopted evolutionary procedure.

The pool of solutions at the (k + 1)-th iteration, Fjy4, is given by

fk+1_f k+1ap:1a"'>P (4)

where 51(5;1 is defined on the basis of the solutions Fj, at the previous iteration through

the application of the evolutionary operators

sifly = L{F} . (5)

Accordingly, a trial solution at iteration k + 1 turns out to be expressed

k
fk—l—l - i(()p) + Z L{F} (6)
=0
where
L{F} = ﬁ{ﬁj’)y p=1, ,P}
:c{i@jl 4P p=1, ,P}

= £{f® +L{FoYip=1... P} (7)

The structure of the EAs is then fully described by detailing the following

architecture levels, namely the “Basic level” and the “Control level”.

3.1. Basic Level

The basic level is responsible for the generation of the succession of trial solutions and
it is concerned with the coding of the solutions and the design of the evolutionary
operators.

The coding of the problem unknowns, f,, n = 1,..., N, through a set of symbols
belonging to an alphabet A is a key point of the F As since it forces the choice of the
evolutionary operators as well as the granularity of the optimization and the accuracy

of the final solution. The most popular coding strategies, widely used in several practice
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applications, are the binary coding, A = {0, 1}, and the real coding, A = {R}. The
easy implementation of the former in personal computers and the fact that many
problems deal with continuous real-valued variables have contributed to the proliferation
of EAs with these coding strategies as well as the design of customized real/binary
evolutionary operators. On the other hand, the use of a discrete alphabet of .S symbols,
A ={ay,...,ag}, is common in combinatorial optimization.

Generally speaking and whatever the alphabet, a coding law I"(-) is used to map
the set of parameters, f = {f1,..., fv}, from the input space (called phenotype space)
to its coded representation, ¢ = {ci,...,car}, in the work space (called genotype space):
c="T (i), M > N. Although the terms phenotype and genotype come from genetics
and were first introduced by Holland |75 in dealing with artificial adaptive systems,
their meaning is more general and it is not limited to the framework of genetic-based
optimization algorithms. As regards to the coding function, it can be defined between
equal-dimensional spaces (i.e., M = N) or to a higher dimensionality (i.e., M > N).
Once a new set of coded solutions is determined in the genotype space by using the
evolutionary operators, a decoding law is applied to map the updated coded parameters
into a new trial solution within the phenotype space: f =T""(c).

Concerning the evolutionary operators, they are usually inspired by natural
paradigms. Representative examples are those modeled on the concepts of natural
selection (GAs and DE), cooperation and stigmergy taken from the intelligence of
swarms (e.g., PSO and ACO), and distribution of knowledge [e.g., Memetic Algorithm
(MA)].

3.2. Control Level

The control level is the architectural structure devoted to exploit the building blocks
of the basic level in sampling the solution space to find the global optimum. At
this level, the issues related to the setup of the control parameters, the definition
of the termination conditions, and the introduction of the problem constraints [e.g.,
h; (L(gp)> =0,i=1,..,1, or g, (ﬁf)) <0, 7 =1,...,J| or boundary conditions (e.g.,
fo € [f3"™, fi**] such that f € Q) on the solutions are properly addressed. More
specifically, the control parameters define the number of agents or dimension of the
population/swarm of trial solutions, Py, used at each iteration and the probabilities of

applying the evolutionary operators £. As regards to the convergence criteria, simpler

termination conditions are based on heuristic assumptions and user-defined thresholds
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on the value of the function to optimize or on a maximum amount of iterations, K
[69]|151][87]|54]. More sophisticated choices take into account the stationariness of
the optimal cost function value, @Zpt = {mz’np:17,,,7p [CI) <i§gp)>] }, in a fixed range of

iterations, K indow,

opt Kyind opt
Kwindowcbk—l - Zz’:uim . q>i

7 < (8)

7 being a numerical threshold. Furthermore, conditions quantifying the “diversity” of
the solutions of the population are also used [5].

The boundary conditions are usually related to the physical admissibility of the
solution and derive from the a-priori information on the actual solution. Such an
information allows one to reduce the dimension of the search space and is of fundamental

importance for the (fast) convergence towards the global optimum.

3.8. Single vs. Multiple Objective Optimization

In single-objective problems (SOPs), the optimization is aimed at looking for the
minimum (or maximum) of a scalar function ® (f) : @ € RN — R subject to some
constraints. The solution minimizing the objective function is called global minimum
f’pt = aryg {mz’ni [CD (i)} } The sufficient condition for a point of the solution space,
f €4, to be the global minimum on €2 is that

O (fP) <P (f),VfeQ. (9)

Dual considerations hold true for maximization problems.

Differently, several problems are mathematically described in terms of vectorial cost
function, @ (f) : @ CRY — R,

2 (f) =2 (f): 22(f) s O ()] (10)

where each scalar function ®; ( i) models a different objective or performance criterion
usually conflicting with the others. This is the case of multi-objective problems
(MOPs) or vector optimization problems [43||142][143][175] dealing with multicriteria
optimization. Unlike SO Ps, the meaning of optimum modifies into the “best” trade-off
solution among the whole set of performance criteria. The notion of Pareto optimality

[113] is generally adopted to properly model this concept. A solution f is Pareto-optimal
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on € if no other solutions exist that dominate it. A solution i(“) (strictly) dominates

i(b) if and only if

@ (fO) <@, (f9)  t=1,..T (11)

and

3t e [1,7] : @, @a)) <@, (i“”) . (12)

As a consequence, (a) Pareto optimal solutions cannot reduce their performances on
a criterion ®, without increasing their effectiveness in fitting at least another criterion
5 (b) the solution of a MOP is not unique, but all Pareto optimal solutions are
suitable solutions; (c¢) the solutions on Q non-strictly dominated generate the so-
called Pareto front. Since, no general rules exist for the choice of the best solution
in MOPs, the global optimum is chosen either according to the user-requirements or
by reformulating the MOP into an equivalent SOP whose scalar cost function is the

linear combination of the MOP objective functions

® (1 =§1wﬂ>t % 13

wy, t = 1,...,T, being real user-defined coefficients. As far as solution algorithms for
the MO Ps are concerned, although many mathematical programming procedures have
been designed for the retrieval of the solutions of the Pareto front [92|, FAs seems to
be very suitable to MO Ps because of their intrinsic/implicit parallelism that allows to
simultaneously manage a set of different solutions [43] and to find multiple solutions
at each iteration. Moreover, E'As can easily address optimization problems whose
Pareto fronts are either discontinuous or concave while the searching capabilities of

other optimizers turn out to be more dependent on the nature of the Pareto front.

4. Evolutionary Algorithms - Implementations

In this section, a brief overview on EAs usually (to the best of the authors’ knowledge)
applied to the solution of inverse scattering problems is reported. The section is
subdivided in three main parts. The first one is devoted to describe genetic-based
optimization algorithms. Standard implementation of GAs and DFE are presented
pointing out the main differences and common features. Unlike GAs and DE whose

underlying architecture models a competitive and hierarchical framework aimed at
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promoting the reproduction/evolution of fittest individuals, decentralized optimization
procedures based on the intelligence of swarms, namely the particle swarm optimizer
and the ant colony optimizer, are considered in the second part. Finally, some state-of-

the-art hybrid algorithms are briefly summarized.

4.1. Genetic-based Optimization

4.1.1. Genetic Algorithms - GAs are EAs modeled on concepts of natural selection
and genetic pressure to perform an effective sampling of the solution space. G As basic
principles were first introduced by Holland in 1975 [75] and extended to functional
optimization by De Jong [47| with an immediate diffusion to real-world problems because
of their effectiveness in dealing with complex functions [69]|77]|61] when compared to
standard deterministic procedures.

The solutions at the k-th iteration and belonging to the phenotype space, L(gp),
p = 1,..., P, are called individuals, while their corresponding version in the genotype
space are denoted as chromosomes, g,(f), p =1,...,P. At each iteration or generation,
the set F), = {i]ip); p=1,.., P} of P agents or individuals compose a population of trial
solutions named parents. The set of genetic operators £&4 is applied to Fj, to generate
a new population Fy.;. More specifically, the selection, &, the crossover, C, and the
mutation, M, act on the parents to determine the individuals of the new population,
called children or offspring.

In their basic version, the G As follow the workflow in Fig. 1. After the initialization
of the population Fj at the first iteration (k = 0), new populations, Fy, k > 1, are
iteratively generated by applying the genetic operators L4 = {S, C, M} as follows.

For each iteration, a "mating pool” is chosen by applying the selection procedure to Fj
Frsy=S{F} . (14)

Standard implementations consider the roulette-wheel selection or the tournament
selection [69]. The selection procedure performs taking into account the knowledge on
how current individuals fit the problem at hand. Mathematically, such a knowledge
is acquired by computing the cost function values of the current population, <I>,(€p ) =
) (L(gp)), p =1,..., P. Fittest individuals have higher probability to be chosen as parents
for generating new individuals and for reproducing their chromosomes [75]. Dealing with

minimization problems and according to a fitness proportional selection mechanism, the
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probability of a parent to be chosen for the “mating pool” is equal to

>\(P) — 1/(1)](5))
e

A new population is then generated by applying crossover and mutation according

(15)

to the values of the probabilistic coefficients defined at the control level
Fry1 = Frey U From (16)
where Fj,c) and Fj () indicate the set of new individuals obtained by crossover

Frcy = C{Fis)} (17)

and mutation

Fimy = M{Fys)} (18)

respectively. The genetic operators are iteratively applied on the mating pool until
the population is completed and the parents, whom neither crossover nor mutation are
applied to, are directly reproduced in the next population. To enhance the convergence
behavior of G As, another operator known as elitism is often used. The elitist strategy
is applied whether the condition ®/, > ®*' (in minimization problems) holds true
and it consists in inserting the best individual of the k-th iteration in place of the worst
solution of the successive iteration.

