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Abstract
This paper presents an innovative inverse scattering approach based on a fuzzy-logic
strategy aimed at fully exploiting the information content of the scattered data in
a microwave imaging system. The effectiveness of the proposed method is assessed
through the results of a numerical analysis concerned with the reconstruction of
single as well as multiple dielectric targets in various noisy environments. For com-
parison purposes, the obtained performance are compared with those of a standard
method in terms of reconstruction accuracy and computational load to point out

the improvement induced by the proposed approach.
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1 Introduction

Microwave imaging is a technique aimed at investigating and reconstructing the electro-
magnetic properties of an inaccessible area (for a general overview see [1], [2], [3] and the
reference therein). Towards this aim, the investigation domain is probed by means of a
set of incident electromagnetic fields and the scattering interactions with the structure
under test are detected through a set of sensors placed outside the inaccessible area.

In such a framework, the collection of the scattering information is a key point of the
imaging process, but severe obstacles prevent the acquisition of a completely reliable set
of measurements since unavoidable sources of error operate. For instance, the electromag-
netic interferences contribute to the corruption of the data together with systematic errors
caused by the inaccurate mechanical positioning of experimental acquisition arrangement.
The impact of such “disturbances” is further emphasized by the intrinsic instability of
every inverse scattering problem [4]. To limit such effects, the retrieval problem is usu-
ally regularized by defining a suitable cost function and searching for the estimation of
the scenario under test that best matches the available scattering data. Although such
a countermeasure circumscribes the ill-conditioning, the presence of noise could lead the
reconstruction algorithm towards a false solution. To avoid this event, a reliable esti-
mation of the information content in the measured data (i.e., distinguishing between the
contribute of the scattering and of the noise in the measured data) is very appealing.
Since a “direct” evaluation would be complex and very expensive from an experimental
point of view, the authors propose in this work an unsupervised technique. Towards this
aim, the potentialities of a fuzzy-logic [5] based strategy are exploited in the retrieval
process to obtain a degree of reliability of each noisy measure.

The paper is organized as follows. In Sect. 2, the fuzzy-logic system is described then the
results of a preliminary assessment are presented and analyzed by considering a selected

set of synthetic scenarios (Sect. 3). Finally, some conclusions are drawn (Sect. 4).



2 Mathematical Formulation and Fuzzy-Logic Based
Approach

Let us consider a two-dimensional geometry where an investigation domain D, is il-
luminated by a set of V known incident fields (E®¢(r) = E™(z,y)z, v = 1,...,V) to
determine its electromagnetic characteristics modeled in terms of the object function
T(z,y) = [er(z,y) — 1] — j%fr—’}’l, er(z,y) and o(z,y) being the relative dielectric permit-
tivity and the electric conductivity, respectively; f is the working frequency. Such an
imaging process is carried out starting from the scattered field collected in an observation
domain D external to D;y,.

The physical relationship between the object function 7(z,y) and the field scattered in

the observation domain, Lp_, (m; Ym); (Tm,Ym) € Dops, is mathematically described by

mans of the Integral Data Equation |6]

LY, (T, ym) = k° / -GN @, Y2’ Y )72 Y ) B2 y ) da' Ay (@m, Ym) € Dobs
(1)

where G(z,y | 2',y") = —ig® koy/(z — 2')* + (y — y")? ), k being the free-space wavenum-
470

ber, and H{?is the Hankel function of 0-th order and second kind; E°!(z, y) is the electric
field corresponding to the v-th illumination.
Moreover, the scattering phenomena in D;,, can be suitably represented in terms of the

Integral State Equation [6]

L. @y Yn) = EL (0, yn) =K /D - G @,y |2,y )T( Y ) ES (2 y ) da'dy' (0. Yn) € Ding
(2)

In order to reconstruct 7(z,y) and E'(z,y) in the investigation domain, preventing the

ill-posedness of the problem, a widely adopted technique consists in defining a suitable

cost function 7] proportional to the fitting between measured and reconstructed scattering

data



S {7(Tn, Yn), B2 Tn, Yn)} = Ppata {7 (Tn, Yn), EL(Tn, yn)} + Pstate {T(@n, Yn), ELN(Tn, yn)}
n=1..N wv=1,..,V
2 (3)
} (Data Term)
] (4)
} (State Term)
(5)

M (or N) being the numbers of positions in D (or in D;y,,) where the scattered field (or

Egcatt(mmaym)_LUD (Tm ym)

\4 M
ZU:I Zm:l {’Y{]n obs
Zvvzl Ele{‘Escatt(wm’ym)P}

(I)Data {’T(ilin, yn)a E;iOt(xn’ yn)} =

POV DA {wz
Evvzl ZnN=1{‘E1i)nc($n;yn)|2}

E;J}nc (wn ’yn)iLUDinv (.CCn ,yn)

Dsrate {T(.In, yn)a eq}ot(xn’ yn)} =

the incident field) is collected. ;" and U7 are reliability coefficients for L}, | (2, Ym) and
LYy, (2n,yn), respectively, which allow to take into account the presence of noise in the
collected data. Such reliability indexes are computed in an unsupervised way by means
of the fuzzy-logic system shown in Fig. 1.

