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Inversion of Phaseless Total Field Data using a Two-Step

Strategy based on the Iterative Multi-Scaling Approach

Gabriele Franceschini, Massimo Donelli, Renzo Azaro, and Andrea Massa

Abstract

In this paper, a new approach for the quantitative electromagnetic imaging of un-
known scatterers located in free-space from amplitude-only measurements of the
total field is proposed and discussed. The reconstruction procedure splits the prob-
lem into two steps. The method is based on the use of an inverse source algorithm to
first complete the scattering data by estimating the distribution of the radiated field
in the investigation domain. The object’s function profile is then retrieved from the
phaseless data via an iterative multiresolution procedure integrated with an effective
minimization technique based on the particle swarm algorithm. Numerical examples
are provided to assess the effectiveness of the whole two-step strategy in the presence
of synthetic noise-corrupted data as well as in dealing with experimental datasets.

Comparison with full-data and “bare” approaches are reported, as well.

Index Terms - Inverse Scattering, Electromagnetic Imaging, Phaseless Data, Integrated

Multi-Scaling Approach, Particle Swarm Optimizer.



1 Introduction

In the last years, the interest in microwave imaging techniques is growing thanks to their
sensitivity to the dielectric properties useful for detecting and reconstructing unknown
objects in a non-invasive fashion. As a matter of fact, the reconstruction of the geometrical
and physical characteristics of an unknown object is a key-issue in several applications
concerned with non-destructive tests and evaluations [1][2| in the framework of applied
geophysics |3]|4], biomedical and industrial diagnostics [5|-|8] or subsurface sensing [9].
Nevertheless, although the effectiveness of these techniques for diagnostic purposes makes
them very appealing, several open issues still remain partially solved or unsolved. Such
an event gives rise to some doubts on the possibility of their large diffusion because of
their intrinsic complexity.

From the scientific literature (see [10] and the references cited therein for a detailed
overview), it is well known that the main drawbacks are due to the ill-posedness and the
non-linear nature of the arising inverse scattering mathematical models.

On the other hand, for achieving a suitable resolution level in the reconstruction of the
object profile, a non-negligible amount of information is necessary. Towards this pur-
pose, multi-illumination [12]| and/or multi-view |[13| and/or multi-frequency systems |14]
are generally used, but the information collectable from the scattering experiments still
remain limited [10] to an upper bound that depends on the geometrical characteristics of
the imaging system [15] even though some a-priori information (when available) on the
scenario under test [16][17] or a set of constraints [18] on the retrievable dielectric profile
are imposed. Therefore, various multiresolution strategies able to distribute in a non-
uniform fashion the unknowns inside the scattering domain have been recently proposed
(see 9], [19]-[25] for a detailed analysis) for overcoming the mismatch between number of
scattering data and set of unknowns.

Besides the intrinsic drawbacks concerned with the mathematical model of an inverse
problem, there are others practical issues related to the realization of low-cost and effective
acquisition setups. As a matter of fact, while the amplitude measurement is not a critical
point, the measurement of the phase of the scattered field turns out to be very difficult

or very expensive in several applications and/or conditions. Although from a theoretical



point-of-view such a measure is not complicated at microwave and lower frequencies, the
use of amplitude-only data notably simplifies the imaging setup and it allows a non-
negligible reduction of costs.

On the other hand, by considering frequencies beyond tens of gigahertz, the direct mea-
surement of the distribution of the phase of the electromagnetic field becomes harder and
harder. Moreover, holographic and interferometric techniques, usually used in optical ap-
plications [26]|27] for determining phase information, are experimentally demanding and
often require an expensive post-processing of the measured data.

In order to avoid such drawbacks, some alternatives approaches have been proposed. Two

main paths of research seem to be usually taken into account:

e the direct application of a reconstruction algorithm for the processing of phaseless

field data (Single-Step Strategy) (see for example [28]-[31]);

e the splitting of the phaseless-data reconstruction into a two-step process (Two-Step
Strategy) where the first step deals with a phase-retrieval problem for complet-
ing the amplitude-only inversion data and the latter is concerned with a standard

reconstruction from complete field data (see for example [32][33]).

