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Evolutionary Optimization as Applied to InverseS
attering ProblemsP. Ro

a, M. Benedetti, M. Donelli, D. Fran
es
hini, and A.MassaDepartment of Information Engineering and Computer S
ien
e, ELEDIA Resear
hGroup, University of Trento, Via Sommarive 14, 38050 Trento - Italy, Tel. +39 0461882057, Fax. +39 0461 882093E-mail: andrea.massa�ing.unitn.itAbstra
t. This paper is aimed at presenting an overview of Evolutionary Algorithms(EAs) as applied to the solution of inverse s
attering problems. The fo
us ofthis work is on the use of di�erent population-based optimization algorithms forthe re
onstru
tion of unknown obje
ts embedded in an ina

essible region whenilluminated by a set of mi
rowaves. Starting from a general des
ription of thestru
ture of EAs, the 
lassi
al sto
hasti
 operators responsible for the evolutionpro
ess are des
ribed. The extension to hybrid implementations when integratedwith lo
al sear
h te
hniques and the exploitation of the �domain knowledge�, eithera-priori obtained or 
olle
ted during the optimization pro
ess, are also presented.Some theoreti
al dis
ussions 
on
erned with the 
onvergen
e issues and a sensitivityanalysis on the parameters in�uen
ing the sto
hasti
 pro
ess are reported, as well.Su

essively, a review on how various resear
hers have applied or 
ustomized di�erentevolutionary approa
hes to inverse s
attering problems is 
arried out ranging from theshape re
onstru
tion of perfe
tly 
ondu
ting obje
ts to the dete
tion of the diele
tri
properties of unknown s
atterers up to appli
ations to sub-surfa
e or biomedi
alimaging. Finally, open problems and envisaged developments are dis
ussed.Key Words - Evolutionary algorithms, Inverse s
attering.Classi�
ation Numbers (MSC) - 45Q05, 78A46, 78M50, 78M991. Introdu
tionOptimization te
hniques are generally 
lassi�ed into deterministi
 and sto
hasti
methods. For example, the greedy, the steepest des
ent, and the tree sear
h algorithms



2 A. Massa et al.[111℄[119℄ belong to the former 
lass. Although e�e
tive in terms of 
onvergen
e speed,these methods generally require a �domain knowledge� sin
e in 
ase of non-linear andmulti-mimina fun
tionals the initial trial solution must lie in the so-
alled �attra
tionbasin� of the global solution to avoid the 
onvergen
e solution being trapped into lo
alminima of the fun
tional (i.e., wrong solutions of the problem at hand). On the 
ontrary,sto
hasti
 algorithms [59℄[144℄[136℄ are global sear
h approa
hes potentially able to �ndthe global optimum of the fun
tional whatever the initial point/s of the sear
h.The goal of optimization is the knowledge of the global solution. The solution isfully des
ribed when its des
riptors (i.e., its des
riptive features), whi
h quantify theinformation 
ontent of the solution itself, are de�ned. This 
an be mathemati
ally doneby determining the problem unknowns (i.e., the 
oded representation of the solutiondes
riptors) through the optimization of a suitable 
ost fun
tion. It should be observedthat, the number of unknowns is di�erent in ea
h problem and proportional to theinformation 
ontent of the solution.Sin
e on one hand the des
riptors are di�erent (e.g., dis
rete/
ontinuous variables)as well as the number of unknowns to be determined 
an vary among the optimizationproblems, the 
hoi
e of a proper optimization algorithm is a key issue and a generalrule for this 
hoi
e does not exist. From a pra
ti
al point of view, the main featuresne
essary to an optimization algorithm are the ability to deal with 
omplex fun
tionalsor 
ost fun
tions, the �simpli
ity of use�, a limited number of 
ontrol parameters, good
onvergen
e properties, and the exploitation of the parallelism o�ered by modern PC
lusters. In this sense, Evolutionary Algorithms (EAs) seem to be good 
andidates.They have been applied to a huge variety of problems in di�erent and very heterogeneous�elds ranging from engineering to e
onomi
s, up to business and natural s
ien
e.For example, in biomedi
al and natural s
ien
e, several resear
hes are 
on
ernedwith the use of evolutionary algorithms for the predi
tion of protein stru
tures [84℄and the design of drugs [91℄. In the framework of engineering, they have beenapplied to the design of air
rafts [19℄, the synthesis of ele
tromagneti
 systems [161℄and mi
rowave devi
es [160℄. As far as 
ombinatorial optimization is 
on
erned,routing [135℄, assignment [45℄, and s
heduling [102℄ problems have been dealt with,as well. Although the number of works published in e
onomy and business is limited,evolutionary algorithms have demonstrated to work e�e
tively as shown in [74℄ and [70℄.This work is aimed at dis
ussing the use of evolutionary algorithms on a 
lassof problems in ele
tromagneti
 engineering, namely the inverse s
attering problems.



Evolutionary Optimization as Applied to Inverse S
attering Problems 3The �rst population based algorithm applied to this topi
 was the Geneti
 Algorithm(GA) [39℄. Several versions of GAs have been implemented and e�e
tively used inele
tromagneti
 inversion [100℄[24℄[174℄[79℄. In order to 
ope with the drawba
ks of
GAs, di�erent kinds of evolutionary algorithms has been su

essively developed. Amongthem, let us re
all the di�erential evolution (DE) algorithm [130℄[97℄ and the parti
leswarm optimizer (PSO) [49℄[81℄. More re
ently, the ant 
olony optimizer (ACO) hasbeen also applied [118℄. Besides �bare� te
hniques, a non-negligible number of hybridapproa
hes has been implemented to improve the 
onvergen
e rate of global optimizers.The paper is organized as follows. In Se
tion 2, an introdu
tion on the genesis ofnature-inspired optimization algorithms and some motivations on their use and e�
ien
ywhen dealing with real world problems are given. A general des
ription of the stru
tureof EAs is presented in Se
t. 3, while di�erent implementations are detailed in Se
t. 4.Se
tion 5 is devoted to some theoreti
al dis
ussions on the 
onvergen
e properties aswell as on EAs sensitivity to the values of the 
ontrol parameters. The inverse s
atteringproblems is brie�y formulated in Se
t. 6 and an overview on the appli
ation of EAs isprovided. Some 
on
lusions on the role of EAs in inverse s
attering are drawn in Se
t.7, whereas open problems and possible future developments are dis
ussed in Se
t. 8.2. The Origin of EAs - Adaptation in Arti�
ial SystemsIn early 1970s [75℄, Holland showed that nature-inspired evolutionary algorithms 
anbe adopted as suitable learning or sear
hing pro
edures for the solution of arti�
ialproblems. The �rst example of an algorithmmodelling natural systems was the so-
alledGeneti
 Algorithm. The algorithm was based on the 
on
epts of natural sele
tion andgeneti
 pressure. Its implementation was inspired by the studies of Darwin and Mendelon the higher possibility for an individual or �agent� that better �t the surroundingenvironment to generate o�spring and preserve its geneti
 features throughout su

essivegenerations. The su

ess obtained by this optimization approa
h was immediate and itre
eived a wide and rapid di�usion. Di�erent versions of the original binary GA weredeveloped for the optimization of fun
tionals [47℄ and they have been applied to real-world appli
ations. The �rst text book on GAs and related appli
ations was publishedby Goldberg [69℄ in 1989.As 
ompared to previous optimization algorithms, the GA showed many interestingfeatures. More spe
i�
ally, (a) the GA does not require neither the analyti
al knowledge



4 A. Massa et al.nor the di�erentiation of the fun
tions to be optimized, but only the values of the �tnessare enough to pursue the evolutionary pro
ess, (b) the algorithm tends to move towardsthe most attra
tive region of the solution spa
e by means of an �almost� blind sear
hte
hnique sin
e the operators are applied in a probabilisti
 way instead of 
onsideringde�nite rules, (
) sampling the sear
h spa
e not in a single point but in several lo
ationsat ea
h iteration and the way the operators re
ombine the information 
oded in thepopulation of solutions foster the global sear
h 
apability of the optimization.Besides the expli
it parallelism guaranteed by its multiple-agent nature as for otherpopulation-based sto
hasti
 algorithms su

essively developed, the GAs is also relatedto the 
on
ept of s
hemata (i.e., the building blo
ks 
oding ea
h trial solution) and the�impli
it parallelism�. In [75℄ and [69℄, it has been shown that the e�e
tive numberof s
hemata [69℄ pro
essed by the GA at ea
h iteration of the evolutionary pro
ess isgreater than the number of individuals P of the population. Su
h a property guaranteesthat, also in a serial implementation, multiple 
hara
teristi
s (i.e., the 
orrespondings
hemata) of the solution are pro
essed in parallel. A well-known result is the Holland'sinequality stating a lower bound on the order of P 3/ǫ
√
l to the number of s
hematapro
essed in a population of P = ξ2l strings, ξ and l being a small integer [17℄ and thestring length of binary digits, respe
tively. This result has been generalized in [11℄ for apopulation of P = 2βl individuals by proving that the s
hemata bound is a monotoni
allyde
reasing fun
tion of β and that when β > 4/3, the expe
ted number of pro
esseds
hemata is a 
onstant and its lower bound is proportional to P (2log23)/β/

√
log2P .After the di�usion of GA-based algorithms, the development of arti�
ial systemsbased on the 
on
epts of swarm intelligen
e has been more re
ently 
onsidered [16℄ andnew implementations of innovative metaheuristi
s exploiting the 
ooperation paradigm,instead of the 
ompetitive one of the GAs, have been proposed. In this framework,the Parti
le Swarm Optimizer [87℄ and the Ant Colony Optimizer [54℄ have beensu

essfully applied to an in
reasing number of problems and appli
ations. Thesealgorithms arti�
ially model the so
ial intera
tion and 
ooperation of swarm of beesor 
olony of ants. A

ordingly, the a
tivity of ea
h agent is guided not only by thework in progress (namely, its �tness to the environment) but also taking into a

ountthe information 
oming from the intera
tions with other agents or present in the lo
alenvironment (i.e., the stigmergy ‡ ).

‡ The 
on
ept of stigmergy, whose meaning and impli
ations will be better spe
i�ed in the following,is widespread and quite important in arti�
ial intelligen
e. As a matter of fa
t, it is related to the self-



Evolutionary Optimization as Applied to Inverse S
attering Problems 53. Evolutionary Algorithms - General Framework
EAs are iterative pro
edures, where a pool of P solutions, F =

{
f (p); p = 1, ..., P

},evolves to �nd the solution of the problem at hand through the optimization of a suitablefun
tion Φ
(
f (p)
) or fun
tions Φt

(
f (p)
), t = 1, ..., T , (multi-obje
tive optimization [43℄)aimed at measuring the �goodness� of the trial solution under given 
onstraints. The
ost fun
tion is the unique link between the optimization problem and the physi
al oneand great attention should be paid to the de�ne Φ in order to obtain representativeand reliable solutions at the end of the optimization pro
ess. Moreover, the 
omplexityof the 
ost fun
tion as well as the 
omputational burden of its minimization stronglyin�uen
e the use of a 
lass of optimization algorithms rather than others.As far as the the design of an EA-based optimization te
hnique is 
on
erned, thekey points to be addressed are:

• the representation of the solution, f = {fn; n = 1, ..., N}, 
oding a set of Nparameters fn, n = 1, ..., N , to be optimized;
• the design of the evolutionary operators, L, for generating the su

ession (ideallyin�nite) of trial solutions, f

k
, k = 0, ...,∞, k being the iteration index;

• the evolution pro
edure, namely the 
riteria and guidelines to generate newsolutions by means of the evolutionary operators.At the initialization of the iterative pro
ess, the initial set of solutions F0 ={
f (p)

0
; p = 1, ..., P

} is usually randomly-generated within the sear
h spa
e
fn = rfmaxn + (1 − r) fminn (1)starting from the knowledge of the upper fmaxn and lower fminn bounds of the parameter

fn that limit the admissible sear
h spa
e Ω (i.e., f ∈ Ω with fn ∈ [fminn , fmaxn ]).Moreover, r ∈ [0, 1] is a uniformly-distributed random variable. Otherwise, the initialpopulation 
an be de�ned on the basis of some a-priori information on the problem athand and its solutions. In su
h a 
ase, the solutions are statisti
ally-generated arounda referen
e trial solution f̂ =
{
f̂n; n = 1, ..., N

} by 
onsidering either a uniform
fn = f̂n

(
2r − 1

2

) (2)organization pro
ess [16℄. In the framework of optimization, it means that the surrounding ar
hite
ture(i.e., the environment/solution spa
e) provides a su�
ient amount of information and 
onstraints to
ontrol the low level a
tions (i.e., those of the single agents) su
h that the general a
tivity of the entireswarm/
olony seems being governed by a global plan. The notion has been �rst introdu
ed by Grasséin 1959 about the termites' behavior [71℄ and an interesting review on the subje
t 
an be found in [155℄.



