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Particle Density Retrieval in Random Media Using a

Percolation Model and a Particle Swarm Optimizer
Anna Martini, Massimo Donelli, Massimo Franceschetti, andAndrea Massa,

Abstract

This letter is a first attempt to apply a percolation theory model to the estimation of the density of particles in complex layered
two-dimensional media from electromagnetic measurements. A procedure based on an analytical closed-form description of the
wave propagation process is presented. The problem is recast as an iterative optimization one and solved by means of a particle
swarm optimizer. Numerical experiments show the validity of the proposed solution.

Index Terms

Percolation theory, Stratified random media, Particle Swarm Optimizers (PSOs), Remote sensing.

I. INTRODUCTION

Retrieving the particle density of random media (e.g., hydrometeor masses, granular soils, etc.) is of great interest in several

problems arising in remote sensing and radar engineering [1]. This letter proposes a method relying neither on wave theory

nor on radiative transfer theory, but describing electromagnetic propagation in terms of a suitable stochastic process [2]. Such

a description allows to obtain very simple closed-form analytical solutions that facilitate the inversion procedure.The proposed

probabilistic model is a simplified version of the real propagation problem. Nevertheless, it provides the framework for a

new inversion method which can be in principle extended to more realistic and complex scenarios. A key assumption is that

scatterers are large compared to the wavelength, which is motivated by the recent interest in Terahertz technology [3].

II. PROBLEM STATEMENT

Let us consider a stratified two-dimensional distribution of particles preceded and followed by free-space (Fig. 1) andlet us

model such a distribution as a two-dimensional percolationlattice [4] described by the following obstacles density profile

q(j) =























q1, 0 < j ≤ l1 ⇒ j ∈ L1,

q2, l1 < j ≤ l2 ⇒ j ∈ L2,
...

qK , lK−1 < j ≤ lK ⇒ j ∈ LK ,

(1)

where each site belonging to levelj is independently occupied with probabilityq(j) (Fig. 1). Each layerLn is made up by

ln − ln−1 levels and its obstacles density is equal toqn = 1 − pn. Let us assume to know the number of layersK and the

depth of each layer. The problem is to estimate the obstaclesdensity valuesQ = {qn; n = 1, ..., K}.

We assume to illuminate the half-plane filled by the obstacles by a monochromatic plane wave with free-space power density

Wfs, that scatterers are large with respect to the wavelength, and that losses and diffractions can be neglected. In this case,

the wave can be modeled as a collection of rays undergoing specular reflections on the occupied sites. Hence, the transmitted
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Fig. 1. Sketch of the geometry (top) and the solution (bottom) of theproblem.

power density splits along the two vertical directions, seeFig. 1. One portion,WlK , is associated to the rays crossing the

medium and reaching the empty half-plane on the bottom. The other,W0, is associated to the rays reflected back to the empty

half-plane on the top. The values ofWlK and W0 clearly depend on the unknown characteristics of the mediumand carry

information on the scatterers density. Let us suppose to measure the backscattered power densityW0.

We now introduce the following notation. We writePr {A 7→ B ≺ C} to indicate the probability that a ray in levelA reaches

level B before going into levelC. Accordingly, the probability that the ray is reflected backin the above empty half-plane

before reaching levellK is given by [5][6]

Pr {0 7→ 0 ≺ lK} = 1 −
p1

1
P1

+ p1

K
∑

n=2

[

1−Pn

pnPn
+ qn

pnpn−1

]

, (2)

wherePn
.
= Pr {(ln−1 + 1) 7→ ln ≺ (ln−1 + 1)}, n = 1, ..., K, is the probability that a ray travels from level(ln−1 + 1) (i.e.,

the first level of layerLn) to level ln (i.e., the last level of layerLn) before going back to level(ln−1 + 1). In the Multilayer

Martingale (MMT) approach [5],Pn is estimated as follows:

Pn = PMT
n =

{

1, i = 1,
pn

qen Nn

[

1 − pNn
en

]

, i > 1,
(3)

whereNn = (ln − ln−1 − 1) andpen
= 1 − qen

= ptan θ+1
n , θ being the incidence angle. In the Markov (MK) approach [6],

Pn is estimated as

Pn = PMK
n =

pn

1 + (Nn − 1)qn

. (4)
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The Hybrid (HB) approach proposed in [6] exploits both (3) and (4) as follows: ifqn < 0.2, thenPn = PMK
n whateverθ;

if 0.2 ≤ qn ≤ 0.3, thenPn = PMT
n if θ = 30o and Pn = PMK

n elsewhere; ifqn > 0.3, thenPn = PMK
n if θ = 15o and

Pn = PMT
n otherwise.