To further improve the convergence as well as the global capability of G As, besides
the commonly-used genetic operators, the GAs have been also modified by using

enhanced techniques like dominance and diploidy, sharing, or knowledge-based operators
[69].

(A) Binary GAs

Genetic Algorithms were firstly implemented to work with binary or discrete unknowns.
The problem unknowns are coded, if not already binary, in strings of [ = ZnN:1 @, bits,
@, is the number of levels used to quantize the range of existence of the n-th unknown

parameter. Both uniform [90]

3 Qn_l
f;nax _ f;nm ;
T oGn —1 Z Qi(n)2 (19)

1=0

or non-uniform quantization |76|

Qn
fn = Z ai(n)Ql_ZXn (20)
=1



12 A. Massa et al.

can be used. More in detail, where a;p,, i = 1,...,@Qy, is the set of bits (or alleles)

composing the coded parameter, ¢, = {al(n), o aQn(n)}, and y, = ﬁ;l is the largest

quantization level.

L4 act on the chromosomes ¢®, p = 1,..., P as follows. In

)

Genetic operators

the selection phase, a pair of parents g,(f”) and g,?f’?

is chosen. The recombination
of the strings of genes is then performed through crossover with probability pe.
By considering the single-point crossover, an integer value i € [1:!] is randomly
chosen and two children are generated whose chromosomes turn out being equal to
g,(fﬂ = {a%), ...ag’;), agfl)’k, ...,ag’zk)} and ggﬂ = {agﬁé), ...agﬁf), agﬁll)’k, ...,ag’fk)}. Each
child contains parts of the genetic structure of both parents. Moreover, an individual is
mutated with probability pys by randomly flipping the value from 1 to 0 or viceversa of
some alleles of the corresponding chromosome, py;p being the bit mutation probability.
Obviously, more complex implementations of the crossover operator (e.g., two-point
crossover, uniform crossover [161]) and the mutation (e.g., interchange [90]) exist, as
well.

Since the binary GA (BGA) works with a finite dimension parameter space, it turns
out to be more adapt to deal with problems where the unknowns can assume only a
finite number of values. Concerning real (continuous) variables, unknown parameters
need to be quantized with an unavoidable quantization error. This error can be reduced
by increasing the gene length [ at the cost of a decrease in the convergence speed and an
increase in the memory requirements. Moreover, the G A operators acting on a binary-
coded representation of the solution do not assure that the chromosomes of the next
generation are admissible solutions. Moreover, if acceptable solutions have to belong to
some domains of the solution space (e.g., when constraints are imposed), monitoring this
property under the action of the genetic operators can be laborious and time-consuming

(a decoding should be performed), and the convergence may therefore be slowed.
(B) Real coded G'As

Binary encoding is not the only way to represent a parameter when applying GAs. In
the presence of real parameters, it is more logical to use the floating point representation
[89]. For the real-coded GA (RGA), a gene is represented by the value of the unknown
itself

o’ =17 (21)
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As a consequence, new genetic operators are designed although the peculiarities
of the original operators should be maintained. Mutation and crossover must remain
a mean to explore the parameter space randomizing selected solutions and a way to
(randomly) mix the good characteristics of the chromosomes, respectively.

In RGAs, the crossover is defined as the arithmetical linear combination of two
chromosomes. Once two parents L(:’l) and L(:’?) are selected, the resulting offspring are

given by

i =i+ =) 77
fr(zplizﬂ (1- )f(pl +7“fn{);§ , n=1,.,N. (22)

The RG A mutation consists in adding a random value s,, € { fr(f ) _ fmin  fmaz _ fr(f ,1}

to a randomly-selected pth chromosome
Ffian = Ty + sn. (23)

Whether the new trial solutions are not physical and do not belong to the solution
space (f ¢ ), they are modified exploiting the a-priori knowledge on the boundaries

of the solution space as follows
o _ { frn i £l £
n’k+1 B max > max
fres if £ > 17

The RGA gained increasing popularity because it is easy to implement,

(24)

computationally efficient when dealing with a small number of real-valued unknowns,

and suitable for fine-tuning the selective pressure [4].
(C) Hybrid coded G As

In some problems, the a-priori knowledge on the solution allows a parametrization of a

subset of the unknowns through a small set of discrete descriptors
fa=H{d; j=1,...,J},de[l,L] (25)

where {d;; j =1,..., J} is the sub-set of discrete equivalent parameters being J < L <
N. In such a case, a suitable encoding procedure must be defined in order to provide a
one-to-one mapping between the phenotype space and the genotype space, but at the

same time, exploiting the features of the unknown parameter set. A hybrid coded GA
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(HGA) is described in [22]| to deal with microwave imaging problems. A set of integer-
valued equivalent parameters, {d;; j =1,...,J}, is binary coded and a floating-point
representation is used for the remaining real unknowns, {f,; n =L+ 1,...,N}. As far
as the genetic operators are concerned, they have been properly modified to maintain
the structure of the hybrid chromosomes. During mutation, if the gene to be perturbed
is binary-coded, it is changed from 0 to 1 or viceversa as for the BGA. Otherwise, the
mutation (23) defined for the RGA is considered.

Concerning the efficiency and effectiveness of HGA-based strategies, the
exploitation of some a-priori information to define a suitable parametrization function
‘H and the choice of a reduced set, instead of the whole number, of representative
parameters is of fundamental importance to reduce the dimension of the search space.
Moreover, the parametrization method can be profitably adopted to prevent the

generation of solutions physically not admissible.

4.1.2. Differential Evolution - Unlike GAs, the Differential evolution algorithm has
been originally proposed by Storn and Price [150] for the global optimization over
continuous spaces. They were mainly aimed at simplifying the evolution process of
GAs as well as to enhance the convergence rate [151||121]. The iterative evolution of
the DE' is similar to that of the GAs. Each current population is replaced by better

individuals obtained by applying the DE operators, £LP¥

, still based on genetic but now
executed in a different sequence: the mutation, M, the crossover, C', and selection, S.
The DE iteratively evolves as shown in Fig. 2. During the mutation process, an

intermediate solution is generated in correspondence with each individual f ,(fp ) as follows

L(ﬁzl = L(Cpl) +e€ <L(€Pz) _L(cm)) ,p=1..,P (26)

where p, p1, p2, p3 € [1, P] (p # p1 # pe # p3) are the indexes of different individuals

randomly chosen in Fj. The agents ig’l), L(fz), and L(cm) are called donor vectors

or secondary parents, and 0 < £ < 2 is a real and constant value that controls the

amplification of the differential variation < L(sz) — i]gp3)>. The crossover is then applied

between the intermediate solution, i;(fil, called mutant vector and the primary parent,

L(f’), according to the following strategy

w [t if (r<po)
U1 = (27)
L(f) otherwise
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Finally, the selection takes place and L(gp) | s chosen according to a greedy criterion
by comparing ¢ <L(€p)) with ® <ﬂl(521)- In a minimization problem, L(Ql = ggﬁl when
d (g,(ﬂl) <o <L(€p)>, while L(fil = L(f’) otherwise.

As regards to the control parameters of DFE, they are the crossover probability
pc and the amplification coefficient € to be carefully chosen to avoid a premature
convergence to sub-optimal solutions or a slow convergence rate [151].

As compared to GAs, the main differences are (a) the order of execution of the
genetic operators (Fig. 2) and (b) the competition between parents and children during
the selection phase which lacks in G'As since the offspring are all accepted while the
parents are all discarded. Unlike G'As, the fittest parents have higher probability to
generate children with better fitness. Moreover, the risk that the average fitness of the
population can get worse is greater in G As since crossover and mutation are performed
after selection. Furthermore, since the secondary parents are chosen from the population
with equal probability (and not through a proportional fitness selection), the DE usually
increases its global searching capabilities. Finally, the cost function of the best individual
®%' k= 1,..., K, monotonically decreases in the DE because of the DE implementation
of the selection mechanism and without the need of particular elitist strategy.

Despite the basic version of the DFE, many different versions of the algorithm exist

[1][121][33]. To identify them the notation DE/z/y/z is generally adopted |151]. More

in detail,

T is the mutated solution randomly chosen (z = rand) or set to the best
individual within the population (z = best);

Y is equal to the number of difference vectors used in the differential variation;

z indicates the crossover scheme.

