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Percolation-Based Models for Ray-Optical

Propagation in Stochastic Distributions of Scatterers

with Random Shape
Anna Martini, Federico Caramanica, Massimo Franceschetti, and Andrea Massa,

Abstract

This letter deals with ray propagation in stochastic distributions of discrete scatterers having random shapes. The propagation
medium is described by means of a semi-infinite percolating lattice and two different propagation models are considered. The
propagation depth inside the medium is analytically estimated in terms of the probability that a ray reaches a prescribed level
before being reflected back in the above empty half-plane. A comparison with Monte-Carlo-like experiments validate theproposed
solutions. Applications are in wireless communications, remote sensing, and radar engineering.

Index Terms

Percolation theory, Stochastic ray tracing, Non-uniform random media, Scatterers with random shape.

I. INTRODUCTION

In the last years, several models based on the percolation theory [1] have been proposed to describe the electromagnetic

wave propagation inside stochastic distributions of discrete scatterers more suitable to be stochastically modeled rather than

being deterministically characterized [2]-[5]. In these works, the propagation medium is described by means of a random lattice

of square sites (i.e., a grid whose cells may be occupied according to a known probability distribution) and the obstacles are

assumed to be large with respect to the wavelength. Such an assumption allows to describe the electromagnetic wave radiated

by the source as a collection of propagating rays that undergo specular reflections on the occupied sites.

The approach proposed in this paper follows the above description, but unlike [2]-[5] the rays are not reflected specularly

and two different propagation models are presented. In the first model, referred asIntrinsically-Square Shape Scatterers Model

(ISM), the ray is reflected back with a random angular direction, thus modeling propagation in a stochastic distributionof

scatterers having sections with some random irregularities in an intrinsically-square shape. In the second model, indicated as

Completely Random Shape Scatterers Model(CRM), whenever a ray hits an occupied cell, it enters the cell and then it escapes

from a random point on the cell perimeter and with a random angular direction, thus describing propagation when obstacles

are centered in a grid, but have completely random shapes.

The ISM and the CRM may be profitably used in several practicalproblems arising in wireless communications, remote

sensing, and radar engineering provided that the dimensions of the obstacles are large enough to allow the optical approximation.

As far as the first typology of problems is concerned, the ISM can model the propagation in a residential area whose buildings

basically have the same orientation and square sections, but present some irregularities such as recesses and balconies, while

the CRM can be adopted in describing the urban old town centers where each building has its own different orientation and

shape. Concerning the applications in remote sensing and radar engineering, thanks to the recent access to the terahertz spectral

range, the ensemble of practical problems that can be dealt with by relying on the proposed solutions is getting larger and
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Ricerca di Interesse Nazionale - MIUR Project COFIN 2005099984.
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Fig. 1. Examples of ray propagation in random lattice realizationswhen the ISM (left) and the CRM (right) are assumed, respectively.

larger, since the wavelength goes down to the order of micrometers. In such a framework, of particular interest is the CRM

that can model propagation in media such as rain, ice pellets, and granular soil.

II. MATHEMATICAL FORMULATION

Let us consider a semi-infinite percolation lattice of square sites that are occupied according to a known probability density

distribution, qj = 1 − pj , j being the row index. A monochromatic plane wave, modeled as acollection of parallel rays,

impinges on the lattice with incidence angleθ0 (Fig. 1). The aim is to analytically estimate the probability that a single ray

reaches a given levelk inside the lattice before being reflected back into the aboveempty half-plane,Pr {0 7→ k}.

In order to deal with the propagation models proposed in thisletter, the so-calledMartingale approach(i.e., the mathematical

formulation proposed in [2] and generalized in [5] to the non-uniform case) is applied. The ray propagation inside the lattice

is mathematically modeled in terms of the following stochastic process:

rn = r0 +

n
∑

m=1

xm, n ≥ 0, (1)

wherern is the lattice row reached at then-th reflection,r0 is the row where the first reflection (n = 0) takes place, and

xn = rn − rn−1, n ≥ 1, is a sequence describing the change of level between successive reflections. With reference to such a

stochastic process, we can write

Pr {0 7→ k} =
∞
∑

i=1

Pr {rN ≥ k |r0 = i}Pr {r0 = i} , (2)

where N is defined asN = min {n : rn ≥ k or rn ≤ 0} , see Fig. 1. While the probability mass functionPr{r0 = i} is

exactly evaluated, the conditional probabilityPr {rN ≥ k |r0 = i} is estimated by applying the Martingale random processes

theory [6] and the so-called Wald approximation as follows:

Pr {rN ≥ k |r0 = i} ∼=
∆0

∆0 + ∆k

, 0 < i < k, (3)

∆0 and∆k being the distances that the ray, starting from levelr0 = i, needs to cover before escaping from the grid or reaching

level k, respectively [5]. Such distances must be clearly meant as the number of obstacles that oppose the ray path towards

level 0 andk, respectively.

