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An Innovative Computational Approach based
on a Particle Swarm Strategy for Adaptive Phased-
Arrays Control

Massimo Donelli, Renzo Azaro, Francesco De Natale, and Andrea Massa

Abstract

In this paper a new approach to the control of phased arrays is presented and
assessed. Starting from the adaptive array theory, a particle swarm strategy is used
to tune the phase coefficients of the array in order to adaptively minimize/avoid
the effects of interfering signals at the receiver. To show the effectiveness of the
proposed approach, a selected set of numerical examples, concerned with linear as
well as planar arrays, is presented. Furthermore, to evaluate the advantages of the
PSO-based strategy over state-of-art methods, a comparative study is carried out by
analyzing the performance of the method in terms of both the signal-to-interference-
plus-noise-ratio and resulting beam pattern. The achieved results, even though
preliminary, seem to confirm that the PSO-based approach satisfactorily works and it
generally outperforms previously proposed/state-of-art phase-only adaptive control

strategies.
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1 Introduction

In the last years there has been a growing interest in the design and application of phased-
arrays for remote sensing radar systems [1|, military and commercial communication
equipments [2]. Reconfigurable phased-array antennas, which are able to receive in a
specific and tunable direction by excluding other undesired signals coming from different
incidence angles, are commonly used in several fields such as airport surveillance, missile
detection and tracking [3]. Adaptive phased-arrays separate the desired signal from in-
terfering ones by continuously tuning the weights of the array in order to place nulls in
the beam pattern and to avoid the effects of interferences. In the scientific literature (see
[4][5] and the references cited therein), several methodologies for the adaptive phase-array
control have been proposed aimed at defining suitable strategies for the optimal synthesis
of array weights in terms of amplitude as well as phase. In most of them, the values of
the complex weights for placing suitable (i.e., the directions of the interferences) nulls in
the far field pattern of the antenna are determined by multiplying the quiescent weights
by the inverse of the covariance matrix obtained from the signals received at each ele-
ment of the array. Although mathematically elegant and fast, these strategies turn out
to be impractical or very difficult to be implemented because of the costs of the hardware
requirements. As a matter of fact, these solutions require an expensive receiver or corre-
lator at each element of the array. Unfortunately, several implementations have a single
receiver at the output of the summer. Thus, there is the need of an antenna customized
for the algorithm in hand. Moreover, the receivers require a sophisticated calibration. As
far as the use of variable analog amplitude and phase weights at each element of the array
is concerned, a phased array has usually only digital beam steering phase shifter at each
element and the amplitude coefficients are determined by a fixed feed network.

Consequently, in order to limit the cost of the hardware equipment by using commercially
available components, there is the need of operating in the digital domain by only acting

on the phase terms of the array elements. Such a choice turns out to be a cheap solu-



tion for a real implementation because it resorts to existing (i.e., non-customized) and
standard array architectures and components (digital phase shifters) without expensive
additions as adjustable amplitude weights or correlators. Within such a framework, effec-
tive approaches have been proposed where the control problem has been reformulated as
an optimization one and successively solved through an evolutionary strategy based on a
genetic algorithm (GA). In [6], the author describes an innovative method for the adaptive
phase-nulling of linear arrays where a GA adjusts some of the least significant bits of the
beam steering phase shifters to minimize the total output power. To face the problem of
the readaption of GA to new environments, once its population has converged, Weile et
al. [7] proposed an algorithm, which uses diploid individuals and dominance relation to
exploit learning and memory capabilities. As far as the exploitation of learning and mem-
ory capabilities are concerned, Massa et al. developed an enhanced evolutionary method
(indicated in the following as CGA) for linear [8] as well as planar geometries [9] where
customized operators and strategies have been implemented to allow fast convergence and
improved adaptation capabilities.

Recently, a new stochastic algorithm called particle swarm optimizer (PSO) [10] has
been shown to be a valuable addition to the electromagnetic design engineer’s tool-
box [11][12][13][14]. The conceptual bases of the GA and PSO rest upon two different
paradigms. Unlike GAs, the PSO is based upon the cooperation among the agents/trial-
solutions and not on their competition. In general, one advantage of the PSO over the
GA is its more “easy” implementation. As a matter of fact, a GA requires the definition
of a suitable strategy for the application of the genetic operators (e.g., the choice of the
crossover and mutation probabilities) as well as the choice of the best implementation
of the operator for the application in hand (e.g., tournament selection or proportional
selection, single-point crossover or multi-point crossover). On the contrary, the updating
equations for the PSO are sequentially applied at each individual and the process for
selecting the best operator is eliminated.