6 A. Massa et al.or a normal distribution
G (fn) =

1√
2πςn

exp−
(
fn − f̂n√

2ςn

)2 (3)
ςn being a real index 
ontrolling the statisti
al distribution of the parameter values.Su

essively (k ≥ 1), a sequen
e of trial solutions is generated by applying theoperators L in a sto
hasti
 fashion and a

ording to the adopted evolutionary pro
edure.The pool of solutions at the (k + 1)-th iteration, Fk+1, is given by

f (p)

k+1
= f (p)

k
+ s

(p)
k+1 , p = 1, ..., P (4)where s(p)

k+1 is de�ned on the basis of the solutions Fk at the previous iteration throughthe appli
ation of the evolutionary operators
s
(p)
k+1 = L{Fk} . (5)A

ordingly, a trial solution at iteration k + 1 turns out to be expressed
f (p)

k+1
= f (p)

0
+

k∑

j=0

L{Fj} (6)where
L{Fk} = L

{
f (p)

k
; p = 1, ..., P

}

= L
{
f (p)

k−1
+ s

(p)
k ; p = 1, ..., P

}

= L
{
f (p)

k−1
+ L{Fk−1} ; p = 1, ..., P

}
. (7)The stru
ture of the EAs is then fully des
ribed by detailing the followingar
hite
ture levels, namely the �Basi
 level� and the �Control level�.3.1. Basi
 LevelThe basi
 level is responsible for the generation of the su

ession of trial solutions andit is 
on
erned with the 
oding of the solutions and the design of the evolutionaryoperators.The 
oding of the problem unknowns, fn, n = 1, ..., N , through a set of symbolsbelonging to an alphabet A is a key point of the EAs sin
e it for
es the 
hoi
e of theevolutionary operators as well as the granularity of the optimization and the a

ura
yof the �nal solution. The most popular 
oding strategies, widely used in several pra
ti
e



Evolutionary Optimization as Applied to Inverse S
attering Problems 7appli
ations, are the binary 
oding, A = {0, 1}, and the real 
oding, A ≡ {R}. Theeasy implementation of the former in personal 
omputers and the fa
t that manyproblems deal with 
ontinuous real-valued variables have 
ontributed to the proliferationof EAs with these 
oding strategies as well as the design of 
ustomized real/binaryevolutionary operators. On the other hand, the use of a dis
rete alphabet of S symbols,
A = {a1, ..., aS}, is 
ommon in 
ombinatorial optimization.Generally speaking and whatever the alphabet, a 
oding law Γ (·) is used to mapthe set of parameters, f = {f1, ..., fN}, from the input spa
e (
alled phenotype spa
e)to its 
oded representation, c = {c1, ..., cM}, in the work spa
e (
alled genotype spa
e):
c = Γ

(
f
), M ≥ N . Although the terms phenotype and genotype 
ome from geneti
sand were �rst introdu
ed by Holland [75℄ in dealing with arti�
ial adaptive systems,their meaning is more general and it is not limited to the framework of geneti
-basedoptimization algorithms. As regards to the 
oding fun
tion, it 
an be de�ned betweenequal-dimensional spa
es (i.e., M = N) or to a higher dimensionality (i.e., M > N).On
e a new set of 
oded solutions is determined in the genotype spa
e by using theevolutionary operators, a de
oding law is applied to map the updated 
oded parametersinto a new trial solution within the phenotype spa
e: f = Γ−1 (c).Con
erning the evolutionary operators, they are usually inspired by naturalparadigms. Representative examples are those modeled on the 
on
epts of naturalsele
tion (GAs and DE), 
ooperation and stigmergy taken from the intelligen
e ofswarms (e.g., PSO and ACO), and distribution of knowledge [e.g., Memeti
 Algorithm(MA)℄.3.2. Control LevelThe 
ontrol level is the ar
hite
tural stru
ture devoted to exploit the building blo
ksof the basi
 level in sampling the solution spa
e to �nd the global optimum. Atthis level, the issues related to the setup of the 
ontrol parameters, the de�nitionof the termination 
onditions, and the introdu
tion of the problem 
onstraints [e.g.,

hi

(
f (p)

k

)
= 0, i = 1, ..., I, or gj (f (p)

k

)
≤ 0, j = 1, ..., J ℄ or boundary 
onditions (e.g.,

fn ∈ [fminn , fmaxn ] su
h that f ∈ Ω) on the solutions are properly addressed. Morespe
i�
ally, the 
ontrol parameters de�ne the number of agents or dimension of thepopulation/swarm of trial solutions, Pk, used at ea
h iteration and the probabilities ofapplying the evolutionary operators L. As regards to the 
onvergen
e 
riteria, simplertermination 
onditions are based on heuristi
 assumptions and user-de�ned thresholds



8 A. Massa et al.on the value of the fun
tion to optimize or on a maximum amount of iterations, K[69℄[151℄[87℄[54℄. More sophisti
ated 
hoi
es take into a

ount the stationariness ofthe optimal 
ost fun
tion value, Φopt
k =

{
minp=1,...,P

[
Φ
(
f (p)

k

)]}, in a �xed range ofiterations, Kwindow,∣∣∣KwindowΦopt
k−1 −

∑Kwindow

i=1 Φopt
i

∣∣∣
Φopt
k

≤ η (8)
η being a numeri
al threshold. Furthermore, 
onditions quantifying the �diversity� ofthe solutions of the population are also used [5℄.The boundary 
onditions are usually related to the physi
al admissibility of thesolution and derive from the a-priori information on the a
tual solution. Su
h aninformation allows one to redu
e the dimension of the sear
h spa
e and is of fundamentalimportan
e for the (fast) 
onvergen
e towards the global optimum.3.3. Single vs. Multiple Obje
tive OptimizationIn single-obje
tive problems (SOP s), the optimization is aimed at looking for theminimum (or maximum) of a s
alar fun
tion Φ

(
f
)

: Ω ⊆ R
N → R subje
t to some
onstraints. The solution minimizing the obje
tive fun
tion is 
alled global minimum

f opt = arg
{
minf

[
Φ
(
f
)]}. The su�
ient 
ondition for a point of the solution spa
e,

f ∈ Ω, to be the global minimum on Ω is that
Φ
(
f opt

)
≤ Φ

(
f
)
, ∀f ∈ Ω . (9)Dual 
onsiderations hold true for maximization problems.Di�erently, several problems are mathemati
ally des
ribed in terms of ve
torial 
ostfun
tion, Φ

(
f
)

: Ω ⊆ R
N → R

T ,
Φ
(
f
)

=
[
Φ1

(
f
)
, Φ2

(
f
)
, ..., ΦT

(
f
)] (10)where ea
h s
alar fun
tion Φt

(
f
) models a di�erent obje
tive or performan
e 
riterionusually 
on�i
ting with the others. This is the 
ase of multi-obje
tive problems(MOP s) or ve
tor optimization problems [43℄[142℄[143℄[175℄ dealing with multi
riteriaoptimization. Unlike SOP s, the meaning of optimum modi�es into the �best� trade-o�solution among the whole set of performan
e 
riteria. The notion of Pareto optimality[113℄ is generally adopted to properly model this 
on
ept. A solution f is Pareto-optimal



Evolutionary Optimization as Applied to Inverse S
attering Problems 9on Ω if no other solutions exist that dominate it. A solution f (a) (stri
tly) dominates
f (b) if and only if

Φt

(
f (a)
)
≤ Φt

(
f (b)
)
, t = 1, ..., T (11)and

∃t ∈ [1, T ] : Φt

(
f (a)
)
< Φt

(
f (b)
)
. (12)As a 
onsequen
e, (a) Pareto optimal solutions 
annot redu
e their performan
es ona 
riterion Φt′ without in
reasing their e�e
tiveness in �tting at least another 
riterion

Φt′′ ; (b) the solution of a MOP is not unique, but all Pareto optimal solutions aresuitable solutions; (
) the solutions on Ω non-stri
tly dominated generate the so-
alled Pareto front. Sin
e, no general rules exist for the 
hoi
e of the best solutionin MOP s, the global optimum is 
hosen either a

ording to the user-requirements orby reformulating the MOP into an equivalent SOP whose s
alar 
ost fun
tion is thelinear 
ombination of the MOP obje
tive fun
tions
Φ
(
f
)

=
T∑

t=1

wtΦt

(
f
) (13)

wt, t = 1, ..., T , being real user-de�ned 
oe�
ients. As far as solution algorithms forthe MOP s are 
on
erned, although many mathemati
al programming pro
edures havebeen designed for the retrieval of the solutions of the Pareto front [92℄, EAs seems tobe very suitable to MOP s be
ause of their intrinsi
/impli
it parallelism that allows tosimultaneously manage a set of di�erent solutions [43℄ and to �nd multiple solutionsat ea
h iteration. Moreover, EAs 
an easily address optimization problems whosePareto fronts are either dis
ontinuous or 
on
ave while the sear
hing 
apabilities ofother optimizers turn out to be more dependent on the nature of the Pareto front.4. Evolutionary Algorithms - ImplementationsIn this se
tion, a brief overview on EAs usually (to the best of the authors' knowledge)applied to the solution of inverse s
attering problems is reported. The se
tion issubdivided in three main parts. The �rst one is devoted to des
ribe geneti
-basedoptimization algorithms. Standard implementation of GAs and DE are presentedpointing out the main di�eren
es and 
ommon features. Unlike GAs and DE whoseunderlying ar
hite
ture models a 
ompetitive and hierar
hi
al framework aimed at



10 A. Massa et al.promoting the reprodu
tion/evolution of �ttest individuals, de
entralized optimizationpro
edures based on the intelligen
e of swarms, namely the parti
le swarm optimizerand the ant 
olony optimizer, are 
onsidered in the se
ond part. Finally, some state-of-the-art hybrid algorithms are brie�y summarized.4.1. Geneti
-based Optimization4.1.1. Geneti
 Algorithms - GAs are EAs modeled on 
on
epts of natural sele
tionand geneti
 pressure to perform an e�e
tive sampling of the solution spa
e. GAs basi
prin
iples were �rst introdu
ed by Holland in 1975 [75℄ and extended to fun
tionaloptimization by De Jong [47℄ with an immediate di�usion to real-world problems be
auseof their e�e
tiveness in dealing with 
omplex fun
tions [69℄[77℄[61℄ when 
ompared tostandard deterministi
 pro
edures.The solutions at the k-th iteration and belonging to the phenotype spa
e, f (p)

k
,

p = 1, ..., P , are 
alled individuals, while their 
orresponding version in the genotypespa
e are denoted as 
hromosomes, c(p)k , p = 1, ..., P . At ea
h iteration or generation,the set Fk =
{
f (p)

k
; p = 1, ..., P

} of P agents or individuals 
ompose a population of trialsolutions named parents. The set of geneti
 operators LGA is applied to Fk to generatea new population Fk+1. More spe
i�
ally, the sele
tion, S, the 
rossover, C, and themutation, M, a
t on the parents to determine the individuals of the new population,
alled 
hildren or o�spring.In their basi
 version, the GAs follow the work�ow in Fig. 1. After the initializationof the population F0 at the �rst iteration (k = 0), new populations, Fk, k ≥ 1, areiteratively generated by applying the geneti
 operators LGA = {S, C, M} as follows.For ea
h iteration, a �mating pool� is 
hosen by applying the sele
tion pro
edure to Fk
Fk(S) = S {Fk} . (14)Standard implementations 
onsider the roulette-wheel sele
tion or the tournamentsele
tion [69℄. The sele
tion pro
edure performs taking into a

ount the knowledge onhow 
urrent individuals �t the problem at hand. Mathemati
ally, su
h a knowledgeis a
quired by 
omputing the 
ost fun
tion values of the 
urrent population, Φ

(p)
k =

Φ
(
f (p)

k

), p = 1, ..., P . Fittest individuals have higher probability to be 
hosen as parentsfor generating new individuals and for reprodu
ing their 
hromosomes [75℄. Dealing withminimization problems and a

ording to a �tness proportional sele
tion me
hanism, the



Evolutionary Optimization as Applied to Inverse S
attering Problems 11probability of a parent to be 
hosen for the �mating pool� is equal to
λ

(p)
k(S) =

1/Φ
(p)
k∑P

i=1 1/Φ
(i)
k

. (15)A new population is then generated by applying 
rossover and mutation a

ordingto the values of the probabilisti
 
oe�
ients de�ned at the 
ontrol level
Fk+1 = Fk(C) ∪ Fk(M) (16)where Fk(C) and Fk(M) indi
ate the set of new individuals obtained by 
rossover
Fk(C) = C

{
Fk(S)

} (17)and mutation
Fk(M) = M

{
Fk(S)

}
, (18)respe
tively. The geneti
 operators are iteratively applied on the mating pool untilthe population is 
ompleted and the parents, whom neither 
rossover nor mutation areapplied to, are dire
tly reprodu
ed in the next population. To enhan
e the 
onvergen
ebehavior of GAs, another operator known as elitism is often used. The elitist strategyis applied whether the 
ondition Φopt
k+1 > Φopt

k (in minimization problems) holds trueand it 
onsists in inserting the best individual of the k-th iteration in pla
e of the worstsolution of the su

essive iteration.To further improve the 
onvergen
e as well as the global 
apability of GAs, besidesthe 
ommonly-used geneti
 operators, the GAs have been also modi�ed by usingenhan
ed te
hniques like dominan
e and diploidy, sharing, or knowledge-based operators[69℄.(A) Binary GAsGeneti
 Algorithms were �rstly implemented to work with binary or dis
rete unknowns.The problem unknowns are 
oded, if not already binary, in strings of l =
∑N

n=1Qn bits,
Qn is the number of levels used to quantize the range of existen
e of the n-th unknownparameter. Both uniform [90℄

f̃n = fminn +

[
fmaxn − fminn

2Qn − 1

]Qn−1∑

i=0

ai(n)2
i (19)or non-uniform quantization [76℄

f̃n =

Qn∑

i=1

ai(n)2
1−iχn (20)
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an be used. More in detail, where ai(n), i = 1, ..., Qn, is the set of bits (or alleles)
omposing the 
oded parameter, cn =
{
a1(n), ..., aQn(n)

}, and χn = fmax
n

2
is the largestquantization level.Geneti
 operators LGA a
t on the 
hromosomes c(p), p = 1, ..., P as follows. Inthe sele
tion phase, a pair of parents c(p1)k and c

