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Abstract

This letter is a first attempt to apply a percolation theorydeido the estimation of the density of particles in compkeyered
two-dimensional media from electromagnetic measuremettsrocedure based on an analytical closed-form descrippiothe
wave propagation process is presented. The problem istrasaan iterative optimization one and solved by means of acfer
swarm optimizer. Numerical experiments show the validityttee proposed solution.

Index Terms

Percolation theory, Stratified random media, Particle Sw@ptimizers (PSOs), Remote sensing.

|. INTRODUCTION

Retrieving the particle density of random media (e.g., byaeteor masses, granular soils, etc.) is of great intenestveral
problems arising in remote sensing and radar engineerihgl'fis letter proposes a method relying neither on wave rtheo
nor on radiative transfer theory, but describing electrgmetic propagation in terms of a suitable stochastic p{&s Such
a description allows to obtain very simple closed-form gtieél solutions that facilitate the inversion procedurbe proposed
probabilistic model is a simplified version of the real prgpton problem. Nevertheless, it provides the framewonk o
new inversion method which can be in principle extended toemealistic and complex scenarios. A key assumption is that
scatterers are large compared to the wavelength, which tsvated by the recent interest in Terahertz technology [3].

Il. PROBLEM STATEMENT

Let us consider a stratified two-dimensional distributidrparticles preceded and followed by free-space (Fig. 1)lahds
model such a distribution as a two-dimensional percolakitiice [4] described by the following obstacles densitgfpe

q1, O<]Sllz>.]€L17
g2, ll<j§12:>j€L2,

9() = q . 1)
g, Ilx-1<j<lIlxg=j€ Lg,

where each site belonging to levglis independently occupied with probability;) (Fig. 1). Each layed.,, is made up by
I, — l,—1 levels and its obstacles density is equalkto= 1 — p,,. Let us assume to know the number of layéfsand the
depth of each layer. The problem is to estimate the obstadasity value) = {¢g,; n=1,..., K}.

We assume to illuminate the half-plane filled by the obstablea monochromatic plane wave with free-space power densit
W;s, that scatterers are large with respect to the wavelengith tlaat losses and diffractions can be neglected. In this, cas
the wave can be modeled as a collection of rays undergoinmuigrereflections on the occupied sites. Hence, the trateit
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Fig. 1. Sketch of the geometry (top) and the solution (bottom) of gheblem.

power density splits along the two vertical directions, &g 1. One portionJV,,., is associated to the rays crossing the
medium and reaching the empty half-plane on the bottom. TherdVy, is associated to the rays reflected back to the empty
half-plane on the top. The values of;,, and W, clearly depend on the unknown characteristics of the medinoh carry
information on the scatterers density. Let us suppose tesuareahe backscattered power density.

We now introduce the following notation. We wrikxr { A — B < C} to indicate the probability that a ray in levdlreaches
level B before going into level”. Accordingly, the probability that the ray is reflected bankthe above empty half-plane
before reaching levélyk is given by [5][6]

Pr{0—0<lx}=1- P , &y
1 1-P, n
F1_|—plz |:pnPn +pngn71:|
n=2
where P, = Pr{(l,—1 +1)— 1, < (l,-1 + 1)}, n =1,..., K, is the probability that a ray travels from levgl,_, + 1) (i.e.,

the first level of layerL,,) to levell, (i.e., the last level of layef.,,) before going back to level,,_; + 1). In the Multilayer
Martingale (MMT) approach [5]F, is estimated as follows:

1, i =1,

- L-pe], i,

®3)

whereN,, = (I,, — l,_1 — 1) andp,, =1 — q., = p'*"*1 ¢ being the incidence angle. In the Markov (MK) approach [6],
P, is estimated as

p,=pMK____Pn 4
" 1+(Nn_1>Qn ()



The Hybrid (HB) approach proposed in [6] exploits both (3pig#) as follows: ifg, < 0.2, then P, = PMX whatevert;
if 0.2 <gq, <0.3,thenP, = PMT if 9 = 30° and P, = PMX elsewhere; ifg, > 0.3, then P, = PMX if § = 15° and
P, = PMT otherwise.
Whatever the mathematical approach used, the probabilityp — 0 < I} represents the expected number of rays being
reflected back in the above empty half-plane. Thus, we haatethie backscattered power density is given by
Wo(Q):WfSPr{OHO-<ZK} [%} . (5)
Before addressing the inverse problem, we point out the reawbacks we have to deal with. Besides the typical negative
features of the inversion procedures (i.e., non-lineamity ill-posedness), the mathematical models of ray prapagdescribed
above satisfactorily perform only in a specific range of pagters. Specifically, as described in [6], more accuraienasibns
are obtained when the incidence angle tenddit Furthermore, while the MMT approach and the MK approactiqoer
better for dense and sparse media, respectively, the HBoapprallows reliable predictions whatever the obstaclesitieis

[6]. However, the HB approach requires to know the occupagimbability of each layer and such a-priori knowledge i$ no
available in this case.