Moreover, other differences occur for the calibration of the control parameters. For GA,



the most important are the population size, the crossover probability, and the gene-
mutation and chromosome-mutation rates. For PSO, the swarm size, the inertial weight
and the acceleration terms. In general, manipulating these latter is easier than changing
various operators and their occurrence. Furthermore, there exist many comprehensive
studies on the effects of PSO parameters that makes their selection even easier (see [13][15]
and the references therein).

Another key-issue for the application of a PSO-based procedure to the phased-array real-
time tuning lies in its ability to control the convergence of the optimization as well as its
stagnation. Stagnation occurs in the GA when eventually all the agents possess the same
genetic code. In that case, the gene pool is so homogeneous that, as pointed out in [16]
and detailed in [13], although crossover and mutation rate can affect the convergence of
the optimization there is little or no possibility to explore other regions of the solution
space and only a lucky mutation can generate a different optimal individual thus avoiding
stagnation. Unlike GAs, the PSO allows a more significant level of control by decreasing
the inertial weight (x) during the optimization process. As a matter of fact, higher
values x produce relatively straight particle trajectories resulting in a good global search
characteristic. On the other hand, small values for x encourage a local searching and the
homogeneity of the swarm. Consequently, it is generally useful decreasing the inertial
coefficients during the minimization process to avoid a premature stagnation and to allow
a refined local search only at the end of the optimization [17][18].

Therefore, it might be profitable to evaluate the effectiveness of the PSO in dealing with
real-time control where GAs have found great success and widespread implementation.
For such a purpose, this paper proposes a computational approach based on a customized
PSO for the phased-array dynamic control. In general, standard versions of the particle
swarm deal with continuous real values where trajectories in the solution space are defined
as changes in positions on some number of dimensions. For this application, a binary
version of the optimizer is designed. In such a case, the particle position coordinates

encode the vertexes of a multi-dimensional hypercube and the trajectories are changes in



the probability that a coordinate will take on zero or one value.

The paper is structured as follows. In Section 2, a suitable cost function is defined
according to the Applebaum’s theory to recast the phased-array control as an optimization
problem. Then, a detailed description of the PSO-based computational procedure is
reported (Sect. 3). As far as the assessment is concerned, the results of a selected set of
numerical experiments, concerned with linear as well as planar structures, are shown in

Sect. 4. Final comments and conclusions are drawn in Sect. 5.

2 Mathematical Formulation

Let us consider an array of M elements equally-spaced on a planar lattice, as shown in

Figure 1. The desired received signal at the m-th element can be expressed as:

SE(H) =pa(t) PP m=1, .. M (1)

where 34 = 27” (UaTm, + ValYm + 2a2m), Ua = Sinly cosPy, vg = Sinby sindy, z4 = cosby,
and x,,, Ym, Zm are the Cartesian coordinates of the m-th element of the array. Moreover,
A is the free-space wavelength and 6; and ¢, are the polar coordinates that define the
direction of arrival (DOA) of the desired signal characterized by an envelope py(t).

By considering a real environment, a variable number of interfering signals S;(t), i =

1, ..., I also impinges on the array and they contribute at the m-th sensor with an additive

term
. 5 m=1,...,M
Sp (8) = pi (t) &P (2)
i=1,...1
where 3¢ = 27” (Wi + ViYm + 2izm) and p;(t) is the envelope of the j-th interference

centered at the same angular frequency w, of the desired signal. Moreover, desired as well
as interference signals are assumed to be narrow-band ones.

The description of the scenario under analysis is completed by considering a noise con-



tribution modeled with an additive gaussian process (AWGN) characterized by a power

£n-

Under these assumptions, the covariance matrices of dimension M x M related to the

desired (S <= d) or to the i-th interfering signal (3 <= 1), can be expressed as follows

m=1n=1

b= E {Z Zsz*<t>s§<t)} 3)

where E {.} indicates the expectation operator, and the asterisk * denotes the complex

conjugate. As far as the covariance matrix of the noise is concerned, it turns out to be

®, = p, 1M (4)

1M being the M-dimensional identity matrix.

Moreover, the covariance matrix of the undesired signal at the receiver is equal to
T
Oy =) i+, (5)
i=1
and its power contribution results [4]
1 T
pu = W B, (6)
where 7' means transpose and W is given by
W = {w,e’™; m=1,.., M} (7)

wy, being the m-th amplitude coefficient, while ¢, indicates the phase shift of the m-th
array element.

