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Abstract

This letter deals with ray propagation in stochastic disitions of discrete scatterers having random shapes. Tdpagation
medium is described by means of a semi-infinite percolataitice and two different propagation models are consideféa:
propagation depth inside the medium is analytically edtian terms of the probability that a ray reaches a presdriegel
before being reflected back in the above empty half-planeorparison with Monte-Carlo-like experiments validate gneposed
solutions. Applications are in wireless communicatiorsnote sensing, and radar engineering.

Index Terms

Percolation theory, Stochastic ray tracing, Non-unifomndom media, Scatterers with random shape.

I. INTRODUCTION

In the last years, several models based on the percolatemmtt1] have been proposed to describe the electromagnetic
wave propagation inside stochastic distributions of diseiscatterers more suitable to be stochastically modelger than
being deterministically characterized [2]-[5]. In theseris, the propagation medium is described by means of a raraltice
of square sites (i.e., a grid whose cells may be occupiedrditpto a known probability distribution) and the obstachre
assumed to be large with respect to the wavelength. Suchsaimasion allows to describe the electromagnetic wave tedia
by the source as a collection of propagating rays that urdspgcular reflections on the occupied sites.

The approach proposed in this paper follows the above gqemori but unlike [2]-[5] the rays are not reflected spedylar
and two different propagation models are presented. In teerfiodel, referred aktrinsically-Square Shape Scatterers Model
(ISM), the ray is reflected back with a random angular dimectithus modeling propagation in a stochastic distributibn
scatterers having sections with some random irregularitiean intrinsically-square shape. In the second modeicated as
Completely Random Shape Scatterers M¢@&M), whenever a ray hits an occupied cell, it enters theara then it escapes
from a random point on the cell perimeter and with a randomuéargdirection, thus describing propagation when obstacle
are centered in a grid, but have completely random shapes.

The ISM and the CRM may be profitably used in several pracpcablems arising in wireless communications, remote
sensing, and radar engineering provided that the dimegsibtne obstacles are large enough to allow the optical padion.

As far as the first typology of problems is concerned, the 1S model the propagation in a residential area whose bg#din
basically have the same orientation and square sectiohgrésent some irregularities such as recesses and balcovtide
the CRM can be adopted in describing the urban old town centéere each building has its own different orientation and
shape. Concerning the applications in remote sensing at@at esngineering, thanks to the recent access to the tezadpattral
range, the ensemble of practical problems that can be dethy relying on the proposed solutions is getting larged an
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Fig. 1. Examples of ray propagation in random lattice realizatiamen the ISM (left) and the CRM (right) are assumed, respelgti

larger, since the wavelength goes down to the order of mieters. In such a framework, of particular interest is the CRM
that can model propagation in media such as rain, ice peHets$ granular soil.

Il. MATHEMATICAL FORMULATION

Let us consider a semi-infinite percolation lattice of sgusites that are occupied according to a known probabilihsite
distribution, ¢; = 1 — p;, j being the row index. A monochromatic plane wave, modeled asliection of parallel rays,
impinges on the lattice with incidence andlg (Fig. 1). The aim is to analytically estimate the probapititat a single ray
reaches a given levdl inside the lattice before being reflected back into the almwety half-planePr {0 — k}.

In order to deal with the propagation models proposed inl#itsr, the so-calledlartingale approacHi.e., the mathematical
formulation proposed in [2] and generalized in [5] to the amiform case) is applied. The ray propagation inside tligck
is mathematically modeled in terms of the following stodltaprocess:

Tn:TO+me7 nZOa (1)
m=1

wherer,, is the lattice row reached at theth reflection,rq is the row where the first reflectiom (= 0) takes place, and
T, =rn—Tn_1, n > 1,is a sequence describing the change of level between siweeesBections. With reference to such a
stochastic process, we can write

Pr{0|—>k}:ZPr{rNZMTQZZ'}Pr{ro:i}, (2)
i=1
where N is defined asN = min{n: r, >k or r, <0}, see Fig. 1. While the probability mass functi®n {ro =i} is
exactly evaluated, the conditional probabilRy {rn > k|ro = i} is estimated by applying the Martingale random processes
theory [6] and the so-called Wald approximation as follows:

Ay
Ao+ Ay’
Ag andAy, being the distances that the ray, starting from leyek i, needs to cover before escaping from the grid or reaching
level k, respectively [5]. Such distances must be clearly meanhastimber of obstacles that oppose the ray path towards
level 0 andk, respectively.