(p2)
k is 
hosen. The re
ombinationof the strings of genes is then performed through 
rossover with probability pC .By 
onsidering the single-point 
rossover, an integer value i ∈ [1 : l] is randomly
hosen and two 
hildren are generated whose 
hromosomes turn out being equal to

c
(p1)
k+1 =

{
a

(p1)
1,k , ...a

(p1)
i,k , a

(p2)
i+1,k, ..., a

(p2)
B,k

} and c
(p2)
k+1 =

{
a

(p2)
1,k , ...a

(p2)
i,k , a

(p1)
i+1,k, ..., a

(p1)
B,k

}. Ea
h
hild 
ontains parts of the geneti
 stru
ture of both parents. Moreover, an individual ismutated with probability pM by randomly �ipping the value from 1 to 0 or vi
eversa ofsome alleles of the 
orresponding 
hromosome, pMB being the bit mutation probability.Obviously, more 
omplex implementations of the 
rossover operator (e.g., two-point
rossover, uniform 
rossover [161℄) and the mutation (e.g., inter
hange [90℄) exist, aswell.Sin
e the binary GA (BGA) works with a �nite dimension parameter spa
e, it turnsout to be more adapt to deal with problems where the unknowns 
an assume only a�nite number of values. Con
erning real (
ontinuous) variables, unknown parametersneed to be quantized with an unavoidable quantization error. This error 
an be redu
edby in
reasing the gene length l at the 
ost of a de
rease in the 
onvergen
e speed and anin
rease in the memory requirements. Moreover, the GA operators a
ting on a binary-
oded representation of the solution do not assure that the 
hromosomes of the nextgeneration are admissible solutions. Moreover, if a

eptable solutions have to belong tosome domains of the solution spa
e (e.g., when 
onstraints are imposed), monitoring thisproperty under the a
tion of the geneti
 operators 
an be laborious and time-
onsuming(a de
oding should be performed), and the 
onvergen
e may therefore be slowed.(B) Real 
oded GAsBinary en
oding is not the only way to represent a parameter when applying GAs. Inthe presen
e of real parameters, it is more logi
al to use the �oating point representation[89℄. For the real-
oded GA (RGA), a gene is represented by the value of the unknownitself
c
(p)
k = f (p)

k
. (21)
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attering Problems 13As a 
onsequen
e, new geneti
 operators are designed although the pe
uliaritiesof the original operators should be maintained. Mutation and 
rossover must remaina mean to explore the parameter spa
e randomizing sele
ted solutions and a way to(randomly) mix the good 
hara
teristi
s of the 
hromosomes, respe
tively.In RGAs, the 
rossover is de�ned as the arithmeti
al linear 
ombination of two
hromosomes. On
e two parents f (p1)

k
and f (p2)

k
are sele
ted, the resulting o�spring aregiven by

f
(p1)
n,k+1 = rf

(p1)
n,k + (1 − r) f

(p2)
n,k

f
(p2)
n,k+1 = (1 − r) f

(p1)
n,k + rf

(p2)
n,k , n = 1, ..., N. (22)The RGAmutation 
onsists in adding a random value sn ∈

{
f

(p)
n,k − fminn , fmaxn − f

(p)
n,k

}to a randomly-sele
ted pth 
hromosome
f

(p)
n,k+1 = f

(p)
n,k + sn . (23)Whether the new trial solutions are not physi
al and do not belong to the solutionspa
e (f /∈ Ω), they are modi�ed exploiting the a-priori knowledge on the boundariesof the solution spa
e as follows

f
(p)
n,k+1 =

{
fminn if f

(p)
n,k < fminn

fmaxn if f
(p)
n,k > fmaxn

. (24)The RGA gained in
reasing popularity be
ause it is easy to implement,
omputationally e�
ient when dealing with a small number of real-valued unknowns,and suitable for �ne-tuning the sele
tive pressure [4℄.(C) Hybrid 
oded GAsIn some problems, the a-priori knowledge on the solution allows a parametrization of asubset of the unknowns through a small set of dis
rete des
riptors
fd = H{dj; j = 1, ..., J} , d ∈ [1, L] (25)where {dj ; j = 1, ..., J} is the sub-set of dis
rete equivalent parameters being J < L <

N . In su
h a 
ase, a suitable en
oding pro
edure must be de�ned in order to provide aone-to-one mapping between the phenotype spa
e and the genotype spa
e, but at thesame time, exploiting the features of the unknown parameter set. A hybrid 
oded GA
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ribed in [22℄ to deal with mi
rowave imaging problems. A set of integer-valued equivalent parameters, {dj; j = 1, ..., J}, is binary 
oded and a �oating-pointrepresentation is used for the remaining real unknowns, {fn; n = L+ 1, ..., N}. As faras the geneti
 operators are 
on
erned, they have been properly modi�ed to maintainthe stru
ture of the hybrid 
hromosomes. During mutation, if the gene to be perturbedis binary-
oded, it is 
hanged from 0 to 1 or vi
eversa as for the BGA. Otherwise, themutation (23) de�ned for the RGA is 
onsidered.Con
erning the e�
ien
y and e�e
tiveness of HGA-based strategies, theexploitation of some a-priori information to de�ne a suitable parametrization fun
tion
H and the 
hoi
e of a redu
ed set, instead of the whole number, of representativeparameters is of fundamental importan
e to redu
e the dimension of the sear
h spa
e.Moreover, the parametrization method 
an be pro�tably adopted to prevent thegeneration of solutions physi
ally not admissible.4.1.2. Di�erential Evolution - Unlike GAs, the Di�erential evolution algorithm hasbeen originally proposed by Storn and Pri
e [150℄ for the global optimization over
ontinuous spa
es. They were mainly aimed at simplifying the evolution pro
ess of
GAs as well as to enhan
e the 
onvergen
e rate [151℄[121℄. The iterative evolution ofthe DE is similar to that of the GAs. Ea
h 
urrent population is repla
ed by betterindividuals obtained by applying the DE operators, LDE, still based on geneti
 but nowexe
uted in a di�erent sequen
e: the mutation, M, the 
rossover, C, and sele
tion, S.The DE iteratively evolves as shown in Fig. 2. During the mutation pro
ess, anintermediate solution is generated in 
orresponden
e with ea
h individual f (p)

k
as follows

t
(p)
k+1 = f (p1)

k
+ ε

(
f (p2)

k
− f (p3)

k

)
, p = 1, ..., P (26)where p, p1, p2, p3 ∈ [1, P ] (p 6= p1 6= p2 6= p3) are the indexes of di�erent individualsrandomly 
hosen in Fk. The agents f (p1)

k
, f (p2)

k
, and f (p3)

k
are 
alled donor ve
torsor se
ondary parents, and 0 < ε ≤ 2 is a real and 
onstant value that 
ontrols theampli�
ation of the di�erential variation (f (p2)

k
− f (p3)

k

). The 
rossover is then appliedbetween the intermediate solution, t(p)k+1, 
alled mutant ve
tor and the primary parent,
f (p)

k
, a

ording to the following strategy

u
(p)
k+1 =

{
t
(p)
k+1 if (r < pC)

f (p)

k
otherwise

. (27)
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attering Problems 15Finally, the sele
tion takes pla
e and f (p)

k+1
is 
hosen a

ording to a greedy 
riterionby 
omparing Φ

(
f (p)

k

) with Φ
(
u

(p)
k+1

). In a minimization problem, f (p)

k+1
= u

(p)
k+1 when

Φ
(
u

(p)
k+1

)
≤ Φ

(
f (p)

k

), while f (p)

k+1
= f (p)

k
otherwise.As regards to the 
ontrol parameters of DE, they are the 
rossover probability

pC and the ampli�
ation 
oe�
ient ε to be 
arefully 
hosen to avoid a premature
onvergen
e to sub-optimal solutions or a slow 
onvergen
e rate [151℄.As 
ompared to GAs, the main di�eren
es are (a) the order of exe
ution of thegeneti
 operators (Fig. 2) and (b) the 
ompetition between parents and 
hildren duringthe sele
tion phase whi
h la
ks in GAs sin
e the o�spring are all a

epted while theparents are all dis
arded. Unlike GAs, the �ttest parents have higher probability togenerate 
hildren with better �tness. Moreover, the risk that the average �tness of thepopulation 
an get worse is greater in GAs sin
e 
rossover and mutation are performedafter sele
tion. Furthermore, sin
e the se
ondary parents are 
hosen from the populationwith equal probability (and not through a proportional �tness sele
tion), theDE usuallyin
reases its global sear
hing 
apabilities. Finally, the 
ost fun
tion of the best individual
Φopt
k , k = 1, ..., K, monotoni
ally de
reases in theDE be
ause of theDE implementationof the sele
tion me
hanism and without the need of parti
ular elitist strategy.Despite the basi
 version of the DE, many di�erent versions of the algorithm exist[1℄[121℄[33℄. To identify them the notation DE/x/y/z is generally adopted [151℄. Morein detail,

x is the mutated solution randomly 
hosen (x = rand) or set to the bestindividual within the population (x = best);
y is equal to the number of di�eren
e ve
tors used in the di�erential variation;
z indi
ates the 
rossover s
heme.A

ording to su
h a notation, the version of the DE presented above is identi�ed as�DE/rand/1/bin�. For 
ompleteness, let us noti
e that the mutation operator of theversion �DE/best/2/bin� is de�ned as

t
(p)
k+1 = f opt

k
+ ε

(
f (p1)

k
+ f (p2)

k
− f (p3)

k
− f (p4)

k

)
. (28)4.2. Optimization by Swarm Intelligen
e4.2.1. Parti
le Swarm Optimizer - The parti
le swarm optimizer is a robust sto
hasti
sear
h pro
edure suitable for the optimization of 
ontiguous unknowns inspired by the



16 A. Massa et al.so
ial behavior of inse
t swarms, s
hool of �shes and �o
ks of birds. In the PSO, anagent, b(p)k , 
alled parti
le is 
hara
terized by a position f (p)

k
in the solution spa
e and avelo
ity v(p)

k that models the 
apability of the p-th parti
le to �y from the 
urrent positionto another su

essive position f (p)

k+1
. The whole set of parti
les {b(p)k , p = 1, ..., P

},
onstitutes the swarm Fk. In its 
lassi
al implementation [85℄, the parti
le updateequations are
f (p)

k+1
= f (p)

k
+ v

(p)
k+1 (29)and

v
(p)
n,k+1 = ωv

(p)
n,k + C1r1

(
p

(p)
n,k − f

(p)
n,k

)
+ C2r2

(
gn,k − f

(p)
n,k

) (30)whose physi
al interpretation, derived by Newton's laws, has been given in [107℄.In (30), ω, C1, and C2 are 
ontrol parameters known as inertial weight, 
ognitiveand so
ial a

eleration terms, respe
tively [87℄. Moreover, r1 and r2 are tworandom variables having uniform distribution in [0, 1]. With referen
e to aminimization problem, the values p(p)
k

= arg
{
mini=1,...,k

[
Φ
(
f (p)

i

)]} and g
k

=

arg

{
min

i = 1, ..., k; p = 1, ..., P

[
Φ
(
f (p)

i

)]} are the so-
alled personal and globalbest solutions, namely the best positions found by the p-th parti
le and by the wholeswarm until iteration k, respe
tively.As far as the iterative optimization is 
on
erned (Fig. 3), starting from guess valuesof f (p)

0
and v

(p)
0 , p = 1, ..., P , the positions and velo
ities of the parti
les are updateda

ording to Eqs. (29) and (30).The main advantages of the PSO if 
ompared to either the GAs or the DE 
an besummarized in the followings:

• the simpli
ity of the algorithm implementation and the use of a single operator(i.e., the velo
ity update) instead of three geneti
 operators (i.e., the 
rossover, themutation, and the sele
tion);
• the easy manipulation of the 
alibration parameters [138℄ (i.e., the swarm size, theinertial weight, and the a

eleration 
oe�
ients) whi
h 
ontrol the velo
ity updateoperator. Even if the number of 
ontrol parameters (i.e., the population size, the
rossover rate, the mutation rate) is similar, it is 
ertainly easier to set the PSOindexes than evaluating the optimal setting among various operators and severaloptions of implementation;
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• the ability to prevent the stagnation by 
ontrolling the inertial weight and thea

eleration 
oe�
ients to sample new regions of the solution spa
e. In standard
GAs and DE, the stagnation o

urs when the trial solutions assume the samegeneti
 
ode 
lose to that of the �ttest individual. In su
h a 
ase, the 
rossoverdoes not 
ontribute to the evolution and only a lu
ky mutation 
ould lo
ate a newindividual in other interesting region of the solution spa
e;

• a smaller number of agents, whi
h turns out in a redu
ed 
omputational 
ost of theoverall optimization and enables a reasonable 
ompromise between 
omputationalburden and e�
ien
y of the iterative pro
ess.Although the PSO is intrinsi
ally an optimizer for 
ontinuous spa
es, a binary version ofthe algorithm exists [86℄, as well. In order to deal with dis
rete spa
es [86℄, the 
on
eptsof traje
tory, position and velo
ity have been properly rede�ned in terms of 
hanges ofprobabilities. More spe
i�
ally, ea
h dimension of the solution spa
e is normalized toassume values between 0 and 1. In su
h a spa
e, the velo
ity is 
onstrained to the samerange of variation and its value gives the probability threshold for having a binary allelewith zero or one value. The new allele is then 
omputed as follows
f

(p)
n,k+1 =





1 if r < Λ

(
v

(p)
n,k+1

)