More in detail, in the framework of approximate methodologies for weak scatterers, Maleki
et al. [28] proposed a single-step tomographic reconstruction procedure for determining
the complex-valued index-of-refraction of inhomogeneous objects from the far-field inten-
sity patterns generated by the scatterers in a sequence of scattering experiments. The
same authors applied in [32] an alternative two-step methods based on an iterative phase-
retrieval algorithm to extract the phase of the scattered field from the measurement of
the amplitude of the total field and from a-priori information on the object support.
Unlike methods based on Born approximations, a complete single-step approach has been
presented by Takenaka et al. in [29] for the reconstruction of the refractive index of
unknown objects from intensity-only far-field data. Although based on a complete formu-
lation of the scattering problem, likewise the approach in [32], such an approach requires
some a-priori knowledge on the object support and in particular on its outer boundary.
Still in the framework of single-step nonlinearized techniques, an iterative approach based

on a memetic algorithm has been described in [31] dealing with dielectric multilayer
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elliptic cylinders has been used. On the other hand, in [30], the minimization of the
two-component discrepancy function is performed by means of the binary-constrained
modified gradient method for detecting buried cylindrical homogeneous targets.

As far as two-step strategies are concerned, Isernia et al. proposed in [33| an innovative
algorithm for better controlling the non-linearity with respect to single-step strategies
through a convenient exploitation of the theoretical results on the inversion of quadratic
operators.

The approach presented in this paper has several common and complementary features
with respect to the above techniques. As a matter of fact, the proposed strategy is a
two-step procedure where, nevertheless, the first step is not aimed at completing the
amplitude-only scattering data, but at determining the input data for the so-called state
equation for phaseless inputs. Furthermore, the second step is not concerned with a classi-
cal full-data inverse scattering problem, but it deals with a phaseless-data reconstruction
through a suitable multi-scaling algorithm in order to fully exploit the limited amount
of collectable information. To the best of the authors’ knowledge, such a two-step re-
trieval process is completely innovative in the framework of intensity-only methods and
it requires only the measurement of the scattering data in a limited number of locations
in observation domain notably simplifying the collection-data process both in terms of
measurement setup and acquisition time.

The paper is organized into four sections. The geometry of the problem and the general
architecture of the proposed two-step strategy are described in Section 2. The results
of a selected set of experiments are discussed in Section 3. Finally, Section 4 presents a

discussion and some conclusions.

2 Mathematical Formulation

Let us consider a classical tomographic microwave imaging problem where an unknown
cylindrical object located in an inaccessible investigation domain D,,, is illuminated at
a fixed working frequency f by a set of V' T'M-polarized incident electromagnetic waves

characterized by electric fields E} .(r) = E}

=inc inc

(x,y)z, v=1, ..., V (Figure 1).

For a Full-Data (FD) formulation, the scattered fields £V, ,, = B, —E ., v=1,...,V, are
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collected in M ™ measurement locations [(zm(v),ym(v)), m(v) =1,...,M(v),v=1,..V]|
placed in an observation domain D, external to D;,, [13] and the inversion process is

aimed at reconstructing the object function 7(z,y) defined as follows

o(z,y)
27 feg

T(x,y) = ler(z,y) 1] = J (#,9) € Dy (1)

e, and o being the relative dielectric permittivity and the electric conductivity, starting

from the knowledge in amplitude and phase of E, .(z,y), (,y) € Dinp, and EZ, . (xm(v), ym(v)),

(xm(v),ym(v)> € Dyys. Towards this purpose and according to the description of the scat-

tering phenomena in terms of the Fredholm formalism |?|, the following equations are

formulated and solved

B2ty () Uiy ) = —jkzg / /S 7(@,y ) Epy(2!, v ) H? (kod) da'dy’ (Zmw)s Ym(w) ) € Dobvs
(2)

v v N k2 v
Blo(a.y) = Eyla, y) 47 [ [ 7@ o) B!, ) H (kod) da'dy (z, y) € Diny (3)

where kq is the free-space wavenumber, Héz) is the 0-th order second-kind Hankel function,
and d = \/(1' — )2+ (y—vy')2