According to such a notation, the version of the DFE presented above is identified as
“DE/rand/1/bin”. For completeness, let us notice that the mutation operator of the

version “DFE [best/2/bin” is defined as

21(521 = izpt +e <L(€p1) _|_L(€p2) _L(:Js) _ f}(ﬂm)) ) (28)

4.2. Optimization by Swarm Intelligence

4.2.1. Particle Swarm Optimizer - The particle swarm optimizer is a robust stochastic

search procedure suitable for the optimization of contiguous unknowns inspired by the
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social behavior of insect swarms, school of fishes and flocks of birds. In the PSO, an

b(p) Called particle is characterized by a position f(p) in the solution space and a

agent,
velocity v v ) that models the capability of the p-th particle to fly from the current position
to another successive position ik-ﬁ-l' The whole set of particles {Qi(g),p = 1,...,P},
constitutes the swarm Fy. In its classical implementation [85], the particle update

equations are

fk+1 i + U](C-f)—l (29)
and
Ug,)l)f—i-l = vafl)c + Cir (pn k f ) + Cary (gn,k - fr(zplz) (30)

whose physical interpretation, derived by Newton’s laws, has been given in [107].
In (30), w, Cy, and Cy are control parameters known as inertial weight, cognitive
and social acceleration terms, respectively [87].  Moreover, r; and 7o are two
random variables having uniform distribution in [0,1].  With reference to a

minimization problem, the values ]_ol(fp) = arg {minizl,m,k [é[) <i§p))]} and g, =

arg § min [(ID <f(.p)>} are the so-called personal and global
i=1,..,kip=1,..., P =

best solutions, namely the best positions found by the p-th particle and by the whole
swarm until iteration k, respectively.

As far as the iterative optimization is concerned (Fig. 3), starting from guess values
of L(]p) and y(()p), p = 1,..., P, the positions and velocities of the particles are updated
according to Egs. (29) and (30).

The main advantages of the PSO if compared to either the GAs or the DE can be

summarized in the followings:

e the simplicity of the algorithm implementation and the use of a single operator
(i.e., the velocity update) instead of three genetic operators (i.e., the crossover, the

mutation, and the selection);

e the easy manipulation of the calibration parameters [138] (i.e., the swarm size, the
inertial weight, and the acceleration coefficients) which control the velocity update
operator. Even if the number of control parameters (i.e., the population size, the
crossover rate, the mutation rate) is similar, it is certainly easier to set the PSO
indexes than evaluating the optimal setting among various operators and several

options of implementation;
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e the ability to prevent the stagnation by controlling the inertial weight and the
acceleration coefficients to sample new regions of the solution space. In standard
GAs and DE, the stagnation occurs when the trial solutions assume the same
genetic code close to that of the fittest individual. In such a case, the crossover
does not contribute to the evolution and only a lucky mutation could locate a new

individual in other interesting region of the solution space;

e a smaller number of agents, which turns out in a reduced computational cost of the
overall optimization and enables a reasonable compromise between computational

burden and efficiency of the iterative process.

Although the PSO is intrinsically an optimizer for continuous spaces, a binary version of
the algorithm exists [86], as well. In order to deal with discrete spaces |86], the concepts
of trajectory, position and velocity have been properly redefined in terms of changes of
probabilities. More specifically, each dimension of the solution space is normalized to
assume values between 0 and 1. In such a space, the velocity is constrained to the same
range of variation and its value gives the probability threshold for having a binary allele
with zero or one value. The new allele is then computed as follows
1 ifr<A <v£fli+1)

s 0 otherwise

by defining a suitable transformation function A <v£f ,)Q +1> usually consisting of a sigmoid

1
M) = e
14 exp <—vn7k+1>

4.2.2. Ant Colony Optimizer - The ACO is a population-based global optimization
algorithm inspired by the foraging behavior of ant colonies looking for food sources [52].
The ants move in the space surrounding the nest looking for the best (shortest) path
between the food sources and the nest. Likewise the PSO, the ACO is based on the
concepts of swarm intelligence and cooperation, but it also exploits the paradigm of
stigmergy and self-organization [64]. In this sense, the activity of each agent L(f) or ant
in the colony Fj, is guided not only by the work in progress (the goal of optimization),
but also from the information available in the local environment. To modify the local
environment, each ant leaves a chemical substance called pheromone while moving
within the solution space along a path. The amount of pheromone on a path quantifies

its degree of optimality, but it decays with time (evaporation mechanism). These
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mechanisms allow one to avoid poor food sources on one hand and on the other to
efficiently sample the whole solution space.

The first implementation of the ACO [52] was originally developed for discrete
optimization problems and it was applied to solve complex combinatorial problems
[53]|95]. In its basic version (Fig. 4) concerned with the search of a path within a
discrete space (e.g., in the Traveling Salesman Problem [53]), each ant codes a vector
L(f) representative of a set of discrete symbols or locations, L(f) = {ay,...,an}. Let us
suppose w,ij be the amount of pheromone on the edge between the location a; and aj,
i,7 € [1, N], with i # j. Every vector, i]gp), p = 1,..., P, is randomly initialized at the
first iteration (k = 0) and a uniform level of pheromone is assigned to each path within
the search space, wéj = cost. Successively, the pheromone level of each edge of the path

covered by the p-th ant is updated
H g
iy 5{ }7 vy 33
P = Z o (33)
L

where ¢ {1/1,?,L(€p)} = 1 when 1/1,23 € L(f’) (i.e., the path crossed by solution L(f’) contains
the branch individuated by @Z)zj) and 5{ ?,L&p)} = 0, otherwise. Moreover, H is a real
positive constant term. The evaporation procedure takes place to reduce the amount of

pheromone on each path of the graph
1/11?;1 =(1-p) 151?}17 le? (34)
p € (0,1] being a parameter aimed at controlling the evaporation rate. At each

iteration, the probability to move towards a new position a; within the graph leaving

the position a; is given by

Uil
2= (W)

where = (1/12]41) ¥, if ¥, is a physically-admissible path and = (T;J_H) = 0,

po (Vi) =

otherwise.

The ACO has been also extended to the optimization in continuous spaces
[12][148][149]. The Continuous ACO (C'ACO) considers a solution archive where Y > P
solutions are stored and used to generate new solutions. The value Y depends upon
the problem complexity and each solution of the archive is identified by its fitness to
the problem at hand, (ID,(cp) = (i]gp)>, p=1,...,Y. At each iteration, a new set of P
solutions is probabilistically-generated and added to the solution archive. The Y + P
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solutions are ranked from the best (p = 1) to the worst (p = Y) according to the
corresponding fitness. Successively, the worst P solutions are then removed form the
archive.

The new solutions are obtained sampling a suitable probability density functions,
Ok. Usually, the probability density function is a weighted sum of N dimensional

Gaussian functions
_( ) 2
Y (fn - fnp )

eap | —~——Ag—| ,n=1,.,N  (36)
Z \/27? 9 <<ﬁ”i>2

where the mean value ?,&pl and the standard deviation gff ,1

a® (p)
nk anpk

are given by f,(f) = ,1,

n,

n = 1,..,N, and gr(f P,

functions are defined as

w® — 1 (p - 1)2
g wY\/ﬁ 2 (wY)?

€ being a parameter modeling a kind of convergence pressure mechanism. When w is

Moreover, the weights of the Gaussian

, p=1,..P (37)

small, the best-ranked solutions are preferred, while when it is large, the probability

becomes more uniform.

4.3. Hybrid Optimization

Evolutionary algorithms are known as robust optimization techniques able to effectively
explore wide parameter spaces. However, E'As generally require a high number of
cost function evaluations to converge, thus offering reduced performances in terms
of computational efficiency when compared to deterministic optimization techniques.
However, whether the evaluation of the cost is computationally fast, FAs are still
very good candidates for a successful solution of the problem at hand especially when
local minima are present. Otherwise, when the evaluation of the cost function is
cumbersome, different approaches have been proposed to make FA-based procedures
more competitive still maintaining their positive features. On one hand, suitable
encodings (as shown in Sect. 4.1.1) allow a reduction of the dimension of the solution
space. On the other hand, to save computational resources and to increase the
convergence rate, an effective strategy is the hybridization [14]. As a matter of fact,
gradient-based minimization techniques [119] usually converge very fast and yield good

results dealing with convex functionals. However, they can be trapped in local minima
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in highly nonlinear problems. In order to exploit complementary advantages, F A-
based procedures and deterministic methods can be coupled according to the following

strategies:

e the FA/CG-based approach;
e the Memetic Algorithm (M A).

4.3.1. EA/CG-based approach - The simplest and more general way to realize a
hybridized version of an F A is that of considering a “two-stage optimization”. Firstly,
the optimization is performed with an F A and subsequently the algorithm switches to
a deterministic procedure or viceversa.

In |166], a micro-GA (uGA) has been coupled with a deterministic method
proposing a communication criterion for stopping the stochastic algorithm and invoking
the deterministic optimizer. Moreover, a hybrid optimization method combining the GA
and the Levenberg-Marquardt algorithm (LM A) has been proposed in [169]. The LM A
is used to localize a minimum and the minimization procedure switches to the GA in
order to climb local minima. Another hybrid procedure based on a RG A-based strategy
has been presented in [24] where the global search approach is considered to locate
the attraction basin of the global optimum while the C'G approach is used to reach the
global optimum within the same attraction basin. Whether the convergence threshold is
not reached during the deterministic minimization, the RG A restarts with a population
whose individuals are randomly-generated around the current optimal solution.

The main drawback of these approaches is the need to evaluate the “quality” of a
minimum and/or the closeness of the trial solution to the attraction basin of the global
minimum. This requires either an accurate knowledge of the cost function, generally
not available, or a heuristic definition of the degree of accuracy of each trial solution.