0 otherwise
(31)by de�ning a suitable transformation fun
tion Λ

(
v

(p)
n,k+1

) usually 
onsisting of a sigmoid
Λ
(
v

(p)
n,k+1

)
=

1

1 + exp
(
−v(p)

n,k+1

) . (32)4.2.2. Ant Colony Optimizer - The ACO is a population-based global optimizationalgorithm inspired by the foraging behavior of ant 
olonies looking for food sour
es [52℄.The ants move in the spa
e surrounding the nest looking for the best (shortest) pathbetween the food sour
es and the nest. Likewise the PSO, the ACO is based on the
on
epts of swarm intelligen
e and 
ooperation, but it also exploits the paradigm ofstigmergy and self-organization [64℄. In this sense, the a
tivity of ea
h agent f (p)

k
or antin the 
olony Fk is guided not only by the work in progress (the goal of optimization),but also from the information available in the lo
al environment. To modify the lo
alenvironment, ea
h ant leaves a 
hemi
al substan
e 
alled pheromone while movingwithin the solution spa
e along a path. The amount of pheromone on a path quanti�esits degree of optimality, but it de
ays with time (evaporation me
hanism). These
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hanisms allow one to avoid poor food sour
es on one hand and on the other toe�
iently sample the whole solution spa
e.The �rst implementation of the ACO [52℄ was originally developed for dis
reteoptimization problems and it was applied to solve 
omplex 
ombinatorial problems[53℄[95℄. In its basi
 version (Fig. 4) 
on
erned with the sear
h of a path within adis
rete spa
e (e.g., in the Traveling Salesman Problem [53℄), ea
h ant 
odes a ve
tor
f (p)

k
representative of a set of dis
rete symbols or lo
ations, f (p)

k
= {a1, ..., aN}. Let ussuppose ψijk be the amount of pheromone on the edge between the lo
ation ai and aj ,

i, j ∈ [1, N ], with i 6= j. Every ve
tor, f (p)

k
, p = 1, ..., P , is randomly initialized at the�rst iteration (k = 0) and a uniform level of pheromone is assigned to ea
h path withinthe sear
h spa
e, ψij0 = cost. Su

essively, the pheromone level of ea
h edge of the path
overed by the p-th ant is updated

ψ̃ijk+1 = ψijk +

P∑

i=1

δ
{
ψijk , f

(p)

k

} H

Φ
(
f (p)

k

) , ∀ψijk (33)where δ {ψijk , f (p)

k

}
= 1 when ψijk ∈ f (p)

k
(i.e., the path 
rossed by solution f (p)

k

ontainsthe bran
h individuated by ψijk ) and δ {ψijk , f (p)

k

}
= 0, otherwise. Moreover, H is a realpositive 
onstant term. The evaporation pro
edure takes pla
e to redu
e the amount ofpheromone on ea
h path of the graph

ψijk+1 = (1 − ρ) ψ̃ijk+1, ∀ψ
ij
k (34)

ρ ∈ (0 , 1] being a parameter aimed at 
ontrolling the evaporation rate. At ea
hiteration, the probability to move towards a new position aj within the graph leavingthe position ai is given by
pψ
(
ψijk+1

)
=

ψijk+1∑
j Ξ
(
ψijk+1

) (35)where Ξ
(
ψijk+1

)
= ψijk+1 if ψijk+1 is a physi
ally-admissible path and Ξ

(
τ ijk+1

)
= 0,otherwise.The ACO has been also extended to the optimization in 
ontinuous spa
es[12℄[148℄[149℄. The Continuous ACO (CACO) 
onsiders a solution ar
hive where Y > Psolutions are stored and used to generate new solutions. The value Y depends uponthe problem 
omplexity and ea
h solution of the ar
hive is identi�ed by its �tness tothe problem at hand, Φ

(p)
k = Φ

(
f (p)

k

), p = 1, ..., Y . At ea
h iteration, a new set of Psolutions is probabilisti
ally-generated and added to the solution ar
hive. The Y + P
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attering Problems 19solutions are ranked from the best (p = 1) to the worst (p = Y ) a

ording to the
orresponding �tness. Su

essively, the worst P solutions are then removed form thear
hive.The new solutions are obtained sampling a suitable probability density fun
tions,
Θk. Usually, the probability density fun
tion is a weighted sum of N dimensionalGaussian fun
tions

Θk (fn) =

Y∑

p=1

w
(p)
k

1

ς
(p)
n,k

√
2π
exp


−

(
fn − f

(p)

n

)2

2
(
ς
(p)
n,k

)2


 , n = 1, ..., N (36)where the mean value f (p)

n,k and the standard deviation ς
(p)
n,k are given by f

(p)

n = f
(p)
n,k,

n = 1, ..., N , and ς
(p)
n,k = ρ

∑Y
i=1

˛

˛

˛

a
(i)
n,k

−a(p)
n,k

˛

˛

˛

Y−1
. Moreover, the weights of the Gaussianfun
tions are de�ned as

w
(p)
k =

1

̟Y
√

2π
exp

[
− (p− 1)2

2 (̟Y )2

]
, p = 1, ..., P (37)

ǫ being a parameter modeling a kind of 
onvergen
e pressure me
hanism. When ̟ issmall, the best-ranked solutions are preferred, while when it is large, the probabilitybe
omes more uniform.4.3. Hybrid OptimizationEvolutionary algorithms are known as robust optimization te
hniques able to e�e
tivelyexplore wide parameter spa
es. However, EAs generally require a high number of
ost fun
tion evaluations to 
onverge, thus o�ering redu
ed performan
es in termsof 
omputational e�
ien
y when 
ompared to deterministi
 optimization te
hniques.However, whether the evaluation of the 
ost is 
omputationally fast, EAs are stillvery good 
andidates for a su

essful solution of the problem at hand espe
ially whenlo
al minima are present. Otherwise, when the evaluation of the 
ost fun
tion is
umbersome, di�erent approa
hes have been proposed to make EA-based pro
eduresmore 
ompetitive still maintaining their positive features. On one hand, suitableen
odings (as shown in Se
t. 4.1.1) allow a redu
tion of the dimension of the solutionspa
e. On the other hand, to save 
omputational resour
es and to in
rease the
onvergen
e rate, an e�e
tive strategy is the hybridization [14℄. As a matter of fa
t,gradient-based minimization te
hniques [119℄ usually 
onverge very fast and yield goodresults dealing with 
onvex fun
tionals. However, they 
an be trapped in lo
al minima



20 A. Massa et al.in highly nonlinear problems. In order to exploit 
omplementary advantages, EA-based pro
edures and deterministi
 methods 
an be 
oupled a

ording to the followingstrategies:
• the EA/CG-based approa
h;
• the Memeti
 Algorithm (MA).4.3.1. EA/CG-based approa
h - The simplest and more general way to realize ahybridized version of an EA is that of 
onsidering a �two-stage optimization�. Firstly,the optimization is performed with an EA and subsequently the algorithm swit
hes toa deterministi
 pro
edure or vi
eversa.In [166℄, a mi
ro-GA (µGA) has been 
oupled with a deterministi
 methodproposing a 
ommuni
ation 
riterion for stopping the sto
hasti
 algorithm and invokingthe deterministi
 optimizer. Moreover, a hybrid optimization method 
ombining the GAand the Levenberg-Marquardt algorithm (LMA) has been proposed in [169℄. The LMAis used to lo
alize a minimum and the minimization pro
edure swit
hes to the GA inorder to 
limb lo
al minima. Another hybrid pro
edure based on a RGA-based strategyhas been presented in [24℄ where the global sear
h approa
h is 
onsidered to lo
atethe attra
tion basin of the global optimum while the CG approa
h is used to rea
h theglobal optimum within the same attra
tion basin. Whether the 
onvergen
e threshold isnot rea
hed during the deterministi
 minimization, the RGA restarts with a populationwhose individuals are randomly-generated around the 
urrent optimal solution.The main drawba
k of these approa
hes is the need to evaluate the �quality� of aminimum and/or the 
loseness of the trial solution to the attra
tion basin of the globalminimum. This requires either an a

urate knowledge of the 
ost fun
tion, generallynot available, or a heuristi
 de�nition of the degree of a

ura
y of ea
h trial solution.To over
ome the drawba
ks, a more sophisti
ated approa
h has been presented in[97℄ whi
h 
onsiders a 
loser 
oupling between sto
hasti
 and deterministi
 optimizers.The 
oupling is obtained by means of a step-by-step optimization (SbS − GA) whereonly the best individual of ea
h population undergoes a deterministi
 optimization fora �xed a limited number of intermediate iterations or until a stationary 
ondition holdstrue. Su

essively, standard geneti
 operators are exe
uted on the whole population ofsolutions.
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attering Problems 214.3.2. Memeti
 Algorithm - Likewise the step-by-step hybridization, Memeti
Algorithms have been introdu
ed to de�ne a 
loser 
oupling between sto
hasti
 anddeterministi
 optimizers for enhan
ing the 
omputational e�
ien
y of EAs. Unlike the
SbS − GA, a stronger 
oupling between the sto
hasti
 approa
h and the deterministi
te
hnique is obtained by introdu
ing a geneti
 operator whi
h performs a gradient-likebased minimization (e.g., �hill-
limbing� operator [158℄, G-Bit improvement [69℄).The MA is a hierar
hi
al algorithm based on the 
on
ept of �meme� [46℄. A memeis a unit of information transmitted when people ex
hange ideas. Ea
h idea is a trialsolution f (p)

k
, 
omposed by a set of memes. Sin
e ideas are pro
essed before propagatingthem, ea
h individual 
an be assumed as a lo
al minimum/maximumof the 
ost fun
tion

Φ. From an algorithmi
 point of view [109℄[103℄, the pro
essing of an idea is simulatedby means of a deterministi
 pro
edure and its propagation and/or evolution with asto
hasti
 GA-based, or more generally EA-based, te
hnique a

ording to the �ow
hartshown in Fig. 5. In mode detail, after the initialization (k = 0) ea
h individual,
f (p)

k
, p = 1, ..., P , is 
onsidered as initial point for a lo
al optimization pro
edure inorder to obtain a population of lo
al optima, F̂k+1 =

{
f̂

(p)

k+1
; p = 1, ..., P

}. Afterwards,an iterative loop is performed where global and lo
al sear
h algorithms are iterativelyapplied to the whole population until a 
onvergen
e 
riterion is satis�ed. Furthermore,in order to assure a fast 
onvergen
e and to preserve the 
hara
teristi
s of the bestindividual, the elitist strategy is generally adopted.As 
ompared to other EAs, the MAs exhibit some interesting features. Sin
e thepopulation is only 
omposed of lo
al optima, the individuals move from one minimumto another. Therefore, a limited number of iterations is usually required to 
onvergealso with a small population. On the 
ontrary, although very e�e
tive in terms of
onvergen
e rate, the main drawba
k of MAs is the una

eptable 
omputational loadwhen the number of unknowns is large and the fa
t that they need lo
al minimization,where the knowledge of the gradient of the fun
tional is often a must.5. Evolutionary Algorithms - Theoreti
al Ba
kground5.1. Convergen
e Analysis and Control-Parameter SettingIn this se
tion, a theoreti
al analysis pointing out some interesting issues related to the
onvergen
e behavior of EAs is dis
ussed and properly referen
ed. Some hints on thein�uen
e of the various operators on the algorithm behavior as well as some indi
ations
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ontrol parameters are given.The study mainly fo
uses on GAs and PSO as ben
hmark algorithms based ondi�erent evolutionary 
on
epts: the survival of the �ttest and the exploitation of swarmintelligen
e, respe
tively.5.1.1. Geneti
 Algorithms Several theoreti
al analyses on the GAs behavior are basedon the 
on
ept of s
hemata, originally introdu
ed by Holland [75℄ to identify any partialstring pattern among those available in the sear
h spa
e that 
an be pro
essed by the
GA. In [75℄, a 
lassi
al binary GA, with reprodu
tion, roulette-wheel sele
tion, single-point 
rossover and mutation was 
onsidered to point out the law for either the growthor de
ay during the optimization pro
ess of some string patterns. In order to illustratethe s
hemata theorem, let us 
onsider the following example.With referen
e to a population with l = 5 bits 
hromosomes, the s
hemata ∗0 ∗ 11is 
hara
terized by �xed alleles (i.e., the se
ond, the fourth, and the �fth) and some�don't 
are� positions (i.e., the �rst and the third). All possible s
hemata within apopulation are expressed in terms of a three letters alphabet A+ = {0, 1, ∗}. Thetotal number of admissible s
hemata is equal to (2 + 1)l, while the number of s
hematawithin a population of P individuals 
an range from 2l up to P ×2l sin
e ea
h allele of a
hromosome 
an assume the a
tual value 0/1 or the don't 
are symbol. Ea
h s
hematais identi�ed by two quantities: the order, o (·), and the length, δ (·). The s
hemata orderis equal to the number of �xed alleles within the s
hemata. The length of a s
hematais the distan
e between the �rst and last position with �xed alleles. For example, thetwo s
hemata s(t) = {0 1 ∗ ∗ 1} and s(h) = {∗ ∗ 0 1 ∗} have order and length equal to
o
(
s(t)
)

= 3, o (s(h)
)

= 2 and δ (s(t)
)

= 4, δ (s(h)
)

= 1, respe
tively.The e�e
ts of geneti
 operators LGA on the survival of a s
hemata during theevolution of the population have been 
arefully analyzed in [75℄ and [69℄. Summarizing,the number m (s, k) of o

urren
es of a s
hemata s within a population at the k iterationin
reases/de
reases proportionally to
m (s, k) ∼= m (s, k − 1)

Φav (s)
1
P

∑P
p=1 Φ

(p)
k−1

[
1 − δ (s)

l − 1
pC − o (s) pM

] (38)where Φav (s) is the average �tness of the individuals of the population 
ontaining thes
hemata s and the 
ondition pM ≪ 1 is assumed.It is worth pointing out that when 
rossover and mutation are not used and theindividuals dire
tly reprodu
e throughout the generations only on the basis of the
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tion, the e�e
t of repli
ation leads to an exponential growth/de
ayof s
hemata having an average �tness above/below the average �tness of the wholepopulation. By supposing
Φav (s) = (1 + ι)