In the following, the Martingale approach is applied to the ISM and to the CRM.

A. Intrinsically-Square Shape Scatterers Model (ISM)

Let us assume that at the(n − 1)-th reflection, the ray is reflected back from the same incidence point, but with a random

orientationθn. By following the convention graphically described in the left-hand side of Fig. 1,θn is uniformly distributed

between−90o and90o, when the reflection occurs on a horizontal face, and between0o and180o, when the reflection takes

place on a vertical face.
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As far asPr {r0 = i} is concerned, it is trivial to observe that, until a reflection occurs, the problem at hand comes down

to the canonical one with specular reflections. Accordingly[5],

Pr {r0 = i} = p1q
+

ei,0

i−1
∏

j=1

p+

ej ,0, i ≥ 1, (4)

wherep+

ej ,0 = p
|tan θ0|
j pj+1 = 1−q+

ej,0 is the effective probability that the ray crosses levelj reaching levelj+1 by proceeding

in the positive direction with angleθ0.

Now, let us estimatePr {rN ≥ k |r0 = i} according to (3). Since whenever a ray hits an horizontal face it is always reflected

back changing its direction of propagation, all the horizontal faces must be counted as obstacles. As far as the verticalfaces are

concerned, let us focus on a single level. Whatever the number of reflections on vertical faces, the ray changes its direction of

propagation with probability1/2, sinceθn is uniformly distributed between0o and180o for all n ≥ 1, see Fig. 1. Therefore and

taking into account that a ray traveling with a negative direction through level 1 surely escapes the grid, being the horizontal

face between level 1 and level 0 surely empty, it follows that

∆0 =
i

2
+ (i − 1) =

3i − 2

2
, (5)

∆k =
k − i

2
+ (k − i) =

3(k − i)

2
, (6)

and thus,

Pr {rN ≥ k |r0 = i} ∼=
3i − 2

3k − 2
. (7)

By substituting (7) and (4) in (2), after simple manipulations as those reported in Appendix B of [4], we get

Pr{0 7→ k} = p1

k−1
∑

i=1

3i − 2

3k − 2
q+

ei,0

i−1
∏

j=1

p+

ej ,0 + p1

k−1
∏

j=1

p+

ej ,0, (8)

which in the uniform case reduces to

Pr{0 7→ k} =
p

[

1 − 3pk
e,0 + 2pe,0

]

qe,0(3k − 2)
, (9)

with pe,0 = p|tan θ0|+1 = 1− qe,0. According to the analysis provided in Appendix, (8) and (9)are expected to hold true with

an increasing precision when: (a) θ0 → 90o or n → ∞, (b) the grid is dense, and (c) the probability density profileqj , j ≥ 1,

does not present discontinuities and a significant variation throughout the lattice.

B. Completely Random Shape Scatterers Model (CRM)

With reference to the right-hand side of Fig. 1, let us assumethat whenever a ray hits an occupied cell, it first enters the

cell and then it escapes from a point on the cell perimeter andwith an angleθn both modeled as uniformly distributed random

variables.

In order to evaluatePr {r0 = i}, we need to take into account the following difference with respect to the ISM (and to the

canonical model [5] as well): the ray enters a cell also when an obstacle is present, see Fig. 1. Accordingly, since at each

level the average number of cells on the ray-path is|tan θ0| + 1, the effective probability that a ray freely crosses a levelj

reaching the following one without any reflection is equal topej ,0 = p
|tan θ0|+1

j = 1 − qej ,0. It easily follows that

Pr {r0 = i} = qei,0

i−1
∏

j=1

pej ,0, i ≥ 1. (10)

Now, let us considerPr {rN ≥ k |r0 = i}. In this case obstacles must be considered as cells and the cells number at each
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Fig. 2. Uniform case - Mean error〈δ〉 versusq whenθ0 = 75
o (a) and mean error〈δ〉 versusθ0 whenq = 0.35 (b).

level is the same throughout the whole lattice. Thus, (3) takes the form

Pr {rN ≥ k |r0 = i} =
i

k
, (11)

and after simple manipulations as those reported in Appendix B of [4], we obtain

Pr{0 7→ k} =

k−1
∑

i=1

i

k
qei,0

i−1
∏

j=1

pej ,0 +

k−1
∏

j=1

pej ,0, (12)

which in the uniform case becomes

Pr{0 7→ k} =
1 − pk

e,0

qe,0k
. (13)

As detailed in the Appendix, (12) and (13) are expected to efficiently perform whatever the incidence angleθ0 provided that

(a) the grid is dense and (b) the probability density profileqj , j ≥ 1, does not present discontinuities and a significant variation

throughout the lattice.