Furthermore, the power contribution of the desired signal at the receiver is given by



b = (1) (WU (0, ) ®

where U(0,, ¢4) is a vector whose m-th element is equal to Uy, (84, dg) = €.
Thus, according to (6) and (8), the signal-to-interference-plus-noise-ratio (SINR) turns

out to be

2
oW L P _ PA(t) | WU (64, ¢a)|
W= = wrow

9)

and its maximization, with respect to W, represents the goal of any adaptive control
procedure. Unfortunately, since @, and p,(t) are not known and they cannot be directly
measured, (9) is not available. However, as shown in [7], the problem can be recast as the

maximization of a computable cost function f (W)

_ |WTU(4, ¢a) |2
- wrow

fW)

where &, = &, + Zle ®; + &, is a quantity measurable at the receiver.

Because of the time-varying nature and complexity of (10), it is convenient to address
the problem by means of a suitable global optimization procedure. Towards this end, an
innovative strategy based on a new paradigm in the electromagnetic community will be

presented in the following section.

3 The optimization approach

The PSO is a multiple-agents optimization algorithm developed by Kennedy and Eber-
hart [19][10] in 1995 that imitates the social behavior of groups of insects and animals

such as swarms of bees, flocks of birds, and shoals of fish. The standard PSO implemen-



tation considers a swarm of P trial solutions (called particles). Each particle flies in the
solution space by improving its position according to suitable updating equations. on the
basis of information on each particle’s previous best performance and the best previous
performance of its neighbors. For real-number spaces, the trajectories of the particles are
defined as changes in the positions on some number of dimensions. In the binary version,
trajectories are changes in the probability that a coordinate will take on a zero or one
value [10][20].

The following steps summarize the application of the binary PSO strategy by focusing
on its customization to the phase-only on-line adaptive array control. Let us consider a

generic timestep (¢) corresponding to a fixed interference scenario.

e Step 0 - Coding. Since phased-arrays are taken into account and the m-th element
of the array is controlled through a L-bit digital phase shifter, the p-th binary trial

solution

¢={th1=1,..,Lym=1,..,M} p=1,..,P (11)

codes a sequence of quantized phase values ¢ ., m=1,...,. M

¢€n <¢m¢;¢EL _stlmm) Z2l 1 + ¢mm (12)

where ¢4, and ¢,,;, are the maximum and minimum range bounds corresponding
to the parameter ¢,,, and P! is the binary bit in the I-th place along the encoded

representation of the ¢? parameter.

With each “position” vector ¢” is associated a velocity vector v” = {vf,;l; l=1,..,L;
m =1, ..., M}, which models the capacity of the particle to fly from a given position
g to another position §Z+ | In a successive iteration of the space-solution sampling
process. Moreover, each v represents the probability of ¢P! taking value 1. If v

is higher, P! is more likely to assume the value 1, and lower values favor the 0



choice.

Step 1 - Initialization. At the beginning of the maximization process (k = 0)
and according to the PSO working strategy, the positions of the P particles of the
swarm [y = {_g; p=1, ...,P} as well as their velocities Vo = {vh; p =1, ..., P} are

randomly generated according to the following rules

1 if pPly>05 1 if o®' >05
,l m,O - ,l _ m,O —
@fn,o = ) Urpn,O = (13)
0 otherwise 0 otherwise

! ! : e
where pP”’, and o?”", are random numbers drawn from a uniform distribution between

0 and 1.

Step 2 - Fitness evaluation. The degree of “optimality” of each particle is eva-
luated at the k-th iteration by computing its cost function value ﬁ =f {K (Qi) }
Moreover, the best position reached up to now by the p-th particle as well as
the optimal position in the overall swarm are stored in the "previous best” par-
ticle _i = arg (maxhzlj_“,k [f {E (QZ) }]) and in the ”global best” particle ¢, =
arg (maacp:l,___,p [f {E (§Z> H ), respectively.

Step 3 - Iteration updating. The iteration index is updated, k = k + 1.