1

P

P∑

p=1

Φ
(p)
k−1 (39)and the per
entage ι 
onstant during the optimization pro
ess, it turns out that

m (s, k) ∼= m (s, 0) (1 + ι)k (40)
m (s, 0) being the o

urren
e of the s
hemata s within the initial population. Equation(40) points out the exponential e�e
t of the geneti
 pressure on the 
onvergen
e of the
GA [44℄. On the other hand, a s
hemata survives to 
rossover and mutation when thefollowing 
ondition holds true

δ (s)

l − 1
pC + o (s) pM < 1 (41)where (1 − δ(s)

l−1
pC

) and (1 − pM)o(s) ∼= 1− o (s) pM sin
e pM ≪ 1 are the 
rossover andmutation survival probabilities, respe
tively. To satisfy (41), the values usually adoptedfor the probability of mutation and 
rossover are pC ∈ [0.5, 0.9] and pM ∈ [0.001, 0.1].The results of su
h analysis de�ne the so-
alled S
hemata Theorem or FundamentalTheorem of GAs whose main out
ome is that �short, low-order, above-average s
hematare
eive exponentially in
reasing trials in subsequent generations�. In [69℄, Goldberg alsoformulated the Building Blo
ks Hypothesis by stating that the GA solution 
onverges tothe portion of the sear
h spa
e 
oded by the building blo
ks 
omposed by high-�t, short,and low-order s
hemata whi
h have low probability of being disrupted by 
rossover andmutation.Further studies have been su

essively 
arried out to give some indi
ations on the
onvergen
e of the GAs to the optimal solution Φbest. In [139℄, a probabilisti
 analysison the 
onvergen
e of a 
anoni
alGA is presented. The algorithm is des
ribed through aMarkov 
hains model and it is aimed at assessing the 
onverge 
ondition on the sequen
eof trial solutions
limk→∞Pr

{
Φopt
k = Φbest

}
= 1 . (42)By 
onsidering a proportional sele
tion me
hanism and without elitism, it has beendemonstrated that the 
anoni
alGA never 
onverges to the global optimum. As a matterof fa
t, it has been proved that there is a non null probability that, whatever the initial



24 A. Massa et al.distribution of the population F0, the algorithm is able to �nd a solution with �tnessvalue Φopt
k < Φbest, k → ∞. In this sense, it turns out that the S
hemata Theorem [75℄does not imply the 
onvergen
e to the global optimum in stati
 optimization problems.However, it has been also shown [139℄ that the elitism 
an assure global 
onvergen
esin
e the �transition time� between whatever two states/solutions of the solution spa
eis �nite and the global solution 
an be found at least one in an unlimited run of thealgorithm.The theoreti
al analysis 
arried out by Qi and Palmieri has 
onsidered, �rstseparately and then in a uni�ed framework, the e�e
ts of the proportional sele
tion, themutation [122℄ and the 
rossover [123℄ with the assumption of an in�nite populationsize (i.e., F =

{
f (p); p = 1, ..., P ; P → ∞

}) over 
ontinuous spa
es (i.e., f ∈ R).In this sense, the whole solution spa
e is sampled by agents and, thanks to thishypothesis, the distribution of the population 
an be modeled with a sequen
e of
ontinuous probability density fun
tions Θ (Fk), k = 1, ...,∞, instead of using dis
retedistributions. As far as the geneti
 operators are 
on
erned, it has been shown in [122℄that the sele
tion tends to 
on
entrate the individuals around the �ttest solution (i.e.,the global optimum) a

ording to the geneti
 pressure proportional to the value of boththe density fun
tion Θ (Fk) and the �tness fun
tion Φ (Fk). Su
h a me
hanism alsojusti�es the e�e
tiveness of GAs in dealing with multimodal fun
tionals 
hara
terizedby multiple global optima. On the opposite, the mutation spreads the distributionobtained after sele
tion proportionally to the 
onvolution between the mutation densityand the distribution of the population [122℄.Be
ause of the in�nite dimension of the population, the sele
tion operator byitself guarantees the 
onvergen
e to the global solution without the need of mutation.However, the use of mutation is mandatory in real optimization problems when �nitepopulations are used sin
e it enables the exploration of new regions of the solution spa
e.As regards to 
rossover (either single-point, multi-point, or uniform [48℄), theanalysis in [123℄ shows that it is able to �nd new solutions in a smarter way as 
omparedto mutation thanks to a good trade-o� between exploration and exploitation 
apabilities.As a matter of fa
t, the 
rossover is able to diversify the population. Its iteratedappli
ation redu
es the 
orrelations among the solution parameters while maintainingthe marginal distribution of ea
h unknown unaltered and equal to that of the initialpopulation (i.e., epistasis theorem [123℄).Still 
on
erned with the 
onvergen
e issue, a Markov 
hain analysis based on the
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hemata Theorem has been sket
hed in [57℄[153℄ where an in�nite number of iterationsis 
onsidered. Moreover, a 
onvergen
e analysis with an in�nite population size in alsodis
ussed in [159℄. Furthermore, the e�e
ts of 
rossover have been thoroughly analyzedin [162℄.Under geneti
 drift 
onditions § and in the 
ase of a simple GA when mutation iseither applied or not, the results in [110℄, numeri
ally assessed in [3℄ through 
omputersimulations, indi
ate that the mean 
onvergen
e time grows proportionally to thepopulation size. Con
erning the mutation, an �optimal value� has been identi�ed toallow all the solutions being explored with the same probability. Other empiri
al resultsabout geneti
 drift for di�erent versions of GAs 
an be found in [67℄[78℄.Many other studies on the GA 
onvergen
e and properties 
an be found in thestate-of-the-art literature and are 
urrently under development. The interested readeris referred to the spe
ialized literature for a more 
omplete dis
ussion of these issues.5.1.2. Di�erential Evolution - Sin
e the main obje
tive of DE is to improvethe 
onvergen
e rate of GAs, the main theoreti
al e�orts have been addressedtowards the optimal 
hoi
e of the parameters 
ontrolling the evolution. This fa
tis 
on�rmed by several works on this topi
 published in the referen
e literature (see[63℄[94℄[171℄[168℄[121℄[133℄ and referen
es therein).Sin
e the basi
 idea of DE is to adapt the sear
h step inherently along theevolutionary pro
ess to have a suitable trade-o� between exploitation and explorationand the s
ale of the perturbation ve
tors is roughly proportional to the extent of thepopulation diversity, the 
ontrol parameters should allow large perturbations at thebeginning of the evolution pro
ess when parental individuals are far away to ea
h other.When the evolutionary pro
ess pro
eeds to the �nal stage, the population must befor
ed to a small region around the attra
tion basin of the global optimum throughsmall perturbations. As a result, the adaptive sear
h step would bene�t the evolutionalgorithm by performing global sear
h with a large perturbation step at the beginningof the optimization and re�ning the population with a small sear
h step at the end.In su
h a framework, although [151℄ states that the strategy parameters for the
DE are not di�
ult to 
hoose, there are not general rules for 
hoosing the DE
ontrol 
oe�
ients. Moreover, even though there are only three parameters to set,
§ The random drift of the gene frequen
y is 
aused by the probabilisti
 generation of su

essivepopulations. It models the highlighting of genes with parti
ular values.



26 A. Massa et al.the appli
ation of DE on several test fun
tions as in [63℄ showed that �nding the globaloptimum is very sensitive to the 
hoi
e of the 
ontrol variables: P (population size), ε(ampli�
ation fa
tor), and pC (
rossover probability). Notwithstanding, the followingrules of thumb have been given in [63℄:
• a population size between Pmin = 3 ×N and Pmax = 8 ×N ;
• a good initial 
hoi
e for the ampli�
ation fa
tor ε = 0.6 to be in
reased if onesuspe
ts that this setting 
auses the trial solution being trapped in a lo
al optimum.As a matter of fa
t, a larger ε in
reases the probability for es
aping a lo
al optimum,although for ε > 1 the 
onvergen
e rate de
reases sin
e it is more di�
ult to rea
hthe global solution when the perturbation is longer than the distan
e between twoindividuals;
• a large pC often speeds-up 
onvergen
e, but from a 
ertain threshold value upwardsthe population may 
onverge prematurely and stagnate. A good 
hoi
e, whateverthe 
ost fun
tion at hand, seems to be a value between 0.3 and 0.9.Besides a 
areful analysis on the sensitivity of the DE optimization to the values ofthe 
ontrol parameters, innovative operators have been also introdu
ed by exploitinggeometri
al relationships to further speed up the 
onvergen
e (e.g., trigonometri
mutation [60℄).5.1.3. Parti
le Swarm Optimization In [42℄, Cler
 and Kennedy examined in detailsthe behavior of the PSO and de�ned some 
onditions on the PSO parameters to avoida divergent sear
h. With referen
e to a simpli�ed one-dimensional (i.e., N = 1) anddeterministi
 (C1r1 = C1 and C2r2 = C2) model, des
ribed by the following updatingequations

vk+1 = vk + ϕ (t− fk)

fk+1 = fk + vk+1 (43)where ϕ = C1 + C2 and t = C1p+C2g
C1+C2

is the index related to both the 
ognitive andthe so
ial term and by supposing the personal best and global best position �xed (i.e.,
pk = p and gk = g), it has been shown that when ϕ ≥ 4, the parti
les diverge as afun
tion of k, while when 0 < ϕ < 4 the traje
tories are os
illating around the position
t [112℄ with 
y
li
 or quasi-
y
li
 behavior depending on ϕ. These 
on
lusions have been
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attering Problems 27drawn from the analysis of (43) re-arranged in matrix form as follows: Fk+1 = MFkwhere Fk = [vk, zk]
T , being zk = (t− fk), and the dynami
 matrix is given by

M =

[
1 ξ

−1 1 − ξ

]
. (44)As a matter of fa
t, it turns out that Fk = MkF0, F0 being the initialization ve
tor. Asu�
ient 
ondition to rea
h an equilibrium point at the 
onvergen
e (i.e., t) is that theamplitudes of the two eigenvalues of M are lower than unity [157℄. However, a random
hoi
e of ϕ 
auses the un
ontrolled in
reasing of the velo
ity term vk+1 [87℄.Further developing the approa
h based on the generalized matrix, it has been provedthat the following 
onstri
tion system

vk+1 = χ [vk + C1r1 (p− fk) + C2r2 (g − fk)]

fk+1 = fk + vk+1 (45)where χ = 2

|2−ǫ−√
ǫ2−4ǫ| = 0.7298 with ϕ = 2C1 = 2C2 = 4.1 guarantees the stability ofthe optimization pro
ess.Other variants of the PSO exist and a 
areful analysis about the 
onvergen
e takinginto a

ount the randomness of the algorithm has been reported in [120℄.Con
erning the optimal 
hoi
e of the 
ontrol 
oe�
ients, it is still worthwhile topoint out that sin
e higher values of ω produ
e relatively straight parti
le traje
tories,resulting in a good global sear
h 
hara
teristi
, while small values of ω en
ourage alo
al sear
hing, some resear
hers have gained advantage from a de
rease [56℄[147℄ or arandom variation of ω during the iterations [58℄. As regards to the 
oe�
ients C1 and

C2, they are usually set to 2.0 as re
ommended by some papers in the PSO literature[85℄[87℄[146℄ and found through experimentation in several optimization �elds [15℄.5.1.4. Ant Colony Optimization - A �rst proof on the 
onvergen
e of an ACO-basedalgorithm, named graph-based ant system (GBAS), was reported in [72℄[73℄ where ithas been shown that the global solution 
an be found at least on
e throughout theoptimization pro
ess. Although reliable, su
h a proof does not hold true whatever theproblem and it is limited to the GBAS implementation whi
h usually di�ers from the
ACO version used in inverse s
attering.



28 A. Massa et al.In [104℄, similarities between the pheromone update me
hanism and the sto
hasti
gradient des
ent have been pointed out to show that a 
lass of ACO 
onverges to a lo
aloptimum with probability equal to 1. On the same line of reasoning of [72℄, Stutzle andDorigo proved in [152℄[54℄ that for a 
lass of ACO-based algorithms with a lower bound
ψmin on the pheromone level, the su

ess expe
tan
y of the optimization is equal to
Pr
{
Φopt
k = Φbest

}
≥ 1 − η, with η small as desired and 
lose to zero for an unlimitediterative pro
ess (i.e., Pr {Φopt