Unlike FD approach, let us consider a “phaseless data” (PD) inversion where only the

amplitude of the total field in the observation domain,

EZ}ot (xm(v)aym(v)) ) (xm(v)uym(v)) S
Dops, m(v) = 1,..., M(v), v = 1,...,V, and of the amplitude of the incident field in N
locations of the investigation domain, |E? . (%, yn)|, (Zn,Yn) € Dip, n = 1,..., N, are

available. Under these hypotheses, the system of equations (2)-(3) is modified as follows

B2 (Tm) Ym) )| = |Eine (Tmw)s Yy ) — P oy B (o, gV HE (hodongey) da'dy’

(xm(v)a ym(v)) € Dops

(4)



1 ()] = Bl ) + 50 [ [ 7, ) B ) B (o) d'df | (2100) € D
)

As can be noticed, while the mathematical formulation of the PD problem does not
notably differ from that concerned with the FD case, certainly the use of intensity-only
data turns out in a further reduction of the collectable information on the scenario under
test with respect to that already limited in the FD situation. Therefore, even more so
in the case of phaseless data, the use of an adaptive multi-resolution strategy seems to
be even more mandatory in order to fully and effectively exploit the limited amount of
available information for achieving a suitable accuracy in the reconstruction. Towards
this end, a customized version of the iterative multi-scaling approach (IMSA) can be
profitably used.

The application of the IMSA approach to phaseless data requires at each step s (s =
1,...,.S) of the multi-step procedure the minimization of the following multi-resolution

cost function™

o) ¢ (ZE”(’“)’ y"(r)) s Bt (ZEn(T)’ yn(?‘)) ) = ¢(5()Zta + q)g?t)ate

(6)

V. M(v)

Z Z ‘ |E:0t(xm(v)’ym(v))‘_|€1’5Uot(xm(v)7ym(v))‘ |2

s v=1m(v)=1
(I)(Dgzm = ( ) % M(v

Z Z |EL (2w ym(v))\

v=1m(v)=1

1%
Z Z ||E;)n6(m”(r)’yn(r))|_
Z Z | B (@nr), yn(r))|

v=1r= ln(r)

é.;)nc(wn('f)’ y”(r)) | |2

where

(1) Such a discretized form has been obtained by applying the Richmond’s [34] procedure to the
system of equations (4)-(5).



s N(r)
é-:ot (xm(v)v ym(v))‘ = Ezvnc (ajm(v)v ym(v)) + gl (Z)_l {w,(j()r) [T (xn(r)7 yn(r)> Ez}ot (xn(r)7 yn(r)> Gm(v),n(r)} }‘
(7)
s—1 N(r)
Ene (Tntr), ynm)\ = |Eby (a0, o)) — g . {wé?Z) |7 (240> va) Bt (%o Yaw)) G| }‘
=0g(t)=

(8)
)

and wffm is the weighting function defined as
) 0 ifr# sand (xn(T), yn(r)) ¢ D©

(9)
1 Zf (xn(r), yn(r)) e D®

r being the index of the resolution level and D the Region of Interest (Rol) at the
s-th step defined on the basis of the information collected by the reconstruction of the
(s — 1)-th iteration according to the procedure detailed in [22].

However, it should be noticed that such an implementation requires the knowledge of
|E? . (x,y)| at different level of resolution with a step-by-step decreasing of the sampling
interval. From a practical point of view, the measure of |E?, . (z,y)| is generally carried
out in a limited number of measurement points |(x,,y,), n = 1,..., N| in D, although
theoretically it could be performed in whatever location of the investigation domain.
Nevertheless, the experimental system (and in particular the electromagnetic sensors) is
moved by means of a mechanical apparatus with some tolerances in the positioning (which
strongly depends on the application, but generally it is of the order of millimeters [5]).
Therefore, a reduced sampling distance between adjacent positions in D;,, would result
in an inaccurate measure of the field and, consequently, each measured sample would be
corrupted by a non-negligible error.