To overcome the drawbacks, a more sophisticated approach has been presented in
[97] which considers a closer coupling between stochastic and deterministic optimizers.
The coupling is obtained by means of a step-by-step optimization (SbS — GA) where
only the best individual of each population undergoes a deterministic optimization for
a fixed a limited number of intermediate iterations or until a stationary condition holds
true. Successively, standard genetic operators are executed on the whole population of

solutions.
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4.3.2. Memetic  Algorithm - Likewise the step-by-step hybridization, Memetic
Algorithms have been introduced to define a closer coupling between stochastic and
deterministic optimizers for enhancing the computational efficiency of £ As. Unlike the
SbS — GA, a stronger coupling between the stochastic approach and the deterministic
technique is obtained by introducing a genetic operator which performs a gradient-like
based minimization (e.g., “hill-climbing” operator [158], G-Bit improvement [69]).

The M A is a hierarchical algorithm based on the concept of “meme” [46]. A meme
is a unit of information transmitted when people exchange ideas. Each idea is a trial
solution L(cp), composed by a set of memes. Since ideas are processed before propagating
them, each individual can be assumed as a local minimum /maximum of the cost function
®. From an algorithmic point of view [109]|103|, the processing of an idea is simulated
by means of a deterministic procedure and its propagation and/or evolution with a
stochastic G A-based, or more generally F A-based, technique according to the flowchart
shown in Fig. 5. In mode detail, after the initialization (k& = 0) each individual,
i(p), p = 1,..., P, is considered as initial point for a local optimization procedure in
order to obtain a population of local optima, Fk+1 = {L(Zl; =1,..., P}. Afterwards,
an iterative loop is performed where global and local search algorithms are iteratively
applied to the whole population until a convergence criterion is satisfied. Furthermore,
in order to assure a fast convergence and to preserve the characteristics of the best
individual, the elitist strategy is generally adopted.

As compared to other F'As, the M As exhibit some interesting features. Since the
population is only composed of local optima, the individuals move from one minimum
to another. Therefore, a limited number of iterations is usually required to converge
also with a small population. On the contrary, although very effective in terms of
convergence rate, the main drawback of M As is the unacceptable computational load
when the number of unknowns is large and the fact that they need local minimization,

where the knowledge of the gradient of the functional is often a must.

5. Evolutionary Algorithms - Theoretical Background

5.1. Convergence Analysis and Control-Parameter Setting

In this section, a theoretical analysis pointing out some interesting issues related to the
convergence behavior of FAs is discussed and properly referenced. Some hints on the

influence of the various operators on the algorithm behavior as well as some indications



22 A. Massa et al.

on the values of the control parameters are given.
The study mainly focuses on GAs and PSO as benchmark algorithms based on
different evolutionary concepts: the survival of the fittest and the exploitation of swarm

intelligence, respectively.

5.1.1. Genetic Algorithms Several theoretical analyses on the G As behavior are based
on the concept of schemata, originally introduced by Holland [75] to identify any partial
string pattern among those available in the search space that can be processed by the
GA. In |75], a classical binary GA, with reproduction, roulette-wheel selection, single-
point crossover and mutation was considered to point out the law for either the growth
or decay during the optimization process of some string patterns. In order to illustrate
the schemata theorem, let us consider the following example.

With reference to a population with [ = 5 bits chromosomes, the schemata %0 * 11
is characterized by fixed alleles (i.e., the second, the fourth, and the fifth) and some
“don’t care” positions (i.e., the first and the third). All possible schemata within a
population are expressed in terms of a three letters alphabet AT = {0,1,%}. The
total number of admissible schemata is equal to (2 + 1)}, while the number of schemata
within a population of P individuals can range from 2! up to P x 2! since each allele of a
chromosome can assume the actual value 0/1 or the don’t care symbol. Each schemata
is identified by two quantities: the order, o(+), and the length,  (-). The schemata order
is equal to the number of fixed alleles within the schemata. The length of a schemata
is the distance between the first and last position with fixed alleles. For example, the
two schemata s® = {01 % 1} and s = {* x 01} have order and length equal to
0(sM)=3,0(s™)=2and §(s) =4, 5 (sM) =1, respectively.

L% on the survival of a schemata during the

The effects of genetic operators
evolution of the population have been carefully analyzed in [75] and [69]. Summarizing,
the number m (s, k) of occurrences of a schemata s within a population at the k iteration

increases/decreases proportionally to

Pay (3) _a(s)
% 25:1 (I)Ecp—)l i1

where @, (s) is the average fitness of the individuals of the population containing the

m (s, k) = m(s,k—1)

pc —o(s)pm (38)

schemata s and the condition py; < 1 is assumed.
It is worth pointing out that when crossover and mutation are not used and the

individuals directly reproduce throughout the generations only on the basis of the
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proportional selection, the effect of replication leads to an exponential growth/decay
of schemata having an average fitness above/below the average fitness of the whole

population. By supposing

Dy, (5) = (1+2) ZCD (39)
and the percentage ¢ constant during the optimization process, it turns out that
m (s, k) = m (s,0) (1 +0)" (40)

m (s,0) being the occurrence of the schemata s within the initial population. Equation
(40) points out the exponential effect of the genetic pressure on the convergence of the
GA [44]. On the other hand, a schemata survives to crossover and mutation when the

following condition holds true

%pc+o()pM<1 (41)

where ( — %p(;) and (1 —pM)o@ >~ 1 —o0(s)pa since py; < 1 are the crossover and

mutation survival probabilities, respectively. To satisfy (41), the values usually adopted
for the probability of mutation and crossover are pc € [0.5, 0.9] and pys € [0.001, 0.1].

The results of such analysis define the so-called Schemata Theorem or Fundamental
Theorem of G As whose main outcome is that “short, low-order, above-average schemata
receive exponentially increasing trials in subsequent generations”. In [69], Goldberg also
formulated the Building Blocks Hypothesis by stating that the G A solution converges to
the portion of the search space coded by the building blocks composed by high-fit, short,
and low-order schemata which have low probability of being disrupted by crossover and
mutation.

Further studies have been successively carried out to give some indications on the
convergence of the GAs to the optimal solution ®*!. In [139], a probabilistic analysis
on the convergence of a canonical GA is presented. The algorithm is described through a
Markov chains model and it is aimed at assessing the converge condition on the sequence

of trial solutions
limp—ooPr {®F = @*'} =1. (42)

By considering a proportional selection mechanism and without elitism, it has been
demonstrated that the canonical GA never converges to the global optimum. As a matter

of fact, it has been proved that there is a non null probability that, whatever the initial
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distribution of the population Fj, the algorithm is able to find a solution with fitness
value " < !k — oo. In this sense, it turns out that the Schemata Theorem |75
does not imply the convergence to the global optimum in static optimization problems.
However, it has been also shown [139] that the elitism can assure global convergence
since the “transition time” between whatever two states/solutions of the solution space
is finite and the global solution can be found at least one in an unlimited run of the
algorithm.

The theoretical analysis carried out by Qi and Palmieri has considered, first
separately and then in a unified framework, the effects of the proportional selection, the
mutation [122] and the crossover [123] with the assumption of an infinite population
size (i.e., F = {i(p);p: 1,..,P; P— oo}) over continuous spaces (i.e., f € R).
In this sense, the whole solution space is sampled by agents and, thanks to this
hypothesis, the distribution of the population can be modeled with a sequence of
continuous probability density functions © (Fy), k = 1, ..., 00, instead of using discrete
distributions. As far as the genetic operators are concerned, it has been shown in [122]
that the selection tends to concentrate the individuals around the fittest solution (i.e.,
the global optimum) according to the genetic pressure proportional to the value of both
the density function © (F;) and the fitness function ® (Fy). Such a mechanism also
justifies the effectiveness of GAs in dealing with multimodal functionals characterized
by multiple global optima. On the opposite, the mutation spreads the distribution
obtained after selection proportionally to the convolution between the mutation density
and the distribution of the population [122].

Because of the infinite dimension of the population, the selection operator by
itself guarantees the convergence to the global solution without the need of mutation.
However, the use of mutation is mandatory in real optimization problems when finite
populations are used since it enables the exploration of new regions of the solution space.

As regards to crossover (either single-point, multi-point, or uniform [48]), the
analysis in [123] shows that it is able to find new solutions in a smarter way as compared
to mutation thanks to a good trade-off between exploration and exploitation capabilities.
As a matter of fact, the crossover is able to diversify the population. Its iterated
application reduces the correlations among the solution parameters while maintaining
the marginal distribution of each unknown unaltered and equal to that of the initial
population (i.e., epistasis theorem [123]).

Still concerned with the convergence issue, a Markov chain analysis based on the
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Schemata Theorem has been sketched in [57][153] where an infinite number of iterations
is considered. Moreover, a convergence analysis with an infinite population size in also
discussed in [159]. Furthermore, the effects of crossover have been thoroughly analyzed
in [162].

Under genetic drift conditions § and in the case of a simple GA when mutation is
either applied or not, the results in [110], numerically assessed in [3] through computer
simulations, indicate that the mean convergence time grows proportionally to the
population size. Concerning the mutation, an “optimal value” has been identified to
allow all the solutions being explored with the same probability. Other empirical results
about genetic drift for different versions of G As can be found in [67][78].

Many other studies on the GA convergence and properties can be found in the
state-of-the-art literature and are currently under development. The interested reader

is referred to the specialized literature for a more complete discussion of these issues.

5.1.2.  Differential Evolution - Since the main objective of DFE is to improve
the convergence rate of GAs, the main theoretical efforts have been addressed
towards the optimal choice of the parameters controlling the evolution. This fact
is confirmed by several works on this topic published in the reference literature (see
[63][94][171][168][121][133] and references therein).