Whatever the mathematical approach used, the probabilityPr{0 7→ 0 ≺ lK} represents the expected number of rays being

reflected back in the above empty half-plane. Thus, we have that the backscattered power density is given by

W0(Q) = Wfs Pr {0 7→ 0 ≺ lK}

[

W

m

]

. (5)

Before addressing the inverse problem, we point out the maindrawbacks we have to deal with. Besides the typical negative

features of the inversion procedures (i.e., non-linearityand ill-posedness), the mathematical models of ray propagation described

above satisfactorily perform only in a specific range of parameters. Specifically, as described in [6], more accurate estimations

are obtained when the incidence angle tends to45o. Furthermore, while the MMT approach and the MK approach perform

better for dense and sparse media, respectively, the HB approach allows reliable predictions whatever the obstacles density is

[6]. However, the HB approach requires to know the occupation probability of each layer and such a-priori knowledge is not

available in this case.

III. INVERSION STRATEGY

The use of the HB approach and of a measurement when the incidence angleθ is equal to45o seems to be the best solution

to limit the inaccuracies of the models. However, in order toapply the HB approach, the knowledge of the obstacles density

distribution is needed. Accordingly, the inversion problem is recast as an iterative optimization problem:

QE = arg
{

min
i

[Θ(Qi)]
}

, (6)

whereQE is the estimated obstacles density profile,{Qi; i = 1, ..., I} is a sequence of trial solutions,i being the iteration

number, and

Θ(Qi) = ΘHB(Qi)
.
=

∣

∣

∣
[W0(Qi)]

45o

HB − [W0]
45o

m

∣

∣

∣

[W0]
45o

m

, (7)

where[W0(Qi)]
45o

HB and [W0]
45o

m are the estimated and measured power density values, respectively.

The ill-posedness of the problem is due to the loss of information in the solution of the forward problem, where an input

quantity (i.e.,Q = {qn; n = 1, ..., K}) is mapped into an output value (i.e., the power densityW0) with a smaller information

content. The most natural way to introduce information would be to consider additional incidence conditions besidesθ = 45o.

However, as noticed before, the accuracy of the mathematical models decreases asθ deviates from45o. Hence, we exploit

a new model when the probing wave impinges normally on the half-plane lattice (i.e.,θ = 0o). We refer to this in the

following as Normal Incidence (NI) approach. Let us consider a single ray entering the grid and let us estimate the probability

Pr {0 7→ 0 ≺ lK}. Such a quantity is equal to the probability that any of thelK cells on the ray path is occupied. As a matter

of fact, if a reflection occurs, such a reflection is surely on ahorizontal face and the ray escapes from the grid traveling along

the free path just covered, but with negative direction. Thus, provided thatθ = 0o, the backscattered power density is given by

[W0(Qi)]
0o

NI = Wfs

[

1 −

k
∏

n=1

pSn

n

]

, (8)

whereSn = ln − ln−1. Accordingly, the functional to be minimized takes the form

Θ(Qi) = ΘHB,NI(Qi)
.
= ΘHB(Qi) + ΘNI(Qi), (9)

where

ΘNI(Qi)
.
=

∣

∣

∣
[W0(Qi)]

0o

NI − [W0]
0o

m

∣

∣

∣

[W0]
0o

m

. (10)
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Moreover, some additional information on the actual solution is introduced by exploiting thephase transition property

exhibited by percolation lattices [4]. According to such a property, propagation is inhibited whenpn, n = 1, ..., K, is lower

than the so-calledpercolation threshold pc, pc ≈ 0.59275 in the two-dimensional case. Thus, whenpn < pc, the backscattered

value W0 tends toWfs and it is not possible to extract any reliable information onthe medium at hand from the field

measurement. Accordingly, when looking for the medium distribution, we can set

pc < pn ≤ 1, n = 1, ..., K. (11)