Because of such a drawback, there is the need of defining a suitable model of the radiating
source in order to apply an iterative multi-resolution strategy and thus for computing the
radiated field in whatever position of the investigation domain. Towards this end, avoiding
the measurement of |EY . (T, Yn)|s (Tn,Yn) € Diny, some alternative information on the
radiated field are necessary. Therefore, let us suppose that the knowledge of the incident
field radiated by the electromagnetic source is available both in amplitude and phase in

the observation domain, £ . (xm(v),ym(v)), (xm(v),ym(v)> € D,ps. Such an assumption is

8



generally verified in real situations as confirmed by the laboratory-controlled experiments
carried out at the Centre Commun de Ressources Micro-ondes (CCRM) in Marseille
[35][36]. As a matter of fact, such an evaluation can be performed only once and off-line
(i.e., non during the imaging process of an unknown object) for each measurement system
(i.e., the measurement setup constituted by the illuminating source and the receivers) and
in a non-so-expensive and accurate fashion for a reduced number of adequately-spaced
locations. Furthermore, unlike the measurement in D;,,, the measurement locations in
D,ps are not so close the one to the others and they are in a small number if chosen
according to the “golden rule” defined in [15].

According to these idea, the inversion process turns out to be carried out through the

two-step strategy schematized in Fig. 2 and detailed in the following.

Step 1 - Source Synthesis

Let us assume that, because of the complexity and difficulties in collecting reliable and in-
dependent measures in a dense grid of points, the incident field is only available at the mea-
surement points belonging to the observation domain [E?, . (mm(v), ym(v)>, (xm(v), ym(v)) €
Dps]. Therefore, in order to apply the constraints stated through the “State” equation
(5) and before facing with the data inversion, it is mandatory to develop a suitable model
able to predict the incident field radiated by the actual electromagnetic source in the
investigation domain Dy,

Towards this aim, let us consider the so-called Distributed-Cylindrical- Waves Model (pro-
posed and validated in |37 when dealing with experimental) where the actual source is
represented by a linear array of W equally-spaced line-sources, which radiates an electric

field given by

_ ]{32 w
EY =0 A (2w, yo) H (kod,y 1
mc(xv y) 87Tf50wZ:1 (.Z’ Y ) 0 ( 0 ) ( 0)

where A(z,, y,) is the unknown coefficient related to the w-th element of the array.
Such a model is completely defined when the set of unknown coefficients, A = {A(zw, yu),

w=1,...,W}, is determined starting from the knowledge of the incident field measured



in the observation domain through the solution of the following problem

H—ch —znc

A, =arg{ming

(11)
1 H—mc”

where E7 is an array of the measures collected for the v-th view at M (v) measurement
points of the observation domain whose m(v)-th element is equal to EY,. (xm(v), ym(v));
E;’nc is the array of numerically-computed values of the incident field in the observation

domain given by EY = [G] A, [G] being a W x M(v) matrix whose generic element is

equal to Giy(v)w = Swfeo Ho (kOdm(v),w)'

Unfortunately, (11) involves the limitations of an inverse-source problem, that is [G] is ill-
conditioned and the solution is usually non-stable and non-unique. In order to overcome
such a drawback, the solution of (11) is recast as the inversion of the linear operator
[G] through a SVD-decomposition [38] by looking for the optimal configuration A, that
provides the optimal matching between measured and numerically-computed values of the
incident field in the observation domain

zleH{ [ eV E,

Aopt = arg { miny ||2 (12)

1 ||—7,nc

where 0, and O, are isometric matrices, (*) denotes the adjoint operator, and [I',] is a

diagonal matrix whose positive diagonal elements are the singular values of [G] [10].

Step 2 - Object Function Reconstruction

Following the general architecture of the multi-step procedure detailed in 21| for the FD
problem, the IMSA is applied to the phaseless data problem by repeating the following

procedural operations until the termination conditions hold true [22]:

e Data Computation
Starting from the modeling of the electromagnetic source derived at the “Step 17
with the determination of A,,, compute ’ inc ( n(r) yn(r))’, (xn(r), yn(r)) € Dipo,
n(r)=1,..,N(r), r = s, through Eq. (10);

e Retrieval Process

10



Minimize the multi-resolution cost function ®©) defined as follows

6(8) = (I)(Dsgzm + &)gt)ate (]‘3)

being

s N(r)

1%
YD D Be(waty vnm) |-

F(s) _ v=lr=ln(r)=1
(I)State - Vv s N(r)

YD Ewae )|

v=1 T:1n(r):l

é.;)nc(wn('f)’ y”(r)) | |2

by considering the multiresolution representation of the unknowns at the s-th step

{T (l’n(r), yn(r)) s Efot (In(r), yn(r)>; n(r) = 1, ,N(’f’); r = 1, ey, S U= 1, ,V}

and according to the iterative PSO-based approach |11].