More in detail, the inputs of the fuzzifier (the first block in Fig. 1) are two sequences (V2

and v?) concerning the collected data according to the following expressions

v = 1%
By (@ ym) Eine )
o BT (omsgs) ot — | v (xnayn”
m = B39 (@mym) |1 ° v maz, {maz, |E"(z,,y,)|} m bt
max,  max,, W v n v nyIn
v m>Ym
n=1,.,N

(6)
. Then, a fuzzy counterpart, represented by a Gaussian membership function g(v},) |or
g(vy)] [5] centered in v2 (or v?) and characterized by a variance xy = 104, is associ-
ated to each input value of the fuzzifier. The membership function interacts with an
a-priori heuristically-defined “Dataset of Rules” composed by a set of Antecedents and
related Consequences [Fig. 2(a)|]. During the fuzzy inference phase, the system deter-
mines an activation value u(v},) [or p(vy,)| for each Antecedent, obtained by computing
the intersection between g(v},) [or g(vy,)] and the Antecedent itself.

As far as the “Rule 4” is concerned, such a procedure is shown on the left side of Fig.

2(a). The same figure displays the definition of the “degree of truth” of the associated
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Consequence (“Consd”) starting from the activation value.

The process is repeated for each rule (i.e., for each couple of Antecedent-Consequence)
to obtain the composition of the final degree of truth as indicated in Fig. 2(b) by the
shadowed region (called “truth region”).

The last step (called defuzzification) of the unsupervised data-processing consists in com-
puting the reliability index +™ (or ¥?), which is defined as the center of the truth region
[Fig. 2(b)]

Successively, starting from such a set of coefficients (7}, ¥?; n=1,... N, m=1,..., M,
v = 1,...,V), whatever reconstruction algorithm is used to minimize the arising cost
function (3), it could usefully exploit the scattering data according to their degree of

reliability.

3 Numerical Results

In this Section, a selected set of numerical results will be shown to give some indications
on the improvement over a standard approach when pre-processing the input data by
means of the fuzzy-system. Such results will be concerned with three different scattering
scenarios depicted in Fig. 3(V. They refer to scatterers located in a square investigation
domain of side A\ (Ao being the free-space wavelength) probed by a set of monochromatic
plane waves and partitioned in N = 225 equal square sub-domains according to the
Richmond’s procedure [8|. The “Test Case 1” consists of a square %Q—sided homogeneous
(r = 1.5) cylinder sensed by V = 4 different directions (0},, = 3% (v —1), v = 1,...,V),

while in the second one (Test Case 2) is a similar profile but larger (L = 22 in side)

and probed with V' = 8 different incident fields. In the “Test Case 3”, two scatterers
are located d = ’\3—0 far the one from the other (L; = Ly = % and 1, = 75 = 1.5). The
scattering data have been numerically computed in M = 10 sampling points by adding

a random Gaussian noise with a fixed signal-to-noise ratio (SNR) to simulate realistic

(1) Please note that the black pixel in the lower right border of the image is used for reference.



environmental conditions.

As far as the minimization procedure is concerned, since the focus is on the comparison
between the fuzzy-logic-based technique and the reference one (the “bare” approach), a
simple iterative conjugate-gradient optimizer [9] has been used. Our more recent advances
on the minimization of the inverse scattering cost function have been described elsewhere
[10] and it will be used in the near future to fully exploit the effectiveness of an integrated
strategy based on the fuzzy-logic data processing.

In order to quantitatively estimate the improvement in the quantitative imaging allowed

by the fuzzy-logic-based processing, the following error figures are defined

1 N2 (@0, Yn) = 7 (@0, Yn)
- : ny Jn ny JIn 100 7
Cj N(J) ngl { Tref(xn’yn) } X ( )

where NU) ranges over the whole investigation domain (NU) = N, j = tot), or over the
area occupied by the actual scatter (j = int), or over the background (j = ext).