Step 4 - Termination criterion. If the maximum number of iterations K (ad-
missible in a timestep t) is reached (k = K) or if the optimal fitness is under a given
threshold  (f {W (s,) } < n), then the optimization process is stopped and g, is as-
sumed as the problem solution. Moreover, in order to improve the “reaction” of the
algorithm to environmental changes occurring between consecutive timesteps, fully
exploiting the similarities among the scenario conditions at different timesteps, the
optimal particle is stored in a finite-length buffer (B being the buffer length) whose

elements are updated at each timestep ¢ as follows: ’)/BJ =g, and ’be =Yy 1J ,
—Bly = S R S P

10



b=1,..., B. These B trial solutions are evaluated during the optimization when the
reliability of the system (in terms of SINR) degrades and according to the learning

strategy described in [9)].

Otherwise, the Step 5 is done.

e Step 5 - Velocity updating. The velocity of each particle is updated according

to the following relation:

. p,l
Umax Zf Un;,k > Umag
pal J— - y4 !
Um,lc - —VUmazx Zf Um,,,k < —Umaz (14)
p’l y
Uy k otherwise

where v, is a constant clamping value [10], which is similar to the mutation rate in
GAs. Unlike continuous-valued PSO, where increasing the clamping value enlarges
the region of the solution space explored by a particle, in the binary version, a
smaller v,,,, allows a higher mutation rate. In general, v,,,, is set at 4.0 to ensure

that there is always some chance that P will change state. Moreover,
il it il ) 1
Uy = XUy T a1p1 { i~ ‘an,k} + azpe {din - (an,k} (15)

where § = arg (maxbzl,___,B [f {E (%) H), p1 and p; are two positive random
numbers drawn from a uniform distribution with a predefined upper limit often set
so that p; +p, = 4.0; a; and ay are constants called cognition and social acceleration

[15], respectively.

e Step 6 - Position updating. The particle position is then updated as follows

1 af gt < S (v
e = o <5 (1) (16)

0 otherwise

11



where S (.) indicates the sigmoid function

1\ 1
5 (Ufnl’k> 14 exp (—Uf,;fk) o

Therefore, the probability that g)fnlk = 1is equal to S (vf,;fk> and that @f;;l’k =0

is equal to [1 - S (vp ot )] Moreover, the probability that goﬁ;l,k changes its value

m,k
m,k

(0 - 1or1— 0) turns out to be equal to {S (vr’;llk) [1 -8 <vp’l )} }

Then go to Step 2.

4 Numerical Results

In this section, the capabilities of the proposed PSO-based array control procedure will
be assessed by presenting the results of a selected set of numerical experiments.

In the numerical validation, the proposed approach has been evaluated by considering
linear (Section 4.1) and planar (Sections 4.2-4.3) arrays working in a realistic scenario
characterized by a background Gaussian noise of 30 dB below the desired signal (coming
from ; = 0°) and interferences of amplitude 30 dB above the desired signal uncorrelated
with each other, the desired signal, and the noise.

Moreover, the obtained results have been compared with those obtained with other state-
of-the-art procedures: (a) the optimal Applebaum approach [4] (where array amplitudes
and phases are simultaneously tuned), (b) a modified version of the Applebaum approach
where the Applebaum’s phases are quantized (DPA), (¢) the customized version of a GAs-
based control strategy proposed in [21] (CGA), and (d) the Least-Mean-Square algorithm
[5] (LMS).

Whatever the phased-array control method, the array weights have been set to w,, = 1,
m =1, ..., M, while the phase coefficients have been iteratively tuned in the range ¢, =
0° and @p,q, = 360° making use of digital phase shifters characterized by Ny;; = 6 as in
[7]-

12



As far as the multiple-agents control strategies are concerned (GAs and PSO), a popula-
tion of P = M trial solutions has been considered and K = 20. Moreover, the following
configuration has been heuristically (and according to the guidelines suggested in the re-
lated literature [10][13]) assumed for the PSO parameters: a; = ay = 2.0, B = &, and x
linearly varying from 0.9 to 0.4 over the course of the optimization run. As an example,
Fig. 2 shows the results (in terms of averaged SINR over T' = 100 timesteps) of the
calibration process of x when dealing with the geometry and scenario described at Sect.
4.1.

On the other hand, the same parametric configuration chosen in |9] has been adopted for

the GA-based procedure.

4.1 Linear Array

The first test case deals with the run-time optimization of a M = 20 elements half-
wavelength-spaced linear array. During the repeated executions (since the results ex-
pressed in terms of SIN R are based on the execution of the algorithm for 50 independent
realizations of the noise and interference stochastic processes), the directions 6; of jam-
ming signals have been supposed to be random variables uniformly distributed with an
arrival-time modeled through a Poisson random model [22| characterized by A = 1 and
with a life-time of two time-steps [8] (see Fig. 3 where a representative example of a
stochastic realization of the interference arrival process is given). In particular, Fig. 3(a)
- red crosses - shows a sample of arrival angles of interfering signals at each timestep. For
completeness, the number of interfering signals received at each time-step is depicted in
Fig. 3(b).