3 Numerical Validation

This section is aimed at presenting the results obtained during the testing and numerical
validation of the two-step reconstruction strategy. After a short overview of the char-
acteristics of the measurement setup and of the scenario conditions that we followed in
our study, several experiments are presented in order to: (a) assess the effectiveness and
current limitations of the proposed PD approach in various environmental conditions and
scatterers configurations; (b) compare the obtained results with those reached exploit-
ing the information contained in both amplitude and phase of the scattered field (FD
approach) both qualitatively, in terms of dielectric profile maps, and quantitatively, in
terms of the reconstruction errors as defined in [21]. Towards these purposes and in order
to better understand and appreciate the usefulness of the implemented phaseless-data
strategy, two meaningful classes of test cases are considered. The first one deals with syn-
thetic examples where scattering data are corrupted with different levels of an additive
Gaussian noise (defined as in [22]) for evaluating the robustness of the approach. While

the second one is concerned with some of the experimental datasets of the “Marseille”

database [35][36].
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3.1 Synthetic Assessment

The first step of the numerical assessment deals with synthetic test cases for which scat-
tering data are user-defined (thus controlled) as well as the sources of noise.

In all the following examples, the unknown scatterers belong to a square investigation
domain of side L;,, = 2 A and they are illuminated by plane waves impinging from V' = 32
equally-spaced directions [0" = 27r%, v =1,...,V]. The observation domain is a circle
Roys = 5 A in radius and the scattering data are computed in M(v) = 32, v = 1,...,V,
measurement points equally-distributed along D .

As far as the PSO-based method for the “retrieval process” is concerned, the following
configuration of parameters has been adopted according to the guidelines in the related
literature [39][40] and to the heuristic study carried out in [11]: w = 0.4 (constant inertial
weight), I = 125U (swarm dimension, U being the number of problem unknowns), and
C) = Cy = 2.0 (acceleration coefficients). Moreover, the IMSA has been used with the
parameters setting defined in [22].

In the first example, the scatterer is a centered (z,ef = Tror = 0.0, Yref = Yror = 0.0)
homogeneous dielectric (7,.f = 1.0) square cylinder L,.; = Lo = % sided. After solving
the “source-synthesis” step, the array coefficients turned out to be distributed as shown
in Fig. 3. Such a configuration can be considered optimal in terms of the matching
with problem data as requested by (12). In order to give an idea of the fitting between
“measured” and estimated data, Figure 4 shows the values of the amplitudes and phases
of the radiated-fields in D, for v = 1. As can be seen, an accurate reconstruction is
achieved both in amplitude |Fig. 4(a)| and phase |Fig. 4(b)]. Similar conclusions hold
true for all incidence angles.

Starting from the estimated model of the source, the “object-function reconstruction” has
been carried out applying the iterative multi-scaling approach. In Fig. 5, processing
results at various stages through the multi-step reconstruction are shown. As a reference,
the ideal reconstruction is displayed in [Fig. 5(a)]. For comparison purposes, the profile
estimated with the FD approach is reported in Fig. 5(e), as well. As it can be observed,
the scatterer appears fairly well retrieved by the IMSA, be this inversion led with or

without the phase information (Tab. I). The corresponding object-function maps illustrate
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that, whatever the approach, both a good location and shape retrieval are obtained. The
only difference comes from the fact that the PD inversion slightly shifts the location of
the object with respect to its real position as confirmed by the value of the localization
error (p(PD)J

= 2.80 vs. p(FD)J s = 0.02). In order to further confirm the similar

S=3

behavior of the two approaches, let us consider the distribution of the scattered field in
the observation domain (Fig. 6) as a similarity index.

For completeness and in order to point out the effectiveness of the optimization approach
based on the PSO algorithm [11], Figure 7 gives an indication of the fitting between
actual and estimated data both in Dy |Fig. 7(a)| and in the Rol at different steps of
the reconstruction process [e.g., (r = 0) indicates the locations in D;,4 that belong to the
Rol estimated at (s = 1)].