In the following, the Martingale approach is applied to ti&Ml and to the CRM.

Pr{ry >k|ro=1i} = 0<i<k, 3)

A. Intrinsically-Square Shape Scatterers Model (ISM)

Let us assume that at tHe — 1)-th reflection, the ray is reflected back from the same inaégpoint, but with a random
orientationd,,. By following the convention graphically described in thedtlhand side of Fig. 16,, is uniformly distributed
between—90° and90°, when the reflection occurs on a horizontal face, and betwéeand 180°, when the reflection takes
place on a vertical face.



As far asPr {ro =i} is concerned, it is trivial to observe that, until a reflentioccurs, the problem at hand comes down
to the canonical one with specular reflections. Accordirgly

i—1

Prirg =i} =pig) o[ [Pl o i>1, 4)
j=1

__|tan 6o

Wherep;O =p; Dj+1 = 1—qjj_’0 is the effective probability that the ray crosses leyetaching levelj + 1 by proceeding
in the positive direction with anglé,.

Now, let us estimat®r {ry > k|ro = ¢} according to (3). Since whenever a ray hits an horizonta fats always reflected
back changing its direction of propagation, all the horiabfaces must be counted as obstacles. As far as the veeiasd are
concerned, let us focus on a single level. Whatever the nuwitreflections on vertical faces, the ray changes its divacbf
propagation with probability /2, sinced,, is uniformly distributed betwee®’ and180° for all » > 1, see Fig. 1. Therefore and
taking into account that a ray traveling with a negative cimn through level 1 surely escapes the grid, being thezbatal
face between level 1 and level 0 surely empty, it follows that

7 ) 31— 2
Ao—§+(l_1)— 5 (5)
k—i ~ 3(k—1)
A, = E—1i)= 6
k 92 +( Z) ) ’ ( )
and thus, _—
) 1 —
Pr{rN2k|r0:2}%3k_2. (7)
By substituting (7) and (4) in (2), after simple manipulasoas those reported in Appendix B of [4], we get
k—1 35— 2 i—1 k—1
Pr{0 =k} =p1 Y o—oal o [[ o5 0+ [ 050 ®)
i=1 Jj=1 Jj=1
which in the uniform case reduces to L35k 49
- + e,
Pr{0— k} = P [ Pe.0 P '0] (9)

q670(3k — 2) ’

with p, o = plt2n%l+1 =1 — g_ . According to the analysis provided in Appendix, (8) and 48 expected to hold true with
an increasing precision whera)(6y — 90° or n — oo, (b) the grid is dense, ana) the probability density profilg;, j > 1,
does not present discontinuities and a significant vanattrvoughout the lattice.

B. Completely Random Shape Scatterers Model (CRM)

With reference to the right-hand side of Fig. 1, let us asstima¢ whenever a ray hits an occupied cell, it first enters the
cell and then it escapes from a point on the cell perimetergittdan angled,, both modeled as uniformly distributed random
variables.

In order to evaluat®r {ro = i}, we need to take into account the following difference witspect to the ISM (and to the
canonical model [5] as well): the ray enters a cell also wherobstacle is present, see Fig. 1. Accordingly, since at each
level the average number of cells on the ray-pathtas 6| + 1, the effective probability that a ray freely crosses a leyvel

reaching the following one without any reflection is equapto, = p'fane"‘“ =1— g, 0. It easily follows that

1—1
Pr{rg =i} = Qei,OHpej,m 1> 1. (10)
j=1

Now, let us considePr {ry > k|ro = i}. In this case obstacles must be considered as cells and ithkenamber at each
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Fig. 2. Uniform case - Mean errofd) versusq whenfy = 75° (a) and mean erro{d) versusfp wheng = 0.35 (b).

level is the same throughout the whole lattice. Thus, (3gs$ake form

Pr{rN2k|r0=i}:£, (12)
and after simple manipulations as those reported in AppeBddf [4], we obtain
k—1 . 1—1 k—1
Priv k) =37 feco f:[po - 13 Pe, 0 (12)
which in the uniform case becomes A
Pr{0 o k} = ~_Peo. (13)

Qe,Ok
As detailed in the Appendix, (12) and (13) are expected taiefitly perform whatever the incidence angleprovided that
(a) the grid is dense andy) the probability density profilg;, j > 1, does not present discontinuities and a significant variati
throughout the lattice.