Then, let us analyze the results of the numerical assessment starting from the first ex-
periment. As expected, the fuzzy-logic data processing, acting before the minimization
process, significantly impacts when SNR < 20dB, that is in those situations where the
measured data are seriously corrupted by the noise. Such an event can be noticed in Figs.
4(a)-(c) where it is pointed out that the fuzzy-based strategy achieves smaller values
of the error figures®® than those of the standard method. Pictorially, such an improve-
ment can be appreciated by comparing the images of the reconstructed contrasts when
SNR =10dB [Fig. 5(a) vs. Fig. 5(b)] and SNR = 5dB [Fig. 5(c) vs. Fig. 5(d)]. Such
a behavior is due to the better fitting with the scattering data allowed by the proposed
methodology.

In fact, the minimization of the cost function benefits of the action of the reliability

coefficients ;" and ¥} as shown in Fig. 6 where two representative samples of the behavior

(2) Because of the statistical nature of the noise, each situation characterized by a different SN R has
been executed several times to assess the quality of the solution. Therefore, the reported results are the
averages of the execution of the imaging process for 50 independent realizations of the data-generation
process given a fixed value of the signal-to-noise ratio.



of the cost function during the iterative minimization are given |Fig. 6(a) - SNR = 10dB;
Fig. 6(b) - SNR = 5dB]|. As can be observed, the total number of iterations needed to
reach the convergence (®*) < 15, n = 1073; k being the iteration index) or a stationary

L. K. ind @(k)_ Kiuindow @(h) _
condition (‘ L (D(Z,:;"—l | < Yst, Kuindow = 20 and 75 = 1072). Moreover,

as far as the standard approach is concerned, such a number increases and the rate of
convergence reduces when the noise level grows, while it keeps an almost constant value
(~ 700) when the fuzzy-based strategy is adopted.

This behavior is also pointed out in Fig. 7 where the mean values of the total number
of iteration needed to minimize the cost function is reported. Such a value turns out to
be more insensitive to the SN R value when the new method is applied. On the contrary,
large variations occur when the reference approach is used.

Similar conclusions, in terms of convergence rate and reconstruction accuracy, hold true
for the Test Case 2 (Fig. 8) and the multiple-scatterers configuration (7est Case 3 -
Fig. 9). As far as the two-objects configuration is concerned, the obtained results confirm
the effectiveness of the fuzzy-based approach in dealing with complex scenarios, as well.
According to the indications carried out from the behaviors of the error figures in Fig. 9,
the reconstructed profiles [Figs. 10(b)-(c)] better approximate the actual ones and the
presence of artifacts in the final image is avoided.

For completeness, Figure 11 shows the plots of the cost function for a realization of the

reconstruction process when SNR = 10dB and SNR = 5dB, respectively.

4 Conclusions

In this paper, an innovative fuzzy-logic-based methodology aimed at exploiting the infor-
mation content of noisy data by means of an unsupervised procedure has been presented.
Such a strategy allows to take into account the reliability of the measurements through
a set of weighting coefficients in the cost function to be minimized. The effectiveness

of the proposed approach has been analyzed by means of some synthetic experiments



concerning various scattering configurations as well as noisy environments. The achieved
results have shown a noticeable reduction of the required computational load as well as

an improvement in the reconstruction of the scenario under test.
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FIGURE CAPTIONS

e Figure 1.

Block-diagram of the fuzzy system.

e Figure 2.

Dataset of Rules employed for processing the input data of the fuzzy system.

e Figure 3.
Numerical validation - Actual profiles: (a) Test Case 1, (b) Test Case 2, and (c)

Test Case 3.

e Figure 4.
Test Case 1 - Average values of the error figures versus SNRs: (a) total error (i,

(b) internal error (¢, and (c¢) external error Cey.

e Figure 5.
Test Case 1 - Samples of the dielectric profiles reconstructed by using the standard
approach (a)-(c¢) and the fuzzy-logic-based strategy (b)-(d) when SNR = 10dB
(a)-(b) and SNR = 5dB (c)-(d).

e Figure 6.
Test Case 1 - Behavior of the cost function during the minimization process when

(a) SNR=10dB and (b) SNR = 5dB.

e Figure 7.
Test Case 1 - Average number of iterations needed to reach the convergence versus

the signal-to-noise ratio.

e Figure 8.
Test Case 2 - Average values of the error figures versus SNRs: (a) total error (i,

(b) internal error (i, and (c¢) external error (e
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e Figure 9.
Test Case 3 - Average values of the error figures versus SNRs: (a) total error (yo,

(b) internal error (i, and (c¢) external error (e

e Figure 10.
Test Case 3 - Samples of the dielectric profiles reconstructed by using the standard
approach (a)-(c) and the fuzzy-logic-based strategy (b)-(d) when SNR = 10dB
(a)-(b) and SNR =5dB (c)-(d).

e Figure 11.

Test Case 3 - Behavior of the cost function during the minimization process when

(a) SNR=10dB and (b) SNR = 5dB.
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