III. NUMERICAL VALIDATION

In order to assess the effectiveness of the proposed solutions, as well as their range of validity, an exhaustive set of experiments

has been performed and selected representative results arereported in the following. As a reference, the propagation depth has

been numerically estimated in the firstK = 32 levels of the lattice and reliability of the analytical solutions described in the

previous section has been quantitatively evaluated through the mean error〈δ〉

〈δ〉 ,
1

K

K
∑

k=1

|PrN {0 7→ k} − PrA {0 7→ k}|

max
k

[PrN {0 7→ k}]
× 100, (14)

where the sub-scriptsN andA indicate numerically and analytically estimated values, respectively.

The first test case is aimed at analyzing how the obstacles density affects the performances. Towards this end, we considered

uniform random grids withq varying from 0.1 up to 0.41 with step0.05 and we fixed the incidence angleθ0 to 75o. With

reference to Fig. 2(a), it can be observed that in both the cases and as expected [conditions (b), Sec. II.A, and (a), Sec.

II.B], the reliability of the analytical formulation increasesas q increases, the mean error going down to〈δ〉ISM = 0.37%

and 〈δ〉CRM = 1.95% whenq = 0.35 and q = 0.4, respectively. With reference to the ISM model, it is worth noting that

〈δ〉q=0.4 > 〈δ〉q=0.35, as in the canonical case of specular reflections [5].

The second test case is devoted to analyze the impact of the incidence angle. We considered uniform percolation lattices

with q fixed to q = 0.35 and different incidence conditions, namelyθ0 = {15o, 30o, 45o, 60o, 75o}. The obtained values of〈δ〉

1No higherq values have been considered since forp < pc, pc ≈ 0.59275 in the two-dimensional case, propagation is inhibited according to the phase
transition property of percolation lattices [1].
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TABLE I

L INEAR CASE - α VALUES AND 〈δ〉 VALUES WHEN θ0 = 75
o .

Profile L1 L2 L3
α [×10−3] 3.23 6.46 9.68
〈δ〉ISM [%] 0.59 0.28 0.39
〈δ〉CRM [%] 3.18 3.75 4.50

are plotted in Fig. 2(b). As expected [condition (a), Sec. II.A], in the ISM case the performances are affected by the value of

θ0 (maxθ0
〈δ〉 / minθ0

〈δ〉 ∼= 11.2) and the mean error decreases asθ0 increases. On the other hand, the results obtained for

the CRM are insensitive toθ0, beingmaxθ0
〈δ〉 / minθ0

〈δ〉 ∼= 1.4.

Finally, we analyze how performances are affected by the slope in the density profile. Towards this end, we considered

three decreasing linear profilesqj = q − α(j − 1), q being equal to0.4, having different angular coefficientsα, see Tab. I. In

particular, theα values were chosen so that the occupation probability of thelast level,qK , is equal to0.3 (profile L1), 0.2

(profile L2), and0.1 (profile L3). The incidence angle was fixed toθ0 = 75o. The results in terms of〈δ〉 are given in Tab. I.

Surprisingly [conditions (c), Sect. II.A, and (b), Sect. II.B] and unlike the canonical case [5], it turns out that the predictions

accuracy is not sensitive to the slope in the density profile,but it depends only on the obstacles density throughout the lattice.

In the ISM case,〈δ〉 does not change significantly withα, with values comparable to the best〈δ〉 values of the uniform case.

On the other hand, in the CRM case, performances get worse asα increases, but this is only due to the fact that the density

profile takes values farther and farther from the optimal value (i.e.,qopt = 0.4). In fact, the〈δ〉 values are comparable with

those related to the uniform case (〈δ〉Li, i=1,2,3
∼=

〈δ〉
q1

+〈δ〉
qK

2
, 〈δ〉qx

being the mean error in correspondence with a uniform

grid havingq = qx).

IV. CONCLUSION

In this letter, ray propagation through a stochastic non-uniform distribution of discrete scatterers with random shape has

been considered. The environment has been described in terms of a percolation lattice and two different propagation models

have been proposed. In both cases, an analytical closed-form solution for the penetration depth has been provided and assessed

through numerical experiments. Summarizing, we can state that in the ISM case the proposed solution satisfactorily performs

for dense grids and better and better asθ0 → 90o or n → ∞, while in the CRM case accuracy increases asq increases

whatever the incidence angle.

APPENDIX

This Appendix is devoted at analyzing the range of validity of the proposed solutions. We start by recalling that (3), and

thus the final results (8) and (12), hold true provided that the ray-jumps following the first one are independent, identically-

distributed, and with mean and standard deviation approaching zero [5]. To understand when such an assumption is verified with

good approximation, we need to analyze the probability massfunction of the ray-jumps following the first one,Pr {xn = i}.