In order to look for the global minimum of (9) that satisfies (11), an optimization algorithm able to effectively explore the

solution space is needed. In such a choice, the non-linearity of the problem plays a relevant role. Although somea-priori

information has been introduced, the cost function still presents several local minima, which correspond to false solutions

of the physical problem. Moreover, (9) has some discontinuities. To overcome these drawbacks, a typical solution is to use

global optimization techniques, such as Genetic Algorithms (GAs) [8] and Particle Swarm Optimizers (PSOs) [9]. In fact,

deterministic approaches such as gradient methods [10] arereliable only when the cost function is everywhere differentiable

and the search space is limited at the attraction basin of theglobal minimum.

A PSO is applied here. The choice has been motivated by the advantages exhibited by PSOs when compared to GAs. Such

advantages are mainly concerned with the ability to controlthe convergence and the stagnation of the optimization process,

an easier implementation and calibration, and the exploitation of the cooperation among the trial solutions. Moreover, PSOs

present a better heuristic adaptability with respect to GAs, where stagnation phenomena can be avoided only thanks to lucky

mutations. In the following, the main steps of the implemented PSO are summarized.

Initialization Step (i = 0). The positions of theP particles of the swarmQ0,p = {(qn)0,p; n = 1, ..., K} , (qn)0,p ∈ [0, 1−pc),

and their velocitiesV0,p = {(vn)0,p; n = 1, ..., K}, p = 1, ..., P , are randomly generated.

Evaluation Step. The optimality of each trial solution at thei-th iteration is evaluated and thepersonal best position

Bi,p = {(bn)i,p; n = 1, ..., K} = arg

{

min
h=0,...,i

[Θ(Qi,p)]

}

(12)

as well as theglobal best position

Gi = {(gn)i; n = 1, ..., K} = arg

{

min
p=1,...,P

[Θ(Bi,p)]

}

(13)

are updated. The iteration index is increased (i = i + 1) and the termination criteria are checked. If the cost of theglobal best

is smaller than a given thresholdη or the maximum number of iterationI is reached, then the optimization process stops and

the global best is assumed as the problem solutionQE .

Updating Step. The velocity of each particle is updated:

(vn)i,p = ω(vn)i−1,p + c1ρ1 [(bn)i−1,p − (qn)i−1,p]

+c2ρ2 [(gn)i−1,p − (qn)i−1,p] ,
(14)

whereω, c1 andc2 are constant parameters calledinertial weight, cognition andsocial acceleration, respectively. Moreover,ρ1

andρ2 are random coefficients drawn from a uniform distribution in[0,1]. The position of each particle is updated as follows

(qn)i,p = (qn)i−1,p + (vn)i,p. (15)

Particles escaping the actual solution space are handled according to the reflecting wall technique [11]: whenever the particle

hits the boundary of the solution space along directionn, then the sign of the velocity in such direction is changed and the

particle is reflected back in the solution space. The optimization algorithm restarts from the “Evaluation Step”.

IV. NUMERICAL VALIDATION
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The proposed inversion strategy is validated by referring to three-layer profiles havingl1 = 8, l2 = 16 and l3 = 20 (Fig.

1). Such a configuration could be of interest to model a rain column, which is usually considered as made by three regions

[7]. More in detail, experiments consider three different test cases, i.e., a profile consisting of very sparse and very dense

layers in alternated succession,QR = {0.05, 0.35, 0.05}, a sparse profile,QR = {0.05, 0.15, 0.05}, and a dense profile,

QR = {0.35, 0.25, 0.35}.

The scattering data[W0]
45o

m and [W0]
0o

m have been numerically obtained by Monte Carlo computer-based ray tracing

experiments. Specifically,100 random lattices with the same obstacles density have been generated and for every grid500 rays

have been launched from different entry positions.