Since the basic idea of DE is to adapt the search step inherently along the
evolutionary process to have a suitable trade-off between exploitation and exploration
and the scale of the perturbation vectors is roughly proportional to the extent of the
population diversity, the control parameters should allow large perturbations at the
beginning of the evolution process when parental individuals are far away to each other.
When the evolutionary process proceeds to the final stage, the population must be
forced to a small region around the attraction basin of the global optimum through
small perturbations. As a result, the adaptive search step would benefit the evolution
algorithm by performing global search with a large perturbation step at the beginning
of the optimization and refining the population with a small search step at the end.

In such a framework, although [151] states that the strategy parameters for the
DFE are not difficult to choose, there are not general rules for choosing the DFE

control coefficients. Moreover, even though there are only three parameters to set,

§ The random drift of the gene frequency is caused by the probabilistic generation of successive
populations. It models the highlighting of genes with particular values.
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the application of DE on several test functions as in [63] showed that finding the global
optimum is very sensitive to the choice of the control variables: P (population size), ¢
(amplification factor), and pc (crossover probability). Notwithstanding, the following

rules of thumb have been given in [63]:

e a population size between P,,;, =3 X N and P,,,. = 8 X N;

e a good initial choice for the amplification factor ¢ = 0.6 to be increased if one
suspects that this setting causes the trial solution being trapped in a local optimum.
As a matter of fact, a larger € increases the probability for escaping a local optimum,
although for € > 1 the convergence rate decreases since it is more difficult to reach
the global solution when the perturbation is longer than the distance between two
individuals;

e a large pc often speeds-up convergence, but from a certain threshold value upwards
the population may converge prematurely and stagnate. A good choice, whatever

the cost function at hand, seems to be a value between 0.3 and 0.9.

Besides a careful analysis on the sensitivity of the DFE optimization to the values of
the control parameters, innovative operators have been also introduced by exploiting
geometrical relationships to further speed up the convergence (e.g., trigonometric

mutation [60]).

5.1.3. Particle Swarm Optimization In 42|, Clerc and Kennedy examined in details
the behavior of the PSO and defined some conditions on the PSO parameters to avoid
a divergent search. With reference to a simplified one-dimensional (i.e., N = 1) and
deterministic (Cyr; = Cy and Cory = C3) model, described by the following updating

equations

Vg1 =V, + @ (t — fr)
Jir1 = Je + vesr (43)

where ¢ = C; + Cs and t = % is the index related to both the cognitive and
the social term and by supposing the personal best and global best position fixed (i.e.,
pr = p and g, = g), it has been shown that when ¢ > 4, the particles diverge as a
function of k, while when 0 < ¢ < 4 the trajectories are oscillating around the position

t [112] with cyclic or quasi-cyclic behavior depending on ¢. These conclusions have been
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drawn from the analysis of (43) re-arranged in matrix form as follows: Fj3 = MF;

where Fj, = [vg, zk]T, being 2z, = (t — fx), and the dynamic matrix is given by

I
A "

As a matter of fact, it turns out that 7, = M*F,, F, being the initialization vector. A
sufficient condition to reach an equilibrium point at the convergence (i.e., t) is that the
amplitudes of the two eigenvalues of M are lower than unity [157]. However, a random
choice of ¢ causes the uncontrolled increasing of the velocity term vyyq [87].

Further developing the approach based on the generalized matrix, it has been proved

that the following constriction system

Vk1 = X [k + C1r1 (p — fi) + Cora (9 — fr)]

Jror1 = fe + Vb1 (45)
where y = ﬁ = 0.7298 with ¢ = 2C; = 2Cy = 4.1 guarantees the stability of

the optimization process.

Other variants of the PSO exist and a careful analysis about the convergence taking
into account the randomness of the algorithm has been reported in [120].

Concerning the optimal choice of the control coefficients, it is still worthwhile to
point out that since higher values of w produce relatively straight particle trajectories,
resulting in a good global search characteristic, while small values of w encourage a
local searching, some researchers have gained advantage from a decrease [56][147] or a
random variation of w during the iterations |58|. As regards to the coefficients C and
Cy, they are usually set to 2.0 as recommended by some papers in the PSO literature

[85][87][146] and found through experimentation in several optimization fields [15].

5.1.4. Ant Colony Optimization - A first proof on the convergence of an AC'O-based
algorithm, named graph-based ant system (GBAS), was reported in |72||73] where it
has been shown that the global solution can be found at least once throughout the
optimization process. Although reliable, such a proof does not hold true whatever the
problem and it is limited to the GBAS implementation which usually differs from the

ACO version used in inverse scattering.
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In [104], similarities between the pheromone update mechanism and the stochastic
gradient descent have been pointed out to show that a class of ACO converges to a local
optimum with probability equal to 1. On the same line of reasoning of 72|, Stutzle and
Dorigo proved in [152][54] that for a class of ACO-based algorithms with a lower bound
Umin On the pheromone level, the success expectancy of the optimization is equal to
Pr {@Zpt = @b’} > 1 —p, with n small as desired and close to zero for an unlimited
iterative process (i.e., Pr {@Zpt = (IDbESt} — 1 when k& — o0). Moreover, the pheromone
deposited on the optimal path is higher than that left on others only after few iterations.
A similar convergence proof has been also yielded in [172| by exploiting a simulated
annealing concept and introducing an adaptive pheromone deposition function.

Besides the theoretical works on the convergence issues, some efforts have been also
devoted to the application of the ACO to optimization problems not “suitable” for the
structure of the algorithm itself. To describe this behavior, Blum and Dorigo [13| used
the term “deception” previously introduced by Goldberg [68| to identify unfit problems
for the GA concepts. The arising conclusions highlighted that in some cases AC'O not
only reaches a sub-optimal (local) solution (i.e., first order desception), but also that the
performance of the algorithm can get worse (i.e., second order desception). For further
indications on this issue, the interested reader is referred to the exhaustive survey on

the ACO theory available in |55].

6. Evolutionary Algorithms - Applications to Inverse Scattering

In this section, the application of E'As to inverse scattering problems is analyzed. For
notation simplicity and without loss of generality, the inverse scattering problems is
formulated in two-dimensions and 7'M illuminations are considered to deal with a scalar
system of equations. The extension to the vectorial 3D problem is straightforward and
it does not modify the meaning and aim of the following discussion.

Since FE A-based approaches have been applied to retrieve both dielectric and
dissipative scatterers as well as perfectly conducting objects (PEC'), the mathematical
description of both problems as well as the analytical expression of the arising cost
functions used during the optimization will be summarized. The theoretical reasons
of the effectiveness of F'As in dealing with the ill-posedness and non-linearity of these
problems will be discussed, as well.

The last part of this section provides a representative overview, to the best of



Evolutionary Optimization as Applied to Inverse Scattering Problems 29

the authors’ knowledge, on the solution of inverse scattering problems through EAs.
Although a fair comparison among various algorithms and different implementations is
impracticable due to (a) the customization of each EAs to the scattering scenario at
hand, (b) different metrics adopted to define the cost function to be optimized, and (¢)
different strategies at the control level (e.g., different stopping criteria), a summary of
the performance of some EAs is reported in Tabs. I and II. More specifically, Table I
concerns with the FA-based approaches for qualitative imaging (i.e., the retrieval of the
object’s support and shape) of both conductors and dielectric scatterers. The values of
the key computational indexes (where available) are given and compared: the number of
unknowns, NV, the number of trial solutions at each iteration, P, the number of iterations
needed to achieve the convergence, K.,4, and the corresponding total computational
time, Ti,¢. Analogously, the performances of quantitative imaging (i.e., the retrieval of
the dielectric properties within the investigation domain) techniques based on E As are

summarized in Tab. II.

6.1. Inverse Scattering of Dielectric Objects

Let us consider a region, called investigation domain D);, characterized by a relative
permittivity e(r) and conductivity o(r). Such a region is probed by a set of V' transverse-
magnetic (T'M) plane waves, with electric field ("(r) = (*(r)2 (v =1,..., V), r = (z,¥),
and the scattered field, {'(r) = £¥(r)Z, is collected at M(v), v = 1,...,V, measurement
points ), m(v) = 1,..., M(v), distributed in the observation domain D,,.

In order to electromagnetically describe the investigation domain D;, let us

introduce the contrast function

7(r) = [e(r) = 1] = j22 | reD; (46)

where w is the working angular frequency and the time dependence e/“! is supposed.
Under the hypothesis of a linear, isotropic, and non-magnetic propagation medium, the

scattered field £¥(r) is the solution of the following Helmholtz equation (see [10])

VA (1) — KA (0)€" (1) = —jwpo " (r) (47)
where k(r) = wy/ o€, [T(r) + 1] is the wavenumber. Moreover, J¥(r) is the equivalent

current density defined within D; and radiating in free-space

J'(r) =71(r) £ (r) (48)
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EV being the electric field in the presence of the scatterer (i.e., the total field). By

imposing that £V(r) satisfies the Sommerfeld’s radiation condition

i 7 (55 ) =0, (49

the solution of (47) in a two-dimensional scenario is given by the following Lippmann-

Schwinger integral equations [35|
& () = () 7 (') Gop (L) /') L' Tyngwy € Do, (50)
g ( ) EU ( ) fD )G2D(T/T) ' ) feDiv (51)

where A is the background wavelength. Moreover, Gop (r/r') is the two-dimensional

free-space Green’s function given by

Gan e/ = =4 18” (e =21 52

HSQ) being the second-kind zeroth-order Hankel function.