IIl. NUMERICAL VALIDATION

In order to assess the effectiveness of the proposed sodiths well as their range of validity, an exhaustive set peerments
has been performed and selected representative resultspeed in the following. As a reference, the propagatieptt has
been numerically estimated in the fitkt = 32 levels of the lattice and reliability of the analytical sttins described in the
previous section has been quantitatively evaluated thrabg mean errots)

[Pry {0— k} — Pry {0— K}
Z max [Pry {0 — k}] x 100, (14)

where the sub-scriptd/ and A indicate numerically and analytically estimated valuespectively.

The first test case is aimed at analyzing how the obstaclesitdaifects the performances. Towards this end, we corside
uniform random grids withy varying from 0.1 up to 0.4 with step0.05 and we fixed the incidence angg to 75°. With
reference to Fig. 2, it can be observed that in both the cases and as expectaditioos p), Sec. IIA, and @), Sec.
I.B], the reliability of the analytical formulation increases ¢ increases, the mean error going down(®,,, = 0.37%
and (0) gy, = 1.95% wheng = 0.35 and ¢ = 0.4, respectively. With reference to the ISM model, it is worthting that
(0)4=0.4 > (0) =035+ as in the canonical case of specular reflections [5].

The second test case is devoted to analyze the impact of ¢igeirce angle. We considered uniform percolation lattices
with ¢ fixed to ¢ = 0.35 and different incidence conditions, nameély= {15°, 30°,45°,60°, 75°}. The obtained values dp)

INo higherq values have been considered since ot p., pc ~ 0.59275 in the two-dimensional case, propagation is inhibited etiog to the phase
transition property of percolation lattices [1].



TABLE |
LINEAR CASE - o VALUES AND (d) VALUES WHEN 6 = 75°.

Profile L1 L2 L3
a [x1079] 3.23 | 6.46 | 9.68
(0) g [%] || 0.59 [ 0.2870.39
(0)cpas (%] || 3.18 | 3.75 | 4.50

are plotted in Fig. Af). As expected [conditiona], Sec. IIA], in the ISM case the performances are affected by the value o
6o (maxg, (6) /ming, (§) = 11.2) and the mean error decreasesfgsncreases. On the other hand, the results obtained for
the CRM are insensitive t6y, beingmaxg, (4) / ming, (6) = 1.4.

Finally, we analyze how performances are affected by thpesia the density profile. Towards this end, we considered
three decreasing linear profilegs = ¢ — a(j — 1), ¢ being equal t®.4, having different angular coefficients see Tab. I. In
particular, thea values were chosen so that the occupation probability olakelevel,qx, is equal t00.3 (profile L1), 0.2
(profile L2), and0.1 (profile L3). The incidence angle was fixed g = 75°. The results in terms ofd) are given in Tab. I.
Surprisingly [conditions ), Sect. IIA, and b), Sect. 11B] and unlike the canonical case [5], it turns out that the mtémzhs
accuracy is not sensitive to the slope in the density prdfile,it depends only on the obstacles density throughoutattiee.

In the ISM case(d) does not change significantly with, with values comparable to the bdg} values of the uniform case.
On the other hand, in the CRM case, performances get worseiasreases, but this is only due to the fact that the density
profile takes values farther and farther from the optimalea(i.e.,g.,» = 0.4). In fact, the(d) values are comparable with
those related to the uniform cas@)(;; ;_; 5 3 = % (d),, being the mean error in correspondence with a uniform
grid havingq = q,).

IV. CONCLUSION

In this letter, ray propagation through a stochastic noifieam distribution of discrete scatterers with random shdmas
been considered. The environment has been described is i percolation lattice and two different propagation eled
have been proposed. In both cases, an analytical closedsolution for the penetration depth has been provided aselsasd
through numerical experiments. Summarizing, we can steteinh the ISM case the proposed solution satisfactorilygoers
for dense grids and better and betteréags— 90° or n — oo, while in the CRM case accuracy increasesqgasicreases
whatever the incidence angle.