The last experiment of this synthetic test case is aimed at evaluating the robustness of
the two-step PD approach to the presence of the noise in the inversion data. In order

to benchmark how the “two-step” strategy adapts to a changing environment, different

amounts of gaussian noise [22]| have been added to ‘Efot (xm(v), ym(v)> , (xm(v),ym(v)> €
Dops.

Figure 8 shows the evolution through different signal-to-noise ratios (SN Rs) of the error
indexes. The SN R has been varied between 5dB and 40dB and 100 realizations were
averaged for each value, which constitutes a reasonable confidence margin for a statistic
evaluation. As expected, the F'D approach yields the best results through the whole
signal-to-noise domain. It is also noticeable that the differences between F'D and PD
reduces when the noise level increases indicating a significant impact of the noise especially
in the phase information. Moreover, since both qualitative and quantitative error figures
assume similar values for non-negligible noise levels, it seems to indicate that the PD
strategy could be profitably adopted in such conditions because of the favorable trade-off
between accuracy and simplicity of the imaging setup with respect to a F'D methodology.
Similar results hold true for other test cases. As an example, let us observe the estimated

profiles [Figs. 9(¢)-9(d)] when SNR = 20dB and the scattering scenario is that shown
in [Figs. 9(a)-9(b)].
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3.2 Experimental Assessment

In the light of the acceptable results obtained in dealing with synthetic data corrupted
by various amounts of an additive noise and simulating real situations (where real-time
acquired phaseless data are subject to temperature and/or humidity variations, mea-
surement noise at the sensors, observation noise, etc.), the “two-step” strategy has been
assessed facing the real scattering data kindly provided by M. Saillard and K. Belkebir
|35]]36].

As far as the PD approach is concerned, even though the knowledge of the total field
in D, was available both in phase and amplitude, only the amplitude has been used.
Moreover, the laboratory-acquired measures of E? (xm(v), ym(v)>, (xm(v),ym(v)> € D s,
have been considered for defining the model of the actual source.

The first test case considers the so-called "dielTM decS8f.exp” scattering configuration
[35], which consists of a homogeneous dielectric (7,.f = 2.0 & 0.3) cylinder of radius
% = 1.5 x 1072 [mt] located in an off-centered position (z,ef = Tror = 0.0, Ypes =
Yror = —3.0 x 1072 [mt]) in the investigation domain (L;,, = 30.0 x 1072 [mt]) where
the scatterer is assumed to lie. Because of the aspect-limited nature of the acquisition
setup, the complete set of measures |M(v) =49, v =1, ..., V, V = 36| collected in a circle
Rgps = 76.1 x 1072 [mt] in radius has been used, but only mono-frequency data have been
considered.

In the first experiment, the reconstruction has been carried out at the working frequency
of f = 1GH~z. Moreover, different methods considering both complex and amplitude-only
data have been used for allowing an exhaustive comparative analysis.

Let us consider the retrieved dielectric maps obtained with PD through the “bare”®
PSO-based approach [Fig. 10(a)] and the IMSA-PSO strategy [Fig. 10(b)| described in
this paper. Concerning the F'D, we will show the results obtained with stochastic [the
“bare” PSO-based approach - Fig. 10(c) - and the IMSA-PSO strategy [11] - Fig. 10(d)]
as well as deterministic [the “bare” CG-based approach - Fig. 10(e) - and the IMSA-CG
strategy |21] - Fig. 10(f)] optimization methods.

Let us observe the reconstructed profile shown in Fig. 10(b), even though some artifacts

(2) A single-step inversion where the whole investigation domain is discretized with a spatial sampling
size equal to that reached in the Rol by the IMSA estimated at the convergence step.
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are present and the image turns out partially smoothed, it is possible to distinguish the
shape and infer the position of the actual object. On the contrary, neither the location
nor the shape of the scatterer can be deducted from the reconstruction obtained through
the PD “bare” PSO-based approach |Fig. 10(a)|.