Inverse scattering techniques are aimed at reconstructing the object function 7(r)
in D; starting from the knowledge of £¥ (zm(v)), Tmw) € Do, and (¥ (r). Unfortunately,
the arising problem is non-linear and ill-posed [10]. Moreover, a closed form solution
of the integral equations in (50) and (51) does not generally exist. Consequently, the
inverse scattering problem has to be reformulated and effective inversion methodologies
have to be employed.

Since analytical solutions are rarely available, a numerical solution is then looked
for. For instance, equations (50) and (51) are discretized according to the point-matching
version of the Method of Moments [137]. The investigation domain D; is partitioned
into NV square sub-domains D,, centered at r,,, n = 1,..., N. In each sub-domain, a pulse
basis function is defined

Bn@:{1 ifreD, (53)
0 if r¢ D,

and the contrast function turns out to be expressed as follows

N
=> 7B.(r), r.r,€D; (54)
n=1

where 7, = 7 (r,,)), n = 1, ..., N. By assuming the incident field " and the total field
E" constant inside each sub-domain D,,, the discrete form of the Lippmann-Schwinger
equations is given by

(2

m(v) (zm(v)) = ZnN 1 Tn ( )G2D ( (v) /fn) ) fm(v) € D07 (55)
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¢ (r,) = B2 (r,) — S0 B2 (r,) Gap (r,/1,) . 1 € Dy, (56)

where Gap (1, /1,,) is the discretized form of the two-dimensional Green’s operator.

In order to cope with ill-posedness, the inverse scattering problem is usually
recast as an optimization one defining a suitable cost function proportional to the
mismatch between the measured fields and their numerically evaluated counterparts to
be minimized. Additional regularization or penalty terms can be also added to the cost
function in order to enhance the reliability of the inversion process. The cost functional
is a function of the trial solution f = {?n, Eﬁ; n=1,.., N} and it can be expressed in

matrix form as follows 10|

>V |le-gr FE||? SVo|l¢-Ear, B

) f =« 1” EXT + ﬁ 2> =INT (57)
8 S S

where G* and G° are the M x N external Green’s matrix and the N x N internal

=ZEXT =INT
Green’s matrix, respectively. Moreover, a and [ are two user-defined regularization

parameters. Furthermore, ¢ is the N x 1 incident field array, the M x 1 entries of £’
are given by the measured scattered field samples, and Ev is the N x 1 array of the
estimated total electric field.

opt

The actual solution f*" is looked for as the N x 1 trial array that minimizes the

cost function (57)

f’pt = arg {minkzlmK [(ID {ikH } (58)

where ik = {fk, E:} is the trial solution at the step k-th iteration of the optimization

procedure.

6.2. Inverse Scattering of Perfect Electric Conductors

When dealing with PEC' characterized by a conductivity ¢ — oo, Equation (50)

modifies as follows

gv (zm (v) ) = WMO §-y L G2D ( /T ) dT ) zm(v) S D07 (59)

JY (r) being the surface current density defined only on the boundary « of the unknown

scatterer. Since the following condition holds true on the surface of the PEC

'(r)+¢"(r) =0, rey, (60)

the scattering equation is given by

" (r) == §, Jo (1)) Gop (/) dr’ €y, (61)
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and the unknown current JY (r) descriptive of the scatterer (i.e., the contour =) is
computed through the inversion of the linear system (61) starting from the knowledge
of (V(r). Likewise the inversion of dielectric scatterers, the reconstruction process is
recast as the minimization of the following cost function

Salle -G s (DI
®{y} = e 62
{1} ZL/:1||§UH2 ( )

where 7 is the parametrized representation of the scatterer contour ~.

Because of the non-linearity of the scattering problem and the presence of local
minima (i.e., false solutions of the inverse scattering problem) in the cost function (57)
or (62), the quality and the reliability of the final solution mostly depends on the

effectiveness of the search strategy.

6.5. EAs-based Approaches for Inverse Scattering

The first multiple-agent evolutionary techniques applied to solve microwave inverse
scattering problems were the genetic algorithms. Chiu and Liu in [39] applied the
BGA for the 2D inversion of a PEC' cylinder illuminated by an incident T'M-polarized
plane wave. The 2D surface-reconstruction problem has been reformulated into a mono-

dimensional one by describing the contour of the cylinder as a function of the polar angle

6

M/2 M/2
v (0) = Z Apcos (mb) + Z B,,sin (mf) (63)

with 6 € [0, 2], where the unknowns to be determined
f= {Ao, Ay, Ay, By, By, . B%} (64)

are the real coefficients of the Fourier series expansion. The number of unknown
parameters was set to N = M + 1 = 9 and various experiments considering strings
of length [ = 8 x N and [ = 10 x N have been performed to validate the E A-based
inversion method. As far as GA parameters are concerned, a population of P = 300
individuals was chosen with po = 0.8 and py; = 0.04. Successively, the sensitivity
of the reconstruction on the GA parameters has been analyzed in |40] by the same
authors under T'F illuminations. The outcomes have been that for this kind of problems
a suitable choice of the GA parameters was: a population dimension in the range

P € [300, 600], a chromosome length of [ € [8, 16]x N bits, and probabilities of crossover
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and mutation in the following ranges 0.7 < pc < 0.9 and 5 x 107* < py; < 5 x 1072,
respectively. Such a G A-based inversion procedure was extended in [41] to image lossy
or imperfectly conducting cylinders. More specifically, the GA was used to retrieve also
the conductivity of the unknown scatterer by coding both the Fourier coefficients of the
shape and the value of the conductivity of the object.

Following the guidelines in [39] for defining the inversion problem, an approach
based on a micro-GA has been presented in [79] to enhance reconstruction and
convergence performances of standard GAs. A number of N = M + 1 = 5 unknowns
was considered to describe the contour of the scatterer through (63) and a population of
P =5 individuals with [ = 12 X N chromosomes was used. The main advantages of the
nGA are that it employs a small population, thus reducing the overall computational
burden, and assures a fast convergence to sub-optimal solutions while maintaining
superior search ability.

Takenaka and co-workers [154] proposed a volume-reconstruction approach to
estimate widths and locations of parallel strips in 1D and 2D problems without any a-
priori information on the number of strips. The investigation domain D; was discretized
in N = 20, 36 cells and either an empty (“a; = 0”) or occupied (“a; = 1”) state was
assigned to each cell. If a; = 1, the ith cell is occupied by a metallic strip, a; = 0
otherwise. It is worth pointing out that, the original problem was reformulated as the
definition of a binary map to allow a straightforward use of the BGA. The population
dimension was set to P = 50 with fixed crossover probability pc = 0.8 and variable
mutation probability in the range py, € [0.01, 0.5]. The approach was extended in
[100] to retrieve locations and two-dimensional cross sections of conducting cylinders.
To improve the convergence rate for a 2D discretization of the scenario under test, a
customized crossover, called rectangular block crossover, was developed to efficiently
deal with a binary reconstruction map. Moreover, a larger population with P = 200
individuals was considered because of the wider solution space (N = 225). In [173], a
similar BG A-based approach has been tested against Ipswich experimental data-set to
reconstruct metallic objects. The investigation domain D; was discretized into N = 400
cells and the GA parameters were set to P = 100, pc = 0.8, and py; = 0.2.

To avoid the quantization error related to the discretization of the real coefficients
n (63), Qing and co-workers proposed in [124][125|[127] a strategy based on a RGA.
For comparative purposes, some benchmark examples previously addressed in [39] with

the BG A have been considered. An experimental validation of the method has been
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presented in [128], as well.
In an alternative fashion, the contour of the conducting cylinders has been
approximated in [129] by means of local shape functions mathematically expressed in

terms of closed cubic B-splines

v(0) = 2_: Prm <%9 - m) , 80,27 (65)

where each segment p,, is a linear combination of four cubic polynomials Q; (%),

1=0,...,3, as follows

Pm (1) = Pm—1Qo (t) + pm@1 (t) + Pm+1Q2 () + Pms2Qs (1)

DPm—1, ---» Pm+2 being the control points. In this case, the parameters to be optimized are

the set of control points

f=Apo,-;pm-1} - (66)

Dealing with these problems, the RGA was used with probability coefficients equal to
pc = 1.0 and py; = 0.1. More recently, the representation of PEC' contours using
cubic splines has been extended to deal with three-dimensional (3D) electrically large
conducting patches [141].

Previous references and the obtained results point out that the G A-based techniques
have demonstrated to work effectively in retrieving strong scatterers in free-space
through the minimization of the mismatch between the measured and the reconstructed
scattered field. In addition, the robustness of the GA in such a framework has been
proved since the converge to the global optimum has been obtained with high probability
despite a rough initialization of the iterative process. More recently, an innovative
strategy based on Genetic Programming (GP) [88] has been presented in [163]. A new
geometry-encoding scheme was introduced and a tree-shaped chromosome was used to
describe the shapes of the cylinders as the union and subtraction of convex polygons.

In [65], the binary G A was also applied to both the detection of circular conducting
cylinders buried in an homogeneous dielectric medium and the dielectric profile retrieval
of layered media. A similar approach has been considered in [101] to reconstruct the
electrical parameters (¢;, 0;, p;, ¢ = 1,..., M) of a multilayered radome of finite size A.
In this case, the chromosome was the binary representation of the following unknown

array

i = {617 01, K1, d1>"-a€Ma OMs UM, dM} (67)
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being ZnNzl d, = A. To increase the accuracy of the reconstruction and improve the
convergence rate, an adaptive chromosome structure was chosen in order to iteratively
adjust the existence range of each parameter.