APPENDIX

This Appendix is devoted at analyzing the range of validifythe proposed solutions. We start by recalling that (3), and
thus the final results (8) and (12), hold true provided that ridy-jumps following the first one are independent, idexlije
distributed, and with mean and standard deviation appingaero [5]. To understand when such an assumption is verifith
good approximation, we need to analyze the probability nfiasstion of the ray-jumps following the first on®r {z,, = i}.

In the following, we refer to the probabilities that theth jump is in positive or negative direction & {z;"} andPr {z },
respectively. Moreover, we assume that starts at levelj, where the(n — 1)-th reflection takes place, and consequently ends
at levelj + ¢, where then-th reflection occurs.

Let us first analyzér {z,, = i} when the ISM is considered. According to the adopted natatice can write
Pr{z}} q;n +Pri{z,;} Ge;ms =0,

i—1

Pr{z} gt . o1 e, . i>0,
Pr{a, = i} — {oata,.. }]Op s+o (15)

li]—1

Pri{e;}az . [ pe, o0 <0,
s=0




wherep_ , = pljtan 9""1)3'71 =1-gq, , is the effective probability of the level to be freely crossed, given that the ray travels

in the negative direction with angl,.

At this point, we prove the following.emma. If 6, — 90° or n — oo andp; = p;41, V7, thenPr {z;}} = Pr{x, } = 1/2.
We first observe that whenever a ray hits a horizontal facgynely changes its direction of propagation. On the othedhd
the reflection occurs on a vertical face, the direction ofgaigation is either kept or changed with the same probabilitys,

Pr{z}} =Pr{a} |z} } Pr{z}_,}
+Pr{a} |z, } Pr{z,_1} = 36 n1 Pr{z}_;}
+ (28on-1+ &nn) Priz,_
= (3éom-1+&mn-1) —Enn1 Pri{zi i},
where ¢, , and &, denote the probabilities that the-th reflection takes place on a horizontal and on a verticag fa

respectively. Now, under the assumption that= p,1, Vj, and taking into account that the quantjtyné,,| is a random
variable identically distributed for alk > 1, we have

(16)

tan 6,
gv,ngngvzl_gha Vn,n>1, (17)
Accordingly, sincePr {z{ } = $&,0 = %% being the first jump-, in positive direction, from (16) it follows that
n—2
Pr{zf} = (3& + &) D> _(=&)" +Pr{zf } (&) 18)
=0

=3 (1= o] + i (e

At this point, it easily follows thaPr {z;} tends to1/2 if either n — oo or 6y — 90°.

Now, let us observe (15) taking into account thenma. If 8, — 90° or n — oo andp; = p;4+1, Vj, and if the additional
conditiong; = ¢; holds true whatevet and j, in first approximation the assumption of independent, tidaily distributed
and zero-mean jumps is satisfied. As far as the condition erstéindard deviation is concerned, it is trivial to obsehat it
decreases as the obstacles density throughout the whtide laicreases.

The analysis ofPr {z,, = i} in the CRM case is now in order. Let us focus on the— 1)-th reflection: the ray enters the
cell and then it is reflected from any of the four cell sideshwthe same probability. LeV, E, S, andWW be the events that
the ray exits from the north, the east, the south, or the wdst sespectively. It can be observed that if evéhtakes place,
thenPr {z,, < —1} =1, while if eventS occurs, therPr {z,, > 1} = 1. On the other hand, wheR or W takes place, since
6., is uniformly distributed betweefi® and180° for all n > 1, thenPr {z}} = Pr{z, } = 1/2. Therefore,

%er,ny 1= 07
i—1 i—1

1 1 .

. qujJri’anejJrsv” + zqui,aneHs,nv i >0,
Pr {‘r" = Z} = s=1 s=0 (19)

li|—1 li|—1

1 1 .

Zer+i,n Hpej,s,n‘l'z Hpejfs,n, Z<0,
s=1 s=0

Now, if the conditiong; = ¢; holds true whatevef and j, we can conclude that in first approximation the assumption o
independent, identically distributed and zero-mean juispsatisfied. Moreover, as in the ISM case, the standard tievia
decreases as the obstacles density increases.
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