k = Φbest
}
→ 1 when k → ∞). Moreover, the pheromonedeposited on the optimal path is higher than that left on others only after few iterations.A similar 
onvergen
e proof has been also yielded in [172℄ by exploiting a simulatedannealing 
on
ept and introdu
ing an adaptive pheromone deposition fun
tion.Besides the theoreti
al works on the 
onvergen
e issues, some e�orts have been alsodevoted to the appli
ation of the ACO to optimization problems not �suitable� for thestru
ture of the algorithm itself. To des
ribe this behavior, Blum and Dorigo [13℄ usedthe term �de
eption� previously introdu
ed by Goldberg [68℄ to identify un�t problemsfor the GA 
on
epts. The arising 
on
lusions highlighted that in some 
ases ACO notonly rea
hes a sub-optimal (lo
al) solution (i.e., �rst order des
eption), but also that theperforman
e of the algorithm 
an get worse (i.e., se
ond order des
eption). For furtherindi
ations on this issue, the interested reader is referred to the exhaustive survey onthe ACO theory available in [55℄.6. Evolutionary Algorithms - Appli
ations to Inverse S
atteringIn this se
tion, the appli
ation of EAs to inverse s
attering problems is analyzed. Fornotation simpli
ity and without loss of generality, the inverse s
attering problems isformulated in two-dimensions and TM illuminations are 
onsidered to deal with a s
alarsystem of equations. The extension to the ve
torial 3D problem is straightforward andit does not modify the meaning and aim of the following dis
ussion.Sin
e EA-based approa
hes have been applied to retrieve both diele
tri
 anddissipative s
atterers as well as perfe
tly 
ondu
ting obje
ts (PEC), the mathemati
aldes
ription of both problems as well as the analyti
al expression of the arising 
ostfun
tions used during the optimization will be summarized. The theoreti
al reasonsof the e�e
tiveness of EAs in dealing with the ill-posedness and non-linearity of theseproblems will be dis
ussed, as well.The last part of this se
tion provides a representative overview, to the best of
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attering Problems 29the authors' knowledge, on the solution of inverse s
attering problems through EAs.Although a fair 
omparison among various algorithms and di�erent implementations isimpra
ti
able due to (a) the 
ustomization of ea
h EAs to the s
attering s
enario athand, (b) di�erent metri
s adopted to de�ne the 
ost fun
tion to be optimized, and (
)di�erent strategies at the 
ontrol level (e.g., di�erent stopping 
riteria), a summary ofthe performan
e of some EAs is reported in Tabs. I and II. More spe
i�
ally, Table I
on
erns with the EA-based approa
hes for qualitative imaging (i.e., the retrieval of theobje
t's support and shape) of both 
ondu
tors and diele
tri
 s
atterers. The values ofthe key 
omputational indexes (where available) are given and 
ompared: the number ofunknowns, N , the number of trial solutions at ea
h iteration, P , the number of iterationsneeded to a
hieve the 
onvergen
e, Kend, and the 
orresponding total 
omputationaltime, Ttot. Analogously, the performan
es of quantitative imaging (i.e., the retrieval ofthe diele
tri
 properties within the investigation domain) te
hniques based on EAs aresummarized in Tab. II.6.1. Inverse S
attering of Diele
tri
 Obje
tsLet us 
onsider a region, 
alled investigation domain Di, 
hara
terized by a relativepermittivity ǫ(r) and 
ondu
tivity σ(r). Su
h a region is probed by a set of V transverse-magneti
 (TM) plane waves, with ele
tri
 �eld ζv(r) = ζv(r)ẑ (v = 1, . . . , V ), r = (x, y),and the s
attered �eld, ξv(r) = ξv(r)ẑ, is 
olle
ted at M(v), v = 1, ..., V , measurementpoints rm(v), m(v) = 1, ...,M(v), distributed in the observation domain Do.In order to ele
tromagneti
ally des
ribe the investigation domain Di, let usintrodu
e the 
ontrast fun
tion
τ(r) = [ǫ(r) − 1] − j σ(r)

ωε0
, r ∈ Di (46)where ω is the working angular frequen
y and the time dependen
e ejωt is supposed.Under the hypothesis of a linear, isotropi
, and non-magneti
 propagation medium, thes
attered �eld ξv(r) is the solution of the following Helmholtz equation (see [10℄)

∇2ξv(r) − κ2(r)ξv(r) = −jωµ0J
v(r) (47)where κ(r) = ω

√
µoǫo [τ(r) + 1] is the wavenumber. Moreover, Jv(r) is the equivalent
urrent density de�ned within Di and radiating in free-spa
e

Jv(r) = τ (r)Ev (r) (48)
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Ev being the ele
tri
 �eld in the presen
e of the s
atterer (i.e., the total �eld). Byimposing that ξv(r) satis�es the Sommerfeld's radiation 
onditionlimr→+∞

√
r

(
∂ξv(r)

∂r
− jκ(r)ξv(r)

)
= 0 , (49)the solution of (47) in a two-dimensional s
enario is given by the following Lippmann-S
hwinger integral equations [35℄

ξv
(
rm(v)

)
=
(

2π
λ

)2 ∫
Di
τ (r′)Ev (r′)G2D

(
rm(v)/r

′) dr′ , rm(v) ∈ Do , (50)
ζv (r) = Ev (r) −

(
2π
λ

)2 ∫
Di
τ (r′)Ev (r′)G2D (r/r′) dr′ , r ∈ Di , (51)where λ is the ba
kground wavelength. Moreover, G2D (r/r′) is the two-dimensionalfree-spa
e Green's fun
tion given by

G2D (r/r′) = −j
4
H

(2)
0

(
2π

λ
‖r − r′‖

)
, (52)

H
(2)
0 being the se
ond-kind zeroth-order Hankel fun
tion.Inverse s
attering te
hniques are aimed at re
onstru
ting the obje
t fun
tion τ(r)in Di starting from the knowledge of ξv (rm(v)

), rm(v) ∈ Do, and ζv (r). Unfortunately,the arising problem is non-linear and ill-posed [10℄. Moreover, a 
losed form solutionof the integral equations in (50) and (51) does not generally exist. Consequently, theinverse s
attering problem has to be reformulated and e�e
tive inversion methodologieshave to be employed.Sin
e analyti
al solutions are rarely available, a numeri
al solution is then lookedfor. For instan
e, equations (50) and (51) are dis
retized a

ording to the point-mat
hingversion of the Method of Moments [137℄. The investigation domain Di is partitionedinto N square sub-domains Dn 
entered at rn, n = 1, ..., N . In ea
h sub-domain, a pulsebasis fun
tion is de�ned
Bn (r) =

{
1 if r ∈ Dn

0 if r /∈ Dn

, (53)and the 
ontrast fun
tion turns out to be expressed as follows
τ (r) =

N∑

n=1

τnBn (r) , r, rn ∈ Di (54)where τn = τ (rn), n = 1, ..., N . By assuming the in
ident �eld ζv and the total �eld
Ev 
onstant inside ea
h sub-domain Dn, the dis
rete form of the Lippmann-S
hwingerequations is given by

ξvm(v)

(
rm(v)

)
=
∑N

n=1 τnE
v
n (rn)G2D

(
rm(v)/rn

)
, rm(v) ∈ Do , (55)



Evolutionary Optimization as Applied to Inverse S
attering Problems 31
ζvn (rn) = Ev

n (rn) −
∑N

p=1 τpE
v
p

(
rp
)
G2D

(
rn/rp

)
, rn ∈ Di , (56)where G2D (rm/rn) is the dis
retized form of the two-dimensional Green's operator.In order to 
ope with ill-posedness, the inverse s
attering problem is usuallyre
ast as an optimization one de�ning a suitable 
ost fun
tion proportional to themismat
h between the measured �elds and their numeri
ally evaluated 
ounterparts tobe minimized. Additional regularization or penalty terms 
an be also added to the 
ostfun
tion in order to enhan
e the reliability of the inversion pro
ess. The 
ost fun
tionalis a fun
tion of the trial solution f =

{
τ̃n, Ẽ

v
n; n = 1, ..., N

} and it 
an be expressed inmatrix form as follows [10℄
Φ
{
f
}

= α
PV

v=1‖ξv−Gv

EXT
eτ eE

v‖2

PV
v=1‖ξv‖2 + β

PV
v=1‖ζv− eE

v
+Gv

INT
eτ eE

v‖2

PV
v=1‖ζv‖2 (57)where Gv

EXT
and Gv

INT
are the M ×N external Green's matrix and the N ×N internalGreen's matrix, respe
tively. Moreover, α and β are two user-de�ned regularizationparameters. Furthermore, ζv is the N × 1 in
ident �eld array, the M × 1 entries of ξvare given by the measured s
attered �eld samples, and Ẽ

v is the N × 1 array of theestimated total ele
tri
 �eld.The a
tual solution f opt is looked for as the N × 1 trial array that minimizes the
ost fun
tion (57)
fopt = arg{mink=1,...,K

[
Φ
{
f
k

}]} (58)where f
k

=
{
τ̃k, Ẽ

v

k

} is the trial solution at the step k-th iteration of the optimizationpro
edure.6.2. Inverse S
attering of Perfe
t Ele
tri
 Condu
torsWhen dealing with PEC 
hara
terized by a 
ondu
tivity σ → ∞, Equation (50)modi�es as follows
ξv
(
rm(v)

)
= −ωµ0

4

∮
γ
Jvs (r′)G2D

(
rm(v)/r

′) dr′ , rm(v) ∈ Do , (59)
Jvs (r) being the surfa
e 
urrent density de�ned only on the boundary γ of the unknowns
atterer. Sin
e the following 
ondition holds true on the surfa
e of the PEC

ξv (r) + ζv (r) = 0 , r ∈ γ, (60)the s
attering equation is given by
ζv (r) = ωµ0

4

∮
γ
Jvs (r′)G2D (r/r′) dr′ , r ∈ γ , (61)
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urrent Jvs (r) des
riptive of the s
atterer (i.e., the 
ontour γ) is
omputed through the inversion of the linear system (61) starting from the knowledgeof ζv (r). Likewise the inversion of diele
tri
 s
atterers, the re
onstru
tion pro
ess isre
ast as the minimization of the following 
ost fun
tion
Φ
{
γ
}

=
PV

v=1‖ξv−Gv

EXT
J̃

v

s(γ)‖2

PV
v=1‖ξv‖2 (62)where γ is the parametrized representation of the s
atterer 
ontour γ.Be
ause of the non-linearity of the s
attering problem and the presen
e of lo
alminima (i.e., false solutions of the inverse s
attering problem) in the 
ost fun
tion (57)or (62), the quality and the reliability of the �nal solution mostly depends on thee�e
tiveness of the sear
h strategy.6.3. EAs-based Approa
hes for Inverse S
atteringThe �rst multiple-agent evolutionary te
hniques applied to solve mi
rowave inverses
attering problems were the geneti
 algorithms. Chiu and Liu in [39℄ applied the

BGA for the 2D inversion of a PEC 
ylinder illuminated by an in
ident TM-polarizedplane wave. The 2D surfa
e-re
onstru
tion problem has been reformulated into a mono-dimensional one by des
ribing the 
ontour of the 
ylinder as a fun
tion of the polar angle
θ

γ (θ) =

M/2∑

m=0

Amcos (mθ) +

M/2∑

m=1

Bmsin (mθ) (63)with θ ∈ [0, 2π], where the unknowns to be determined
f =

{
A0, A1, AM

2
, B1, B2, ..., BM

2

} (64)are the real 
oe�
ients of the Fourier series expansion. The number of unknownparameters was set to N = M + 1 = 9 and various experiments 
onsidering stringsof length l = 8 × N and l = 10 × N have been performed to validate the EA-basedinversion method. As far as GA parameters are 
on
erned, a population of P = 300individuals was 
hosen with pC = 0.8 and pM = 0.04. Su

essively, the sensitivityof the re
onstru
tion on the GA parameters has been analyzed in [40℄ by the sameauthors under TE illuminations. The out
omes have been that for this kind of problemsa suitable 
hoi
e of the GA parameters was: a population dimension in the range
P ∈ [300, 600], a 
hromosome length of l ∈ [8, 16]×N bits, and probabilities of 
rossover
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attering Problems 33and mutation in the following ranges 0.7 < pC < 0.9 and 5 × 10−4 < pM < 5 × 10−2,respe
tively. Su
h a GA-based inversion pro
edure was extended in [41℄ to image lossyor imperfe
tly 
ondu
ting 
ylinders. More spe
i�
ally, the GA was used to retrieve alsothe 
ondu
tivity of the unknown s
atterer by 
oding both the Fourier 
oe�
ients of theshape and the value of the 
ondu
tivity of the obje
t.Following the guidelines in [39℄ for de�ning the inversion problem, an approa
hbased on a mi
ro-GA has been presented in [79℄ to enhan
e re
onstru
tion and
onvergen
e performan
es of standard GAs. A number of N = M + 1 = 5 unknownswas 
onsidered to des
ribe the 
ontour of the s
atterer through (63) and a population of
P = 5 individuals with l = 12×N 
hromosomes was used. The main advantages of the
µGA are that it employs a small population, thus redu
ing the overall 
omputationalburden, and assures a fast 
onvergen
e to sub-optimal solutions while maintainingsuperior sear
h ability.Takenaka and 
o-workers [154℄ proposed a volume-re
onstru
tion approa
h toestimate widths and lo
ations of parallel strips in 1D and 2D problems without any a-priori information on the number of strips. The investigation domain Di was dis
retizedin N = 20, 36 
ells and either an empty (�ai = 0�) or o

upied (�ai = 1�) state wasassigned to ea
h 
ell. If ai = 1, the ith 
ell is o

upied by a metalli
 strip, ai = 0otherwise. It is worth pointing out that, the original problem was reformulated as thede�nition of a binary map to allow a straightforward use of the BGA. The populationdimension was set to P = 50 with �xed 
rossover probability pC = 0.8 and variablemutation probability in the range pM ∈ [0.01, 0.5]. The approa
h was extended in[100℄ to retrieve lo
ations and two-dimensional 
ross se
tions of 
ondu
ting 
ylinders.To improve the 
onvergen
e rate for a 2D dis
retization of the s
enario under test, a
ustomized 
rossover, 
alled re
tangular blo
k 
rossover, was developed to e�
ientlydeal with a binary re
onstru
tion map. Moreover, a larger population with P = 200individuals was 
onsidered be
ause of the wider solution spa
e (N = 225). In [173℄, asimilar BGA-based approa
h has been tested against Ipswi
h experimental data-set tore
onstru
t metalli
 obje
ts. The investigation domain Di was dis
retized into N = 400
ells and the GA parameters were set to P = 100, pC = 0.8, and pM = 0.2.To avoid the quantization error related to the dis
retization of the real 
oe�
ientsin (63), Qing and 
o-workers proposed in [124℄[125℄[127℄ a strategy based on a RGA.For 
omparative purposes, some ben
hmark examples previously addressed in [39℄ withthe BGA have been 
onsidered. An experimental validation of the method has been



34 A. Massa et al.presented in [128℄, as well.In an alternative fashion, the 
ontour of the 
ondu
ting 
ylinders has beenapproximated in [129℄ by means of lo
al shape fun
tions mathemati
ally expressed interms of 
losed 
ubi
 B-splines
γ (θ) =