IIl. INVERSION STRATEGY

The use of the HB approach and of a measurement when the meeidagle) is equal to45° seems to be the best solution
to limit the inaccuracies of the models. However, in ordeapply the HB approach, the knowledge of the obstacles densit
distribution is needed. Accordingly, the inversion prahlés recast as an iterative optimization problem:

Qp = arg {min[O(Q:)]} . (6)

where Qg is the estimated obstacles density profi€);; i = 1,...,I} is a sequence of trial solutions,being the iteration

number, and
|Wo(Qls — Wl

0(Q:) = OuB(Q:) = o ™ : (7)

where [Wo(Qi)]‘}f; and [Wo]f,fo are the estimated and measured power density values, tivshec

The ill-posedness of the problem is due to the loss of infoionain the solution of the forward problem, where an input
quantity (i.e.,Q = {qn; n = 1, ..., K'}) is mapped into an output value (i.e., the power dengify) with a smaller information
content. The most natural way to introduce information widioé to consider additional incidence conditions besitles45°.
However, as noticed before, the accuracy of the mathenhatiodels decreases @sdeviates fromd5°. Hence, we exploit
a new model when the probing wave impinges normally on thégiahe lattice (i.e..f = 0°). We refer to this in the
following as Normal Incidence (NI) approach. Let us consi@eingle ray entering the grid and let us estimate the pritibab
Pr{0— 0 < lx}. Such a quantity is equal to the probability that any of tkecells on the ray path is occupied. As a matter
of fact, if a reflection occurs, such a reflection is surely dmosizontal face and the ray escapes from the grid traveliogca
the free path just covered, but with negative direction. /lprovided that = 0°, the backscattered power density is given by

k
[Wo(Qa)l%r = Wrs ll - 11 Pf"] ; (8)

n=1

where S,, = l,, — l,,_1. Accordingly, the functional to be minimized takes the form

O(Qi) = Oup N1(Qi) =Oup(Qi) + OnI(Q:), 9)

where

(Wo(Qi)l%; — [Walo,

OnI(Qi) = ol (10)



Moreover, some additional information on the actual solutis introduced by exploiting thehase transition property
exhibited by percolation lattices [4]. According to such @perty, propagation is inhibited whem,, n = 1, ..., K, is lower
than the so-calleg@ercolation threshold p., p. ~ 0.59275 in the two-dimensional case. Thus, when< p., the backscattered
value W, tends toW;, and it is not possible to extract any reliable information thie medium at hand from the field
measurement. Accordingly, when looking for the mediumritistion, we can set

pc<pn§17 nzl,...,K. (11)

In order to look for the global minimum of (9) that satisfied);lan optimization algorithm able to effectively explohet
solution space is needed. In such a choice, the non-ligeafithe problem plays a relevant role. Although somegriori
information has been introduced, the cost function stibgents several local minima, which correspond to falsetisolsi
of the physical problem. Moreover, (9) has some discortiigsli To overcome these drawbacks, a typical solution iss® u
global optimization techniques, such as Genetic Algorgh{@As) [8] and Particle Swarm Optimizers (PSOs) [9]. In fact
deterministic approaches such as gradient methods [10jesieble only when the cost function is everywhere diffdéigiie
and the search space is limited at the attraction basin ofjtibigal minimum.

A PSO is applied here. The choice has been motivated by thentatyes exhibited by PSOs when compared to GAs. Such
advantages are mainly concerned with the ability to corttiel convergence and the stagnation of the optimizationgssc
an easier implementation and calibration, and the expioiteof the cooperation among the trial solutions. MorepW®80s
present a better heuristic adaptability with respect to Gilsere stagnation phenomena can be avoided only thankskg lu
mutations. In the following, the main steps of the implenaenPSO are summarized.

Initialization Step (¢ = 0). The positions of the? particles of the swarm@o , = {(gn)op; =1, ..., K}, (qn)op € [0, 1—p¢),

and their velocitiesy , = {(vn)op; n =1,..,K}, p=1,..., P, are randomly generated.

Evaluation Step. The optimality of each trial solution at theth iteration is evaluated and thpersonal best position
Bip={(bn)ip; n=1,...,K} =arg {hI%in [@(Qi,p)]} (12)

=Useeey T

as well as theglobal best position

G, ={(gn)isn=1,...K} = arg{ r{linp [@(Bm))]} (13)

are updated. The iteration index is increasée- ( + 1) and the termination criteria are checked. If the cost ofdglodbal best

is smaller than a given thresholdor the maximum number of iteratiohis reached, then the optimization process stops and
the global best is assumed as the problem solutign

Updating Step. The velocity of each particle is updated:

(Vn)ip = w(n)i-1p + c1p1 [(bn)i—1p — (gn)i-1,p]

(14)
+c2p2 [(9n)i-1,p = (@n)i—1,p]

wherew, ¢; andcs are constant parameters caliegrtial weight, cognition andsocial acceleration, respectively. Moreovep;
andp, are random coefficients drawn from a uniform distributior{Gnl]. The position of each particle is updated as follows

(Qn)i,p = (Qn)ifl,p + ('Un)i,p- (15)

Particles escaping the actual solution space are handtextdicg to the reflecting wall technique [11]: whenever tlztigle
hits the boundary of the solution space along directigrihen the sign of the velocity in such direction is changed tore
particle is reflected back in the solution space. The opttion algorithm restarts from theEvaluation Step”.