An inverse scattering technique for the detection of perfectly conducting cylindrical
objects buried in a half-space have been described in [38]. An improved “steady-state”
GA (SS — GA) || was used to reduce the computational burden and a non-uniform
probability distribution was introduced to control the generation of new individuals
through crossover and mutation. The shapes of the buried objects have been represented
considering both Fourier series (63) and Cubic-splines (65) representations. Each
unknown was coded with [ = 20 bits string and a population of P = 100 individuals
was chosen. Moreover, the following setup was chosen: pc = 0.05 and py; = 0.5. If
compared to standard GA, the values of the control parameters, turn out different in
magnitude. This is due to the steady-state GA implementation since only a portion of
new individuals is generated through crossover and mutation, while the whole population
is updated in standard GA. In [38], it has also been verified that even for an initial
guess far away from the optimal solution the computational cost to reach the global
solution is much less in SS — G A than for simple GAs. Moreover, a further reduction
of the computational time was obtained running the optimization process in parallel on
a multiprocessor cluster system.

In the framework of subsurface imaging, a GG A-based approach for the retrieval of
the dimension and location of a 3D buried object has been presented in [93]. A parallel
binary GA procedure has been considered to speed up the fitness evaluation computed
through the F DT D (Finite-Difference Time-Domain) method. More in detail, the cost
function has been defined as the difference between the measured and the calculated sq;

parameters on a frequency band from vy up to vy at the port of the probing antenna

o VI, s o) - s @)
\/Zzi% [smeas (I/)]2

As far as the GA is concerned, a population of P = 50 individuals and pc = 0.5 and

(68)

py = 0.2 were chosen.
Besides shape reconstruction problems, the reconstruction of the dielectric

properties of unknown objects has been faced in [23] by means of a quantitative (pixel

|| In steady-state G As, only a portion of the population is updated and a suitable replacement strategy
is considered.
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based) microwave imaging technique. A binary GA with ) = 256 quantization levels
has been used to describe the real-valued unknowns. The inverse scattering problem
has been solved in the framework of the Born approximation to reduce both the non-
linearity of the descriptive scattering equations as well as the total number of unknowns.

The chromosome to be optimized was

f=Am, 2, Ty TN} (69)

where N = 900. The simulations were carried out with a population of P = 100
individuals and crossover and mutation probability coefficients were set to po = 0.7
and py; = 4 x 1074, respectively. Moreover, a sensitivity analysis was performed
varying the control parameters in the following range: P € [40, 200], 0.6 < pc < 0.8
,and 4 x 107* < pyr < 1073, It has been proved that for small-sized populations
the quantitative errors increase as for either low value of po or high py,. The same
optimization procedure has been validated in [115| against experimental data acquired
when considering highly-contrasted bodies. Since, the Born approximation cannot be
applied, the unknown vector was composed of both the contrast function 7 and the total

field £ in the investigation domain
f=Amn, m ., ™, BY, B, ..., Ejsv=1,...,V}. (70)

Because of the continuous nature of the parameters to be optimized, a real-coded
G A has been proposed in [24] and significantly superior performances with respect to
the BG'A have been attained [25]. The potentialities of the RGA have been further
pointed out and the methodology extended to hybrid-coded chromosomes in order to
deal with both nondestructive testing and evaluation (NDT — NDE) problems [26] and
biomedical imaging [29]. More specifically, the unknowns were expressed by means of

the following vector
f=Awo, %0, L, W, 0, EY, B}, ..., Ey;v=1,..,V} (71)

coding through binary strings the values of the barycenter (x¢, yo), the length (L), the
width (W), and the orientation (#) of either a crack in NDT — NDE problems or a
pathology in case of biomedical imaging. Differently, a floating-point representation
has been used to code the unknown field values. Reliable values of the probability
coefficients for the RGA turned out to be pc = 0.7 and py; = 0.4.

In NDT — NDFE problems, the application of GAs starts with a BG A proposed

in [2| to identify the qualitative nature (i.e., length, width, orientation, and barycenter)
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of a crack on the surface of an object. In order to tackle more complex diagnosis
problems, an innovative description of the crack based on a suitable parameter selection
(71) as well as a more effective exploitation of the a-priori information has been
considered in [116]|30]|7] to reduce the number of problem unknowns and enable an
efficient use of HGAs. Although effective, these approaches considered scattering
configurations characterized by the presence of only a single defect. To overcome
such a limitation, two enhanced G A-based optimization techniques able to deal with
multiple defects in a dielectric host medium have been proposed in [8]. Both methods
adopted a multicrack variable-length hybrid coding. The former strategy was based on
a hierarchical implementation, which considers a set of parallel sub-processes, each one
looking for a solution with a fixed number of cracks. The other deals with a single
optimization process aimed at retrieving the best reconstruction among different crack-
length solutions. Because of the use of an ad-hoc operator to correctly recombine the
discrete (binary) and continuous part of the chromosome, the control probabilities were
kept constant to pc = 0.7 and py; = 0.4 for each portion of the chromosome structure.
Unlike [8], also the reconstruction of the dielectric properties of the defects has been
addressed in [9)].

Similar concepts have been exploited to deal with biomedical imaging problems as
discussed in [29|. The chromosome structure was still chosen as a two-part variable-
length string. In such a case, the variable-length structure was used because of the
variable number of discretization sub-domains occupied by the pathology where the
unknown field has to be computed.

A parallel SS — GA integrated with a FDTD approach has been presented in
[167][140] for early cancer detection. Parallel computing was considered due to the large
computational burden of the F'DT D-based approach caused by the fine discretization
of the investigation domain (N = 600 x 600 cells).

As regards to the efforts devoted to increase the computational efficiency of
G A-based inversions, ad-hoc versions or specific operators have been designed.
Representative examples of a wide literature are the use of nonuniform probability
densities in BG'As |37] and a parabolic crossover operator for RG As [18|.

Despite the success of GAs-based approaches in several area of electromagnetic
and inverse scattering, more recently other E'As have shown better performance. Due
to its faster convergence with respect to GAs, the DE was alternatively used to face

electromagnetic inversion and it has been firstly applied to image circular-cylindrical
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conductors and tunnels [105][106]. Later, the D E was used to solve benchmark problems
[130] and its performances were compared to the solutions from the RGA in [127|. A
population of P = 5x N individuals was considered. Moreover, the crossover probability
and the mutation intensity were set to pc = 0.9 and ¢ = 0.7, respectively. Without «a
priori information on the number of cylinders within the investigation region, the DE
strategy with individuals in groups (GDES) has been proposed [131]. The key idea
of the GDES is to organize the population into different groups. The individuals of
the same group code the same number of cylinders and have the same chromosome
length. Successively, an innovative D FE-based algorithm was proposed by Qing [132].
In the dynamic DFE strategy (DDES), a larger (virtual) population has been chosen to
speed up the convergence. The new individuals generated at iteration k£ + 1 compete
during the same iteration with their parents. As a consequence, the mating operation
turns out being more sensitive to the fast changes of the population with a consequent
enhancement of the convergence rate.

Because of the strong dependence of the DFE performance on both its control
parameters and the cost function to be optimized, an extensive calibration of the
population size, P, the crossover probability, pc, and the mutation intensity, €, has been
carried out in [133] specifically for imaging problems concerned with PEC' cylinders in
free space. More recently, a comparative study on the efficiency of DE and PSO when
applied to the shape reconstruction of PEC' scatterers has been reported in [134].

In [97], an approach for the detection of 2D buried inhomogeneities has been
designed by combining two D FE-based optimization techniques. More specifically, the
DE/1/best/bin version (pc = 0.8 and € = 0.6) was used to rapidly locate the attraction
basin of a minimum and successively the algorithm switched to the DE/1/rand/bin
(pc = 1.0 and € = 0.6) to avoid the trial solution be trapped in a local minimum.

DE has been also applied to the 3D detection of unexploded ordnance (UXO) (34|
and lossy spherical objects buried in the subsoil [6]. In this latter case, a modified DE
algorithm was considered where multiple populations evolve in parallel analogously to
[131].

More recently, F'As inspired by the foraging behavior of swarms have proved to
outperform previous EAs in dealing with a set of imaging problems also related to
high-dimensional continuous spaces.

A standard PSO algorithm has been used in [145] to reconstruct 1D permittivity

and conductivity profiles in lossy and inhomogeneous media. Because of its ability in
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exploring the parameter space and avoiding wrong solutions thanks to the cooperative
behavior of the agents, the PSO has been also profitably considered for the
reconstruction of 2D dielectric scatterers [31][49][50][62]. The enhanced convergence
rate of the PSO with respect to the RGA has been assessed both in [49] and [50].
Moreover, the calibration of the PSO control parameters carried out in [49] has proved
that the most suitable setup (in terms of decrease of the cost function in a fixed amount
of iterations) is: w = 0.4 and C; = Cy = 2.0, in accordance with the outcomes of other
published papers (see Section 5.1.3). Moreover, the ratio % = 5.5 has been deduced as
a good rule of thumb for the size P of the swarm for this class of optimization problems.