M−1∑

m=0

ρm

(
M

2π
θ −m

)
, θ ∈ [0, 2π] (65)where ea
h segment ρm is a linear 
ombination of four 
ubi
 polynomials Qi (t),

i = 0, ..., 3, as follows
ρm (t) = pm−1Q0 (t) + pmQ1 (t) + pm+1Q2 (t) + pm+2Q3 (t)

pm−1, ..., pm+2 being the 
ontrol points. In this 
ase, the parameters to be optimized arethe set of 
ontrol points
f = {p0, ..., pM−1} . (66)Dealing with these problems, the RGA was used with probability 
oe�
ients equal to

pC = 1.0 and pM = 0.1. More re
ently, the representation of PEC 
ontours using
ubi
 splines has been extended to deal with three-dimensional (3D) ele
tri
ally large
ondu
ting pat
hes [141℄.Previous referen
es and the obtained results point out that theGA-based te
hniqueshave demonstrated to work e�e
tively in retrieving strong s
atterers in free-spa
ethrough the minimization of the mismat
h between the measured and the re
onstru
teds
attered �eld. In addition, the robustness of the GA in su
h a framework has beenproved sin
e the 
onverge to the global optimum has been obtained with high probabilitydespite a rough initialization of the iterative pro
ess. More re
ently, an innovativestrategy based on Geneti
 Programming (GP ) [88℄ has been presented in [163℄. A newgeometry-en
oding s
heme was introdu
ed and a tree-shaped 
hromosome was used todes
ribe the shapes of the 
ylinders as the union and subtra
tion of 
onvex polygons.In [65℄, the binary GA was also applied to both the dete
tion of 
ir
ular 
ondu
ting
ylinders buried in an homogeneous diele
tri
 medium and the diele
tri
 pro�le retrievalof layered media. A similar approa
h has been 
onsidered in [101℄ to re
onstru
t theele
tri
al parameters (ǫi, σi, µi, i = 1, ...,M) of a multilayered radome of �nite size ∆.In this 
ase, the 
hromosome was the binary representation of the following unknownarray
f = {ǫ1, σ1, µ1, d1, ..., ǫM , σM , µM , dM} (67)
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attering Problems 35being ∑N
n=1 dn = ∆. To in
rease the a

ura
y of the re
onstru
tion and improve the
onvergen
e rate, an adaptive 
hromosome stru
ture was 
hosen in order to iterativelyadjust the existen
e range of ea
h parameter.An inverse s
attering te
hnique for the dete
tion of perfe
tly 
ondu
ting 
ylindri
alobje
ts buried in a half-spa
e have been des
ribed in [38℄. An improved �steady-state�

GA (SS − GA) ‖ was used to redu
e the 
omputational burden and a non-uniformprobability distribution was introdu
ed to 
ontrol the generation of new individualsthrough 
rossover and mutation. The shapes of the buried obje
ts have been represented
onsidering both Fourier series (63) and Cubi
-splines (65) representations. Ea
hunknown was 
oded with l = 20 bits string and a population of P = 100 individualswas 
hosen. Moreover, the following setup was 
hosen: pC = 0.05 and pM = 0.5. If
ompared to standard GA, the values of the 
ontrol parameters, turn out di�erent inmagnitude. This is due to the steady-state GA implementation sin
e only a portion ofnew individuals is generated through 
rossover and mutation, while the whole populationis updated in standard GA. In [38℄, it has also been veri�ed that even for an initialguess far away from the optimal solution the 
omputational 
ost to rea
h the globalsolution is mu
h less in SS − GA than for simple GAs. Moreover, a further redu
tionof the 
omputational time was obtained running the optimization pro
ess in parallel ona multipro
essor 
luster system.In the framework of subsurfa
e imaging, a GA-based approa
h for the retrieval ofthe dimension and lo
ation of a 3D buried obje
t has been presented in [93℄. A parallelbinary GA pro
edure has been 
onsidered to speed up the �tness evaluation 
omputedthrough the FDTD (Finite-Di�eren
e Time-Domain) method. More in detail, the 
ostfun
tion has been de�ned as the di�eren
e between the measured and the 
al
ulated s11parameters on a frequen
y band from νL up to νH at the port of the probing antenna
Φ̂ = 1 −

√∑νH

ν=νL

[
smeas11 (ν) − scalc11 (ν)

]2
√∑νH

ν=νL
[smeas11 (ν)]2

. (68)As far as the GA is 
on
erned, a population of P = 50 individuals and pC = 0.5 and
pM = 0.2 were 
hosen.Besides shape re
onstru
tion problems, the re
onstru
tion of the diele
tri
properties of unknown obje
ts has been fa
ed in [23℄ by means of a quantitative (pixel
‖ In steady-state GAs, only a portion of the population is updated and a suitable repla
ement strategyis 
onsidered.
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rowave imaging te
hnique. A binary GA with Q = 256 quantization levelshas been used to des
ribe the real-valued unknowns. The inverse s
attering problemhas been solved in the framework of the Born approximation to redu
e both the non-linearity of the des
riptive s
attering equations as well as the total number of unknowns.The 
hromosome to be optimized was
f = {τ1, τ2, ..., τn, ..., τN} (69)where N = 900. The simulations were 
arried out with a population of P = 100individuals and 
rossover and mutation probability 
oe�
ients were set to pC = 0.7and pM = 4 × 10−4, respe
tively. Moreover, a sensitivity analysis was performedvarying the 
ontrol parameters in the following range: P ∈ [40, 200], 0.6 < pC < 0.8, and 4 × 10−4 < pM < 10−3. It has been proved that for small-sized populationsthe quantitative errors in
rease as for either low value of pC or high pM . The sameoptimization pro
edure has been validated in [115℄ against experimental data a
quiredwhen 
onsidering highly-
ontrasted bodies. Sin
e, the Born approximation 
annot beapplied, the unknown ve
tor was 
omposed of both the 
ontrast fun
tion τ and the total�eld Ev in the investigation domain
f = {τ1, τ2, ..., τN , Ev

1 , E
v
2 , ..., E

v
N ; v = 1, ..., V } . (70)Be
ause of the 
ontinuous nature of the parameters to be optimized, a real-
oded

GA has been proposed in [24℄ and signi�
antly superior performan
es with respe
t tothe BGA have been attained [25℄. The potentialities of the RGA have been furtherpointed out and the methodology extended to hybrid-
oded 
hromosomes in order todeal with both nondestru
tive testing and evaluation (NDT −NDE) problems [26℄ andbiomedi
al imaging [29℄. More spe
i�
ally, the unknowns were expressed by means ofthe following ve
tor
f = {x0, y0, L, W, θ, E

v
1 , E

v
2 , ..., E

v
M ; v = 1, ..., V } (71)
oding through binary strings the values of the bary
enter (x0, y0), the length (L), thewidth (W ), and the orientation (θ) of either a 
ra
k in NDT − NDE problems or apathology in 
ase of biomedi
al imaging. Di�erently, a �oating-point representationhas been used to 
ode the unknown �eld values. Reliable values of the probability
oe�
ients for the RGA turned out to be pC = 0.7 and pM = 0.4.In NDT − NDE problems, the appli
ation of GAs starts with a BGA proposedin [2℄ to identify the qualitative nature (i.e., length, width, orientation, and bary
enter)
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ra
k on the surfa
e of an obje
t. In order to ta
kle more 
omplex diagnosisproblems, an innovative des
ription of the 
ra
k based on a suitable parameter sele
tion(71) as well as a more e�e
tive exploitation of the a-priori information has been
onsidered in [116℄[30℄[7℄ to redu
e the number of problem unknowns and enable ane�
ient use of HGAs. Although e�e
tive, these approa
hes 
onsidered s
attering
on�gurations 
hara
terized by the presen
e of only a single defe
t. To over
omesu
h a limitation, two enhan
ed GA-based optimization te
hniques able to deal withmultiple defe
ts in a diele
tri
 host medium have been proposed in [8℄. Both methodsadopted a multi
ra
k variable-length hybrid 
oding. The former strategy was based ona hierar
hi
al implementation, whi
h 
onsiders a set of parallel sub-pro
esses, ea
h onelooking for a solution with a �xed number of 
ra
ks. The other deals with a singleoptimization pro
ess aimed at retrieving the best re
onstru
tion among di�erent 
ra
k-length solutions. Be
ause of the use of an ad-ho
 operator to 
orre
tly re
ombine thedis
rete (binary) and 
ontinuous part of the 
hromosome, the 
ontrol probabilities werekept 
onstant to pC = 0.7 and pM = 0.4 for ea
h portion of the 
hromosome stru
ture.Unlike [8℄, also the re
onstru
tion of the diele
tri
 properties of the defe
ts has beenaddressed in [9℄.Similar 
on
epts have been exploited to deal with biomedi
al imaging problems asdis
ussed in [29℄. The 
hromosome stru
ture was still 
hosen as a two-part variable-length string. In su
h a 
ase, the variable-length stru
ture was used be
ause of thevariable number of dis
retization sub-domains o

upied by the pathology where theunknown �eld has to be 
omputed.A parallel SS − GA integrated with a FDTD approa
h has been presented in[167℄[140℄ for early 
an
er dete
tion. Parallel 
omputing was 
onsidered due to the large
omputational burden of the FDTD-based approa
h 
aused by the �ne dis
retizationof the investigation domain (N = 600 × 600 
ells).As regards to the e�orts devoted to in
rease the 
omputational e�
ien
y of
GA-based inversions, ad-ho
 versions or spe
i�
 operators have been designed.Representative examples of a wide literature are the use of nonuniform probabilitydensities in BGAs [37℄ and a paraboli
 
rossover operator for RGAs [18℄.Despite the su

ess of GAs-based approa
hes in several area of ele
tromagneti
and inverse s
attering, more re
ently other EAs have shown better performan
e. Dueto its faster 
onvergen
e with respe
t to GAs, the DE was alternatively used to fa
eele
tromagneti
 inversion and it has been �rstly applied to image 
ir
ular-
ylindri
al
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ondu
tors and tunnels [105℄[106℄. Later, the DE was used to solve ben
hmark problems[130℄ and its performan
es were 
ompared to the solutions from the RGA in [127℄. Apopulation of P = 5×N individuals was 
onsidered. Moreover, the 
rossover probabilityand the mutation intensity were set to pC = 0.9 and ǫ = 0.7, respe
tively. Without apriori information on the number of 
ylinders within the investigation region, the DEstrategy with individuals in groups (GDES) has been proposed [131℄. The key ideaof the GDES is to organize the population into di�erent groups. The individuals ofthe same group 
ode the same number of 
ylinders and have the same 
hromosomelength. Su

essively, an innovative DE-based algorithm was proposed by Qing [132℄.In the dynami
 DE strategy (DDES), a larger (virtual) population has been 
hosen tospeed up the 
onvergen
e. The new individuals generated at iteration k + 1 
ompeteduring the same iteration with their parents. As a 
onsequen
e, the mating operationturns out being more sensitive to the fast 
hanges of the population with a 
onsequentenhan
ement of the 
onvergen
e rate.Be
ause of the strong dependen
e of the DE performan
e on both its 
ontrolparameters and the 
ost fun
tion to be optimized, an extensive 
alibration of thepopulation size, P , the 
rossover probability, pC , and the mutation intensity, ǫ, has been
arried out in [133℄ spe
i�
ally for imaging problems 
on
erned with PEC 
ylinders infree spa
e. More re
ently, a 
omparative study on the e�
ien
y of DE and PSO whenapplied to the shape re
onstru
tion of PEC s
atterers has been reported in [134℄.In [97℄, an approa
h for the dete
tion of 2D buried inhomogeneities has beendesigned by 
ombining two DE-based optimization te
hniques. More spe
i�
ally, theDE/1/best/bin version (pC = 0.8 and ǫ = 0.6) was used to rapidly lo
ate the attra
tionbasin of a minimum and su

essively the algorithm swit
hed to the DE/1/rand/bin(pC = 1.0 and ǫ = 0.6) to avoid the trial solution be trapped in a lo
al minimum.
DE has been also applied to the 3D dete
tion of unexploded ordnan
e (UXO) [34℄and lossy spheri
al obje
ts buried in the subsoil [6℄. In this latter 
ase, a modi�ed DEalgorithm was 
onsidered where multiple populations evolve in parallel analogously to[131℄.More re
ently, EAs inspired by the foraging behavior of swarms have proved tooutperform previous EAs in dealing with a set of imaging problems also related tohigh-dimensional 
ontinuous spa
es.A standard PSO algorithm has been used in [145℄ to re
onstru
t 1D permittivityand 
ondu
tivity pro�les in lossy and inhomogeneous media. Be
ause of its ability in
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attering Problems 39exploring the parameter spa
e and avoiding wrong solutions thanks to the 
ooperativebehavior of the agents, the PSO has been also pro�tably 
onsidered for there
onstru
tion of 2D diele
tri
 s
atterers [31℄[49℄[50℄[62℄. The enhan
ed 
onvergen
erate of the PSO with respe
t to the RGA has been assessed both in [49℄ and [50℄.Moreover, the 
alibration of the PSO 
ontrol parameters 
arried out in [49℄ has provedthat the most suitable setup (in terms of de
rease of the 
ost fun
tion in a �xed amountof iterations) is: ω = 0.4 and C1 = C2 = 2.0, in a

ordan
e with the out
omes of otherpublished papers (see Se
tion 5.1.3). Moreover, the ratio N
P
∼= 5.5 has been dedu
ed asa good rule of thumb for the size P of the swarm for this 
lass of optimization problems.The retrieval of 3D lossy diele
tri
 obje
ts has been addressed in [80℄[81℄. Due tothe limited set of independent s
attering data and the dimensionality of the problem athand, an adaptive multiresolution te
hnique was integrated into the swarm evolution toredu
e the sear
h spa
e and make more e�
ient the PSO-based minimization [51℄.In order to deal with high-dimensional spa
es, an alternative approa
h based on a