The PSO parameters values are given in Table I and have been chosen following the guidelines provided in [12]. In particular,

considering the dimension of the solution space and in orderto avoid not strictly necessary fitness evaluations,P has been set

equal to5. The parametersI and η have been empirically chosen. The inertial weightω has been set equal to0.4 to damp

oscillations of the optimizer around the optimal solution and speed up the convergence rate, whilec1 and c2 have been set

equal to2 [12]. Taking into account the dynamic range of the particle,Vmax has been set equal to0.4. For each experiment,

the optimizer has been executedT = 10 times.

TABLE I

PSO SETUP PARAMETERS.

P I η ω c1 c2 Vmax

5 2000 10−5 0.4 2.0 2.0 0.4

In order to quantify the effectiveness of the inversion procedure, thediscrepancy ∆ =
[

1
K

∑K

n=1 |(qn)R − (qn)E |
]

× 100

is analyzed,(qn)R and (qn)E being the reference and the estimated occupation probability values, respectively. More in

detail, since the PSO is executedT times for each experiment, the average value∆av = 1
T

∑T

t=1 ∆t, the standard deviation

σ∆ = 1
T

∑T

t=1 |∆t − ∆av| , the maximum∆max = maxt {∆t}, and minimum∆min = mint {∆t} are evaluated,∆t being

the discrepancy obtained at thet-th trial.

The proposed approach allows good estimations of the unknown probability distributions (Fig. 2). This is confirmed by the

discrepancy values, being∆av = 2.72%, ∆av = 2.54%, and∆av = 6.11%, for the variable, the sparse and the dense profiles,

respectively. It is worth noting that obtained results considerably worsen whenQR = {0.35, 0.25, 0.35}. In fact, at higher

densities rays are almost immediately backscattered without exploring much of the medium and therefore the measured power

density does not carry much information useful for the inversion procedure.

For comparison purposes, we consider results obtained by minimizing other kinds of cost functions, i.e., (7) and

ΘMMT,MK,NI (Qi)
.
= ΘMMT (Qi)+

ΘMK(Qi) + ΘNI(Qi),
(16)

whereΘNI(Qi) is given in (10) and

ΘMMT (Qi)
.
=

∣

∣

∣
[W0(Qi)]

45o

MMT − [W0]
45o

m

∣

∣

∣

[W 0]
45o

m

, (17)

ΘMK(Qi)
.
=

∣

∣

∣
[W0(Qi)]

45o

MK − [W0]
45o

m

∣

∣

∣

[W0]
45o

m

. (18)

The underlying idea of (16) is combining the two different terms ΘMMT (Qi) and ΘMK(Qi) in order to compensate the

complementary negative features of the MMT approach and of the MK approach, which satisfactorily perform only provided

that the obstacles density is high and low, respectively.

Comparing the proposed strategy with the one relying onΘHB(Qi) (Fig. 3), it is evident that minimizingΘHB,NI(Qi)

leads to better estimations (for instance,[∆av ]
HB

[∆av]
HB,NI

∼= 6.2 when QR = {0.05, 0.35, 0.05}). Such a behavior validates the

effectiveness of introducing the additional termΘNI(Qi) in the cost function to be minimized.
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Fig. 2. Retrieved obstacles density profiles.
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The proposed strategy outperforms the one relying on (16) aswell (Fig. 3). This is particularly evident whenQR =

{0.05, 0.35, 0.05}, being
[∆av]

MMT,MK,NI

[∆av]HB,.NI

∼= 4.2. Such a behavior can be explained taking into account that neither the MK

approach nor the MMT approach satisfactorily perform in describing ray propagation when highly variable profiles are athand.

On the contrary, when either dense or sparse profiles are considered, performances of the strategy relying onΘMMT,MK,NI(Qi)

get better since one between the MK approach and the MMT approach properly works.

V. CONCLUSIONS

In this letter, a new approach to the retrieval of the densityof particles in complex layered media from electromagnetic

measurements has been proposed. Thanks to the analytical nature of the model estimating the measured power density, the

convergence rate of the PSO (i.e., satisfactory solutions are obtained after few hundreds of iterations), and the very small
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ensemble of unknowns, the proposed inversion procedure turns out to be extremely fast. Numerical experiments have shown

that reliable estimations can be achieved.
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