In the following, we refer to the probabilities that then-th jump is in positive or negative direction asPr {x+
n } andPr {x−

n },

respectively. Moreover, we assume thatxn starts at levelj, where the(n− 1)-th reflection takes place, and consequently ends

at levelj + i, where then-th reflection occurs.

Let us first analyzePr {xn = i} when the ISM is considered. According to the adopted notation, we can write

Pr {xn = i} =



































Pr {x+
n } q+

ej ,n + Pr {x−
n } q−ej ,n, i = 0,

Pr {x+
n } q+

ej+i,n

i−1
∏

s=0

p+
ej+s,n, i > 0,

Pr {x−
n } q−ej+i,n

|i|−1
∏

s=0

p−ej−s ,n, i < 0,

(15)
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wherep−ej ,n = p
|tan θn|
j pj−1 = 1− q−ej ,n is the effective probability of the levelj to be freely crossed, given that the ray travels

in the negative direction with angleθn.

At this point, we prove the followingLemma. If θ0 → 90o or n → ∞ andpj
∼= pj+1, ∀j, thenPr {x+

n }
∼= Pr{x−

n }
∼= 1/2.

We first observe that whenever a ray hits a horizontal face, itsurely changes its direction of propagation. On the other hand, if

the reflection occurs on a vertical face, the direction of propagation is either kept or changed with the same probability. Thus,

Pr {x+
n } = Pr

{

x+
n

∣

∣x+

n−1

}

Pr
{

x+

n−1

}

+ Pr
{

x+
n

∣

∣x−
n−1

}

Pr
{

x−
n−1

}

= 1

2
ξv,n−1 Pr

{

x+
n−1

}

+
(

1

2
ξv,n−1 + ξh,n−1

)

Pr
{

x−
n−1

}

=
(

1

2
ξv,n−1 + ξh,n−1

)

− ξh,n−1 Pr
{

x+
n−1

}

,

(16)

where ξv,n and ξh,n denote the probabilities that then-th reflection takes place on a horizontal and on a vertical face,

respectively. Now, under the assumption thatpj
∼= pj+1, ∀j, and taking into account that the quantity|tan θn| is a random

variable identically distributed for alln ≥ 1, we have

ξv,n
∼=

|tan θn|

|tan θn| + 1
= ξv = 1 − ξh, ∀n, n ≥ 1, (17)

Accordingly, sincePr
{

x+

1

}

= 1

2
ξv,0

∼= 1

2

|tan θ0|
1+|tan θ0|

, being the first jumpr0 in positive direction, from (16) it follows that

Pr {x+
n } =

(

1

2
ξv + ξh

)

n−2
∑

i=0

(−ξh)i + Pr
{

x+
1

}

(−ξh)n−1

= 1

2

[

1 − (−ξh)n−1
]

+ 1

2

|tan θ0|
1+|tan θ0|

(−ξh)n−1.

(18)

At this point, it easily follows thatPr {x+
n } tends to1/2 if either n → ∞ or θ0 → 90o.

Now, let us observe (15) taking into account theLemma. If θ0 → 90o or n → ∞ andpj
∼= pj+1, ∀j, and if the additional

condition qj
∼= qi holds true whateveri and j, in first approximation the assumption of independent, identically distributed

and zero-mean jumps is satisfied. As far as the condition on the standard deviation is concerned, it is trivial to observe that it

decreases as the obstacles density throughout the whole lattice increases.
The analysis ofPr {xn = i} in the CRM case is now in order. Let us focus on the(n− 1)-th reflection: the ray enters the

cell and then it is reflected from any of the four cell sides with the same probability. LetN , E, S, andW be the events that
the ray exits from the north, the east, the south, or the west side, respectively. It can be observed that if eventN takes place,
thenPr{xn ≤ −1} = 1, while if eventS occurs, thenPr {xn ≥ 1} = 1. On the other hand, whenE or W takes place, since
θn is uniformly distributed between0o and180o for all n ≥ 1, thenPr {x+

n } = Pr {x−
n } = 1/2. Therefore,

Pr {xn = i} =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

2
qej ,n, i = 0,

1

4
qej+i ,n

i−1
Y

s=1

pej+s,n +
1

4
qej+i,n

i−1
Y

s=0

pej+s,n, i > 0,

1

4
qej+i ,n

|i|−1
Y

s=1

pej−s,n +
1

4

|i|−1
Y

s=0

pej−s,n, i < 0,

(19)

Now, if the conditionqj
∼= qi holds true whateveri and j, we can conclude that in first approximation the assumption of

independent, identically distributed and zero-mean jumpsis satisfied. Moreover, as in the ISM case, the standard deviation

decreases as the obstacles density increases.
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