µPSO, employing a redu
ed swarm in analogy with the µGA, has been also presentedin [83℄. Otherwise, to avoid the premature 
onvergen
e of the standard version of the
PSO, modi�ed so
ial stru
tures have been envisaged [82℄. More spe
i�
ally, besidesthe standard version of the PSO (i.e., that presented in this work), whose stru
ture isknown as gbest topology sin
e the information are instantaneously 
ommuni
ated to thewhole swarm, in [82℄ other topologies are 
onsidered in order to limit the 
ommuni
ationbetween the parti
les [99℄ to prevent premature 
onvergen
e.The PSO has been also su

essfully applied in industrial and biomedi
al imagingproblems. For example, a swarm-based re
onstru
tion algorithm for the dete
tion and
hara
terization of multiple in
lusions in 
on
rete stru
tures has been presented in [156℄.Moreover, a PSO-based te
hnique for early 
an
er dete
tion has been dis
ussed in [170℄.In the framework of swarm based approa
hes, only preliminary results are available(e.g., [118℄) 
on
erning the appli
ation of the ACO to inverse s
attering even thoughan interesting hybridization with the linear sampling method (LSM) has been re
entlystudied in [20℄ to inspe
t 3D homogeneous diele
tri
 s
atterers.As far as hybrid algorithms are 
on
erned, a µGA and a RGA 
oupled with alo
al sear
h method have been presented in [166℄ and in [126℄, respe
tively, for imagingperfe
tly 
ondu
ting 
ylinders. In [174℄, the GA was 
ombined with a tabu me
hanismto avoid a (repetitive) sampling of poor regions within the sear
h spa
e. Following thesame guidelines outlined in [163℄, the authors 
ombined a GA-inspired optimization
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al sear
h method [164℄ redu
ing the number of 
ost fun
tion evaluations tore
onstru
t bowtie-shaped 
ondu
ting 
ylinders from 1.17×105 [163℄ down to 5421. Anhybrid-GA has been also proposed in [66℄ to retrieve the diele
tri
 pro�le of a layeredmedium.In the framework of quantitative imaging problems, the permittivity re
onstru
tionof 2D obje
ts with large size and high 
ontrast has been 
arried out in [114℄ by 
ombininga Levenberg-Marquardt algorithm with the GA. To speed-up the 
onvergen
e, a Polak-Ribière 
onjugate gradient (CG) has been merged into a global optimization loopperformed with a RGA in [24℄[116℄[117℄. Furthermore, a parallel implementation ofsu
h a hybrid te
hnique has been detailed in [98℄.As regards to memeti
 algorithms, they have been used to dete
t 
ylindri
alinhomogeneities starting from phaseless data obtained by syntheti
 as well asexperimental measurements [28℄. Moreover, a MA-based approa
h has shown toe�e
tively work for the ele
tromagneti
 re
onstru
tion of buried obje
ts [27℄[32℄, aswell. Be
ause the heavy 
omputational burden, MAs appli
ations are usually limitedto low-dimensionality problems.7. Summary and Con
lusionsIn this paper, a review of Evolutionary Algorithms as applied to inverse s
atteringproblems has been reported. After an introdu
tion on the genesis of EAs (Se
t. 2), themost representative and widespread evolution-based te
hniques have been des
ribed ina 
ommon framework and by means of a uniform notation (Se
t. 3) to point out themain similarities and di�eren
es among the various implementations detailed in Se
t.4. Some theoreti
al hints 
on
erning the 
onvergen
e properties and the parameterssele
tion have been also dis
ussed (Se
t. 5). Se
tion 6 has been devoted to presentstate-of-the-art appli
ations of EAs to ele
tromagneti
 imaging problems. Su
h a 
riti
aldis
ussion has pointed out that the su

ess of EAs in dealing with nonlinear ill-posedinverse s
attering problems mainly relies in a suitable set of answers to the followingkey-issues:
• a suitable representation of the unknowns and a proper 
hoi
e of the EA ismandatory starting from a 
areful analysis of the problem at hand and its numeri
aldes
ription (i.e., the 
ost fun
tion). A

ording to the �No free lun
h theorem� [165℄,the �optimum� algorithm does not exist sin
e the average performan
e of any pair
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attering Problems 41of algorithms a
ross all the possible problems is identi
al;
• physi
al 
onstraints need to be taken into a

ount to enhan
e the e�e
tivenessof EAs by redu
ing the area of the solution spa
e to be sampled during theoptimization;
• the a-priori knowledge on the s
enario under test needs to be pro�tablyin
orporated into both the solution representation and the evolutionary operatorsto guide the sear
h pro
ess and in
rease its 
onvergen
e rate;
• great 
are must be exer
ised in de�ning the 
ost fun
tion sin
e it represents theonly link between the physi
al problem and its numeri
al 
ounterpart. Failing su
ha de�nition prevents the a
tual solution is rea
hed at the 
onvergen
e of the EA toits global optimum;
• the 
alibration of the evolutionary pro
edures needs to be 
arefully performed tofully exploit the EA potential. On the other hand, it should be stressed that nosingle-test-
ase 
alibration is ne
essary, but the tuning of the 
ontrol parametersmust be 
arried out on a 
lass of problems (e.g., imaging of diele
tri
 obje
ts) toavoid �over�tting� and 
onfer generalization features on the EA;
• the feasibility and reliability of an EA must be assessed �rst on a ben
hmark of testfun
tions and then in 
omparison with other deterministi
 and sto
hasti
 mi
rowaveimaging te
hniques.8. Open Problems and New Resear
h DevelopmentsAs far as the appli
ation of EA-based mi
rowave imaging te
hniques to inverses
attering problems is 
on
erned, it should be �rst pointed out that the developmentof evolutionary te
hniques has re
eived a great boost in the last twenty years duethe 
ontinuous enhan
ement of the 
omputational 
apabilities of modern personal
omputers, but also for their �exibility and features usually very suitable to fa
e withthe ill-posedness and nonlinearity of the arising optimization problem. As a matter offa
t,
• EAs are multiple-agent optimizers;
• EAs are global and hill-
limbing algorithms thanks to their sto
hasti
 nature;
• EAs allow the straightforward introdu
tion of a-priori information or 
onstraints;
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• EAs are able to deal with �oating-point and/or dis
rete and/or binary unknownssimultaneously;
• EAs are intrinsi
ally parallel algorithms;
• EAs are easily integrated with lo
al optimizers.However, some other drawba
ks limit their e�e
tiveness besides typi
al negative issuesof inverse s
attering problems. For example,
• the 
omputational burden (espe
ially when moving towards 3D s
enarios);
• the low 
onvergen
e rate when 
lose to the global solution although in its attra
tionbasin;
• the dependen
e on the parametrization of the problem unknowns;
• the sensitivity to the 
alibration parameters.As regards to the 
omputational issues, some re
eipts to limit these drawba
ks 
onsist in:(a) redu
ing the number of problem unknowns by re
urring to a suitable parametrizationof the s
atterer under test [26℄[30℄ or 
onsidering a multi-resolution strategy [50℄[51℄ or amulti-stage re
onstru
tion [108℄; (b) hybridizing the EA with a deterministi
 optimizer[114℄[24℄[98℄; (
) 
omputing at ea
h iteration the se
ondary unknowns (i.e., the �elddistribution within the investigation domain) by means of fast forward solvers (see [36℄and the referen
e therein); (d) exploiting the expli
it parallelism of EAs through aparallel implementation [98℄.With referen
e to the EA parallelization (d), whi
h has been left out in themain body of the paper, it is well known that one of the most attra
tive featuresof nature-inspired optimization te
hniques is their parallelism that allows an e�e
tivesampling of the solution spa
e. Besides the impli
it parallelism still exploited in serialimplementations, the parallelism of an EA is also guaranteed by its multiple-agentnature. As a matter of fa
t, a number of sample points equal to the population dimensionis pro
essed at ea
h iteration to e�e
tively look for the global optimum. In order tofully exploit also this 
hara
teristi
, a parallel implementation of the iterative pro
edurewould fully exploit also this 
hara
teristi
 enabling (i) a parallel and simultaneous sear
hfrom multiple points in the solution spa
e; (ii) a more e�
ient sear
h, even when noparallel hardware is available; (iii) a higher e�
ien
y than sequential implementation,and (iv) a speedup due to the use of multiple CPUs.
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attering Problems 43Despite these envisaged advan
es, it should be also pointed out that the use of aparallelized (bare/hybrid) EA is not di�erent from other parallel methodologies and itse�
ien
y largely depends upon the system ar
hite
ture, the parallel exe
ution overhead,the number of new agents 
reated at ea
h iteration, the population stru
ture, and theparallel granularity (i.e., the CPU time of the steps being exe
uted in parallel). Theseadvan
es 
an be rea
hed only if:
• a stru
tured population [21℄ is taken into a

ount to obtain not only a fasteralgorithm, but also a superior numeri
al optimization able to pro�tably exploitthe multi-agent nature of the EA;
• some agents do a di�erent lo
al sear
h (de
entralized lo
al optimization) in order toimprove the 
onvergen
e rate of the iterative pro
ess;
• the evolution pro
ess expli
itly keeps memory of the population evolution in orderto redu
e/avoid the runtime of the 
ost fun
tion evaluation for similar/equalindividuals;
• the evolutionary operators are applied in parallel.As regards to the enhan
ement of the 
onvergen
e rate through the redu
tion ofthe extension of the solution spa
e to be sampled during the optimization, thenumber of iteration Kend evidently redu
es in 
orresponden
e with an in
rease/e�
ient-exploitation of the a-priori information. Indeed, an additional information on thelo
ation of the attra
tion basin of the global solution usually helps the evolutionarypro
edure in lo
ating the a
tual solution as well as the EA designer in de�ning theoptimal parametrization of the problem unknowns.Another way to save 
omputational resour
es when applying EAs to inverses
attering problems is to use a su

ession of inversion pro
edures, ea
h one 
on
ernedwith a number of unknowns smaller or equal than the information 
ontent of thes
attering data in order to �simplify� the 
ost fun
tion to be optimized. The redu
tionof the 
omplexity of the 
ost fun
tion 
an be yielded in di�erent ways a

ording tosome re
ently developed strategies. In su
h a framework, it is worthwhile to mentionmulti-resolution methods [50℄[51℄ devoted to perform an iterative syntheti
 zoom overthe region where the s
atterer is supposed to be lo
ated and multi-stage re
onstru
tions[108℄[20℄ where ea
h inversion is aimed at identifying di�erent 
hara
teristi
s of theunknown s
atterer until its 
omplete des
ription/knowledge.



44 A. Massa et al.Nevertheless, although further theoreti
al and numeri
al developments are stillrequired to 
onsider EA-based inversion te
hniques mature, reliable, and e�
ientinversion methodologies, the expe
ted impa
t of su
h approa
hes justi�es signi�
antresear
h e�ort to develop EA-based tools dedi
ated to spe
i�
 appli
ations in theframework of mi
rowave imaging and NDT/NDE appli
ations.A
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Algorithm Object Geometry N P

N
Kend T ime [sec] PC Reference

BGA PEC 2D 9 ∼ 33 − ∼ 1.8 × 103 Sun Sparc 20 [39℄
BGA PEC 2D 36 ∼ 1.4 173 330 Sun Sparc 20 [100℄
BGA PEC∗ 2D 400 0.25 − − − [173℄
BGA PEC 3D 6 − 30 ∼ 6.7 × 104 Pentium 4 [141℄
RGA PEC 2D 8 32 35 ∼ 1.6 × 104 IBM P − 133 [127℄
RGA PEC∗ 2D 6 50 40 ∼ 8.6 × 104 MIPS R10K [96℄
µGA PEC∗ 2D 10 − − ∼ 1.7 × 104 Sun Sparc 20 [166℄
µGA PEC 2D 5 1 1000 ∼ 3.5 × 103 Pentium 4 [79℄

GA/CG PEC∗ 2D 5 40 220 − − [174℄

GA/CG + tabu PEC∗ 2D 5 40 75 − − [174℄

DE PEC 2D 5 5 40 − − [106℄

DE PEC∗ 2D 6 ∼ 7 − − HP OmniBook XE3 [130℄

DE PEC 2D 16 10 ∼ 160 ∼ 4 × 103 HP OmniBook XE3 [130℄

DE (GDES) PEC 2D 16 ∼ 18 23 ∼ 1.2 × 103 Pentium 4 [131℄

PSO PEC 2D 10 30 200 − − [134℄

BGA conductor 2D 10 30 − − − [41℄

RGA dielectric 2D 6 50 20 ∼ 8.6 × 104 MIPS R10K [96℄

DE dielectric 2D 5 5 30 − − [106℄

TableI.Computationalindexesof
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Algorithm Object Geometry N P

N
Kend T ime [sec] PC Reference

BGA dielectric 2D 900 − 2000 270 Pentium II [23℄
BGA dielectric 2D 400 0.15 8000 − − [25℄
RGA dielectric 2D 810 0.2 10000 ∼ 104 Pentium [24℄

RGA dielectric 2D 500 − 8000 ∼ 1.2 × 103 − [50℄

GA/CG dielectric 2D 810 0.2 3400 ∼ 2 × 104 Pentium [24℄

PSO dielectric 2D 500 0.05 8000 ∼ 7.6 × 102 − [50℄

PSO† dielectric∗ 2D 2664 7.5 × 10−3 − 1.75 × Kend − [50℄

micro − PSO dielectric 2D 125 0.04 500 − − [83℄

PSO† dielectric 3D 3250 ∼ 0.04 5100 ∼ 2.1 × 104 − [51℄

TableII.Computationalindexesof
E
Asappliedtothere
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tri


distribution.
Nisthenumberofunknownparameters,

Pisthenumberoftrial
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hiteration,

K
en
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e.The

asterisk
∗meansinversionofexperimentaldata.Thesymbol†indi
atestheuseofa

multi-resolutionstrategy.