The behavior of the SINR (computed by calculating a running average over 50 past
timesteps) as a function of the timestep index is shown in Figure 4(a) where the results
obtained with the PSO-based procedure are compared with those of others state-of-the-
art methods. As can be observed, the plots point out the effectiveness of the PSO-

based procedure. The average SINR over all generations and simulations is equal to
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av {SINR}| pso = 19.61dB for PSO and av{SINR}|;5, = 14.93dB for CGA-method
(Tab. I). This difference of about 4dB is quite significant, especially given that most
points of the two graphs in Fig. 4(a) fall in the range [7dB, 22dB] (a 15dB dynamic
range).

For sake of thoroughness, Figs. 4(c)-(e) give some indications on the synthesized far-field
patterns starting from the quiescent pattern displayed in Fig. 4(b). These results refer
to different timesteps where representative jamming configurations occur. More in detail,
such figures are concerned with the following scenarios: two jamming signals at #; = —28°
and 6, = 30° [t = 396 - Fig. 4(c)|, a single interference at #; = 68° [t = 604 - Fig. 4(d)],
and three jammers at 6, = 40°, 6, = —86°, and 03 = 83° [t = 802 - Fig. 4(c)|. In general,
multiple-agents approaches (CGA and PSO) quickly place nulls in the far-field pattern
(near or at the same angular position where the interferences impinge on the array) only
slightly perturbing the main lobe thus outperforming other deterministic or sub-optimal
techniques. Moreover, the improvement in the SIN R results from the deeper nulls which

are placed by the PSO-based approach.

4.2 Planar Arrays

The second experiment, is concerned with a M = 10 x 10 half-wavelength-spaced planar
array whose geometry is the same as that analyzed in [9]. Concerning the angular coordi-
nates of the jammers, they have been modeled by considering the same stochastic model
of the previous example and Fig. 3(a) shows an example of their distribution versus the
timestep index ¢ (¢ - green crosses, 6 - red crosses).

In order to give some information on the results of the comparative study, Figure 5 shows
the behavior of the running average of the SINR during 7' = 250 timesteps. As shown
in Table II, the PSO-based approach generally outperforms other techniques. More in
detail, the achieved enhancement can be quantified on average in 5dB over the CGA-
based procedure and of about 10dB in comparison with the DPA sub-optimal approach.

Such an event can be better appreciated by observing the resulting far-field patterns.

14



As representative examples, Fig. 6 shows some samples of the elevation beam patterns
at various timesteps: (a) ¢ = 55 [the jammer impinges on the array from the direction
(01 = —59°, ¢, = 173°)], (b) t = 105 [the jammer impinges on the array from the
direction (6; = 43°, ¢; = 132°)|, and ¢t = 205 (¢)-(d) [two jammers impinge on the array
from the directions (6 = —39°, ¢; = 8°) and () = 46°, ¢; = 60°)]. By comparing
the plots relating to different methodologies and as expected from the indications drawn
from Fig. 5, it turns out that the PSO-based procedure is able to place nulls exactly in
correspondence with interfering signals (as pictorially shown in Fig. 6 where a color-level
representation of the synthesized beam patterns is displayed), while other methodologies
(without considering the optimal synthesis) generally make an error of some degrees with
respect to the correct position [e.g., Af|,q, = 5° and AB)|;,,s >~ 9° - Fig. 6(a)] or reduce
the null depth [see Fig. 6(b)].

Moreover, by comparing the quiescent beam pattern [Fig. 7(d)| and those synthesized
with the PSO at various timesteps |Figs. 7(a)-7(c)|, it is interesting to note that even
though the interferences impinge on a high side-lobe of the original pattern the remaining
part of this is preserved after the array-control synthesis.

To further assess the effectiveness of the proposed approach in dealing with planar con-
figurations, the last experiment deals with the elliptical geometry of M = 160 elements
proposed in [23] and shown in Figure 8.

Once again, the feasibility and capabilities of the PSO-based approach are confirmed as
pointed out by the plots of the running average SIN Rs shown in Fig. 9 and quantified
on average in Tab. III.