The retrieval of 3D lossy dielectric objects has been addressed in [80][81]. Due to
the limited set of independent scattering data and the dimensionality of the problem at
hand, an adaptive multiresolution technique was integrated into the swarm evolution to
reduce the search space and make more efficient the PSO-based minimization [51].
In order to deal with high-dimensional spaces, an alternative approach based on a
uwPSO, employing a reduced swarm in analogy with the uG A, has been also presented
in [83]. Otherwise, to avoid the premature convergence of the standard version of the
PSO, modified social structures have been envisaged [82]. More specifically, besides
the standard version of the PSO (i.e., that presented in this work), whose structure is
known as gbest topology since the information are instantaneously communicated to the
whole swarm, in [82] other topologies are considered in order to limit the communication
between the particles [99] to prevent premature convergence.

The PSO has been also successfully applied in industrial and biomedical imaging
problems. For example, a swarm-based reconstruction algorithm for the detection and
characterization of multiple inclusions in concrete structures has been presented in [156].
Moreover, a PSO-based technique for early cancer detection has been discussed in [170].

In the framework of swarm based approaches, only preliminary results are available
(e.g., [118]) concerning the application of the ACO to inverse scattering even though
an interesting hybridization with the linear sampling method (LSM) has been recently
studied in [20] to inspect 3D homogeneous dielectric scatterers.

As far as hybrid algorithms are concerned, a uGA and a RGA coupled with a
local search method have been presented in [166] and in [126], respectively, for imaging
perfectly conducting cylinders. In [174], the GA was combined with a tabu mechanism
to avoid a (repetitive) sampling of poor regions within the search space. Following the

same guidelines outlined in [163], the authors combined a GA-inspired optimization
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with a local search method [164| reducing the number of cost function evaluations to
reconstruct bowtie-shaped conducting cylinders from 1.17 x 10° [163] down to 5421. An
hybrid-G A has been also proposed in [66] to retrieve the dielectric profile of a layered
medium.

In the framework of quantitative imaging problems, the permittivity reconstruction
of 2D objects with large size and high contrast has been carried out in [114] by combining
a Levenberg-Marquardt algorithm with the GA. To speed-up the convergence, a Polak-
Ribiére conjugate gradient (C'G) has been merged into a global optimization loop
performed with a RGA in |24][116][117|. Furthermore, a parallel implementation of
such a hybrid technique has been detailed in [98].

As regards to memetic algorithms, they have been used to detect cylindrical
inhomogeneities starting from phaseless data obtained by synthetic as well as
experimental measurements [28]. Moreover, a M A-based approach has shown to
effectively work for the electromagnetic reconstruction of buried objects [27]|32], as
well. Because the heavy computational burden, M As applications are usually limited

to low-dimensionality problems.

7. Summary and Conclusions

In this paper, a review of Evolutionary Algorithms as applied to inverse scattering
problems has been reported. After an introduction on the genesis of EAs (Sect. 2), the
most representative and widespread evolution-based techniques have been described in
a common framework and by means of a uniform notation (Sect. 3) to point out the
main similarities and differences among the various implementations detailed in Sect.
4. Some theoretical hints concerning the convergence properties and the parameters
selection have been also discussed (Sect. 5). Section 6 has been devoted to present
state-of-the-art applications of E As to electromagnetic imaging problems. Such a critical
discussion has pointed out that the success of EF'As in dealing with nonlinear ill-posed
inverse scattering problems mainly relies in a suitable set of answers to the following

key-issues:

e a suitable representation of the unknowns and a proper choice of the FA is
mandatory starting from a careful analysis of the problem at hand and its numerical
description (i.e., the cost function). According to the “No free lunch theorem” [165],

the “optimum” algorithm does not exist since the average performance of any pair
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of algorithms across all the possible problems is identical;

e physical constraints need to be taken into account to enhance the effectiveness
of EAs by reducing the area of the solution space to be sampled during the
optimization;

e the a-priori knowledge on the scenario under test needs to be profitably
incorporated into both the solution representation and the evolutionary operators

to guide the search process and increase its convergence rate;

e great care must be exercised in defining the cost function since it represents the
only link between the physical problem and its numerical counterpart. Failing such
a definition prevents the actual solution is reached at the convergence of the F A to
its global optimum;

e the calibration of the evolutionary procedures needs to be carefully performed to
fully exploit the EF'A potential. On the other hand, it should be stressed that no
single-test-case calibration is necessary, but the tuning of the control parameters
must be carried out on a class of problems (e.g., imaging of dielectric objects) to

avoid “overfitting” and confer generalization features on the FA;

e the feasibility and reliability of an £ A must be assessed first on a benchmark of test
functions and then in comparison with other deterministic and stochastic microwave

imaging techniques.

8. Open Problems and New Research Developments

As far as the application of EA-based microwave imaging techniques to inverse
scattering problems is concerned, it should be first pointed out that the development
of evolutionary techniques has received a great boost in the last twenty years due
the continuous enhancement of the computational capabilities of modern personal
computers, but also for their flexibility and features usually very suitable to face with
the ill-posedness and nonlinearity of the arising optimization problem. As a matter of

fact,

e FAs are multiple-agent optimizers;
e FAs are global and hill-climbing algorithms thanks to their stochastic nature;

e FAs allow the straightforward introduction of a-priori information or constraints;
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e FAs are able to deal with floating-point and/or discrete and/or binary unknowns

simultaneously;
e FAs are intrinsically parallel algorithms;

e FAs are easily integrated with local optimizers.

However, some other drawbacks limit their effectiveness besides typical negative issues

of inverse scattering problems. For example,

e the computational burden (especially when moving towards 3D scenarios);

e the low convergence rate when close to the global solution although in its attraction
basin;

e the dependence on the parametrization of the problem unknowns;

e the sensitivity to the calibration parameters.

As regards to the computational issues, some receipts to limit these drawbacks consist in:
(a) reducing the number of problem unknowns by recurring to a suitable parametrization
of the scatterer under test [26][30] or considering a multi-resolution strategy [50][51] or a
multi-stage reconstruction [108|; (b) hybridizing the EA with a deterministic optimizer
[114]]24]|98]; (¢) computing at each iteration the secondary unknowns (i.e., the field
distribution within the investigation domain) by means of fast forward solvers (see [36]
and the reference therein); (d) exploiting the explicit parallelism of E'As through a
parallel implementation [98].

With reference to the EFA parallelization (d), which has been left out in the
main body of the paper, it is well known that one of the most attractive features
of nature-inspired optimization techniques is their parallelism that allows an effective
sampling of the solution space. Besides the implicit parallelism still exploited in serial
implementations, the parallelism of an EFA is also guaranteed by its multiple-agent
nature. As a matter of fact, a number of sample points equal to the population dimension
is processed at each iteration to effectively look for the global optimum. In order to
fully exploit also this characteristic, a parallel implementation of the iterative procedure
would fully exploit also this characteristic enabling (i) a parallel and simultaneous search
from multiple points in the solution space; (i7) a more efficient search, even when no
parallel hardware is available; (i) a higher efficiency than sequential implementation,

and (iv) a speedup due to the use of multiple C' PUs.
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Despite these envisaged advances, it should be also pointed out that the use of a
parallelized (bare/hybrid) E'A is not different from other parallel methodologies and its
efficiency largely depends upon the system architecture, the parallel execution overhead,
the number of new agents created at each iteration, the population structure, and the
parallel granularity (i.e., the CPU time of the steps being executed in parallel). These

advances can be reached only if:

e a structured population [21] is taken into account to obtain not only a faster
algorithm, but also a superior numerical optimization able to profitably exploit

the multi-agent nature of the EF'A;

e some agents do a different local search (decentralized local optimization) in order to

improve the convergence rate of the iterative process;

e the evolution process explicitly keeps memory of the population evolution in order
to reduce/avoid the runtime of the cost function evaluation for similar/equal
individuals;

e the evolutionary operators are applied in parallel.

As regards to the enhancement of the convergence rate through the reduction of
the extension of the solution space to be sampled during the optimization, the
number of iteration K.,4 evidently reduces in correspondence with an increase/efficient-
exploitation of the a-priori information. Indeed, an additional information on the
location of the attraction basin of the global solution usually helps the evolutionary
procedure in locating the actual solution as well as the EA designer in defining the
optimal parametrization of the problem unknowns.

Another way to save computational resources when applying FAs to inverse
scattering problems is to use a succession of inversion procedures, each one concerned
with a number of unknowns smaller or equal than the information content of the
scattering data in order to “simplify” the cost function to be optimized. The reduction
of the complexity of the cost function can be yielded in different ways according to
some recently developed strategies. In such a framework, it is worthwhile to mention
multi-resolution methods [50][51] devoted to perform an iterative synthetic zoom over
the region where the scatterer is supposed to be located and multi-stage reconstructions
[108][20] where each inversion is aimed at identifying different characteristics of the

unknown scatterer until its complete description/knowledge.
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Nevertheless, although further theoretical and numerical developments are still
required to consider EA-based inversion techniques mature, reliable, and efficient
inversion methodologies, the expected impact of such approaches justifies significant
research effort to develop FEA-based tools dedicated to specific applications in the

framework of microwave imaging and NDT /N DE applications.
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Table II. Computational indexes of EAs applied to the reconstruction of the dielectric
distribution. N is the number of unknown parameters, P is the number of trial
solutions for each iteration, K.,q is the number of iteration at convergence. The

asterisk * means inversion of experimental data. The symbol T indicates the use of a

multi-resolution strategy.