IV. NUMERICAL VALIDATION



The proposed inversion strategy is validated by referrimghtree-layer profiles having = 8, I, = 16 andi; = 20 (Fig.
1). Such a configuration could be of interest to model a rainroa, which is usually considered as made by three regions
[7]. More in detail, experiments consider three differe@sttcases, i.e., a profile consisting of very sparse and vengel
layers in alternated successioRr = {0.05, 0.35, 0.05}, a sparse profileQQr = {0.05, 0.15, 0.05}, and a dense profile,
Qr = {0.35, 0.25, 0.35}.

The scattering datéWo]f;:’ and [WO] have been numerically obtained by Monte Carlo computeedbasy tracing
experiments. Specifically,00 random lattices with the same obstacles density have baerafed and for every grigo0 rays
have been launched from different entry positions.

The PSO parameters values are given in Table | and have besarcfollowing the guidelines provided in [12]. In partiag!
considering the dimension of the solution space and in aalaroid not strictly necessary fitness evaluatiaRdias been set
equal to5. The parameterg andn have been empirically chosen. The inertial weighhas been set equal 4 to damp
oscillations of the optimizer around the optimal solutiamdaspeed up the convergence rate, whileand c; have been set
equal to2 [12]. Taking into account the dynamic range of the partidlg,, has been set equal tb4. For each experiment,
the optimizer has been executéd= 10 times.

TABLE |
PSO SETUP PARAMETERS.
(Pl I [ n [wlale | Vil

[5 [2000]10°]04]20]20] 04 |

In order to quantify the effectiveness of the inversion pahare, thediscrepancy A = {% fo:l [(gn)r — (gn)E|| x 100
is analyzed,(¢,)r and (¢,)r being the reference and the estimated occupation probabaiues, respectively. More in
detail, since the PSO is executédtimes for each experiment, the average valug, = %ZL A, the standard deviation
oA = %Zle |A; — Agy| , the maximumA,,., = max; {A;}, and minimumA,,,;,, = min; {A;} are evaluated]; being
the discrepancy obtained at tih trial.

The proposed approach allows good estimations of the unkrmabability distributions (Fig. 2). This is confirmed byeth
discrepancy values, beiny,, = 2.72%, A, = 2.54%, andA,, = 6.11%, for the variable, the sparse and the dense profiles,
respectively. It is worth noting that obtained results édesably worsen wher)r = {0.35, 0.25, 0.35}. In fact, at higher
densities rays are almost immediately backscattered witegploring much of the medium and therefore the measuregpo
density does not carry much information useful for the isi@n procedure.

For comparison purposes, we consider results obtained hymizing other kinds of cost functions, i.e., (7) and

Onevr i, NT(Qi) = Onnr (Qs)+

(16)
Omk(Qi) +On1(Q4),
where© y;(Q;) is given in (10) and
| Wo(@afarr — [Wol
Onmmr(Qs) = [Wo]ifo , (17)
W@k — Wol
Omk(Qi) = (18)

(Wol
The underlying idea of (16) is combining the two differentnte © ,57(Q;) and ©x(Q;) in order to compensate the
complementary negative features of the MMT approach anth@fMK approach, which satisfactorily perform only provided
that the obstacles density is high and low, respectively.

Comparing the proposed strategy with the one relyingBang (Q;) (Fig. 3), it is evident that minimizin® gz n1(Q:)
leads to better estimations (for mstanq—éw >~ 6.2 whenQr = {0.05, 0.35, 0.05}). Such a behavior validates the
effectiveness of introducing the additional teEm\;I(Q ) in the cost function to be minimized.
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Fig. 2. Retrieved obstacles density profiles.
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Fig. 3. Error statistics.

The proposed strategy outperforms the one relying on (16yvals (Fig. 3). This is particularly evident whe®r =
{0.05, 0.35, 0.05}, beingmw =~ 4.2. Such a behavior can be explained taking into account thitierehe MK
approach nor the MMT approaclilBégtIisfactorily perform inatiésng ray propagation when highly variable profiles ardand.
On the contrary, when either dense or sparse profiles arédmyed, performances of the strategy relying®gy prr arx, n1(Q:)

get better since one between the MK approach and the MMT apprproperly works.

V. CONCLUSIONS

In this letter, a new approach to the retrieval of the deneityarticles in complex layered media from electromagnetic
measurements has been proposed. Thanks to the analyttoa¢ md the model estimating the measured power density, the
convergence rate of the PSO (i.e., satisfactory solutigrsoatained after few hundreds of iterations), and the vemals



ensemble of unknowns, the proposed inversion proceduns out to be extremely fast. Numerical experiments have show
that reliable estimations can be achieved.
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