For completeness, Fig. 10 shows the beam patterns synthesized by using the PSO strategy

as well as the quiescent one |[Fig. 10(d)].
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5 Conclusions

In this paper, the feasibility and effectiveness of the application of an innovative multiple-
agents technique to the adaptive and continuous optimization of antenna arrays controlled
with only digital phase shifters have been investigated. Starting from an assigned qui-
escent pattern and by assuming some a-priori knowledge on the desired signal (i.e., the
direction of arrival), the proposed approach demonstrated a non-negligible improvement
over state-of-the-art techniques.

The approach is based on the Applebaum’s theory and it recasts the control-problem
as an optimization one to be iteratively solved through the maximization of a suitable
cost function. Towards this end, a new evolutionary paradigm has been adopted and
customized (i.e., the binary particle swarm optimizer) since the particle swarm optimizer
was generally used in continuous spaces and, at best of our knowledge, never in the binary
version in presence of a varying scenario. Thus, a suitable strategy has been implemented
taking into account the need of an enhancement in the “memory” features of the original
algorithm for dealing with a time-varying and complex scenario.

Future work will be aimed at further assessing the capabilities of PSO-based procedure
in dealing with different scenarios, such as multi-path interference, and with different
background noise models for enabling a timely and effective development of smart-sensors

and smart-environments in the framework of applied sciences.
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Figure Captions

e Figure 1. Problem geometry.

e Figure 2. Calibration Process () - Linear Array. Averaged SINR over T = 100

timesteps for different values of Xmae (Xmin = 0.4) and Xumin (Xmaz = 0.9).

e Figure 3. Interference Scenario. (a) Distribution of angles of arrival of interfering
signals arrival versus timestep number and (b) plot of the number of interference

signals per time-step life-time.

e Figure 4. Adaptive control of linear arrays (M = 20). (a) Running average of
the SINR versus k obtained by means of the Applebaum’s method (solid line),
the DPA method (dashed line), the LMS approach (point-dashed line), the CGA-
based technique (dotted line), and the PSO strategy (small dashed line). Quiescent
elevation beam pattern (b). Samples of synthesized elevation beam patterns at (c)

t =396, (d) t =604, and (e) t = 802.

e Figure 5. Adaptive control of planar arrays (Square array - M = 100). Running
average of the SINR versus ¢ obtained by means of the Applebaum’s method (solid
line), the Applebaum’s method with discrete phase-coefficients (DPA) (dashed line),
the LMS approach (point-dashed line), the CGA-based technique (dotted line), and

the PSO strategy (small dashed line).

e Figure 6. Adaptive control of planar arrays (Square array - M = 100). Samples
of synthesized elevation beam patterns at (a) ¢ = 55 (¢ = 173°), (b) t = 105

(¢ =132°), and t = 205 (¢) ¢ = 8% and (d) ¢ = 60°.

e Figure 7. Adaptive control of planar arrays (Square array - M = 100). Samples of
synthesized beam patterns at (a) ¢t = 55, (b) t = 105, and (c¢) ¢ = 205. Quiescent

beam pattern (d).

e Figure 8. Elliptical array layout (M = 160).
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e Figure 9. Running average of the SINR versus ¢ obtained by means of the Ap-
plebaum’s method (solid line), the DPA method (dashed line), the LMS approach
(point-dashed line), the CGA-based technique (dotted line), and the PSO strategy
(small dashed line).

e Figure 10. Adaptive control of planar arrays (Elliptical array - M = 160). Samples
of synthesized beam patterns at (a) ¢t =5, (b) t = 155, and (¢) t = 205. Quiescent

beam pattern (d).
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Table Captions
e Table I. Adaptive control of linear arrays (M = 20). SINR statistics.

e Table II. Adaptive control of planar arrays (Square array - M = 100). SINR

statistics.

e Table III. Adaptive control of planar arrays (Elliptical array - M = 160). SINR

statistics.
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Optimal
49.98
0.006

PSO
30.03
9.74

CGA
25.59
16.87

DPA
21.24
9.7

LMS
15.24
16.32

av {SINR}
OSINR [X 10_1]

Tab. II - M. Donelli et al., “An Innovative Computational Approach based on ...”
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Optimal
52.02
0.005

PSO
35.69
59

CGA
30.17
16.43

DPA
20.07
5.02

LMS
19.78
8.30

av {SINR}
OSINR [X 10_1]

”

Tab. III - M. Donelli et al., “An Innovative Computational Approach based on ...
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