By comparing these results with those of the F'D approaches [Figs. 10(¢)-10(f)], some dif-
ferences can be observed. As expected, the amplitude-only knowledge causes a reduction
of the quality of the reconstruction with respect to a complete data inversion. However,
it turns out that the retrieved profile through the “two-step” PD strategy is better than
those of the single-step "bare” methods both using PD |Fig. 10(a)| and FD |Fig. 10(c)
and Fig. 10(e)]. Moreover, it compares in an acceptable fashion with others /M SA— F D
methods as confirmed by the values reported in Tab. II. These considerations further
point out the need of facing the lack of information (in this case, the phase of the field)
with an effective use of that available by means of effective multiresolution methodologies.
Therefore, whether in |21] the need of improving the achievable spatial resolution moti-
vated the use of an IMSA approach, it becomes essential for achieving a fair inversion
when considering amplitude-only data.

Finally, in order to give some indications on the relationship between reconstruction ac-
curacy and information content of the data, let us observe the plots of the fields that
are produced by the inversion algorithm (different from those which could be derived by
the retrieved dielectric map by solving the direct problem independently). The reason
of a reduced accuracy in the reconstruction when dealing with PD cannot be ascribed
to an unsatisfactory minimization of (13), since the fitting between actual and estimated
scattering data is optimal at the convergence [Fig. 11]. It is certainly related to the
information on the phase as indirectly pointed out in Fig. 12 where it is evident the mis-
matching between the amplitude of the scattered field estimated by using the retrieved
profile with the PD approach and the actual one, whereas the F'D algorithm suitably
reproduces the reference plot.

The second experiment of this section is aimed at evaluating the impact of the phase
information on the reconstruction at different frequencies. Towards this end, the datasets

of the “Marseille” benchmark concerned with different frequencies from 1GHz up to
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8 G H z have been processed.

Likewise the F'D approaches, the effectiveness of PD methods in reconstructing the scat-
terer significantly reduces when the frequency increases as confirmed by the evolution of
the localization error (Fig. 13). Moreover, by comparing the localization accuracies of

the TMSA approaches, it turns out that the difference between the error indexes (i.e.,

0 = pUMSA-PD) IMSA—FD))

— pt enlarges as the frequency increases. Such a behavior
clearly indicates the more and more negative effect in neglecting the phase information
when higher frequencies are used for sensing the scatterer under test.

In order to show the capability of the proposed strategy in detecting and reconstructing
layered structures, the last test case deals with a two-layer circular structure described in
the new “Marseille” database |36] and denoted by the acronym “FoamDiellntTM”. Such
a scattering configuration is characterized by the following quantities: rﬁ} =20=£0.3,
LY = 1.5 x 1072 [mt], 72} = 0.45 £ 0.15 and LE; = 4.0 x 1072 [mt]. As far as the
imaging setup is concerned, the descriptive parameters are all the same as in the first
experimental scattering database [35], except for the radius of the observation domain
(Rops = 1.67 [mt]) and the number of views and measurement locations [M(v) = 241,
v=1,..,V, V =38|. For a detailed description of the measurement setup please see [41].
Taking into account previous results in dealing with dielectric obstacles, the dataset re-
lated to the lowest working frequency has been considered (f = 2GHz). Moreover, the
same number of array elements used for the first example of this sub-section has been
considered for modeling the actual source and computing their amplitudes by means of
the SV D. Such a constraint has been imposed to verify the validity of the same source
model for both the “Marseille” datasets as well as the dependence of the reconstruction
on the accuracy of the equivalent source.

Even though the adopted source model faithfully reproduces the phase |Fig. 14(b)| of
the radiated field in the observation domain, some deviations from the real data can be
noticed in the corresponding amplitudes |Fig. 14(a)|. Such an event clearly indicates that
the source modeling is not completely optimal. Starting from such source-synthesis, the
results of the retrieval processes carried out with PD and F'D approaches are shown in Fig.

15. Despite the approximate model of the radiating source, both the inversion performed
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with the IMSA — PD and with the IMSA — FD lead to acceptable results. Although,
the scatterer cannot be exactly identified, the algorithms converged to a structure that
occupies a large subset of the true obstacle and both of them revealed the boundaries of
the layers. In particular, it should be pointed out that the final reconstruction obtained
by the “two-step” PD strategy is essentially almost identical to that one achieves starting

from complete scattering data as confirmed by the values in Tab. III.

4 Conclusions

A two-step strategy based on amplitude-only measurements of the total field has been
proposed and analyzed. The system architecture has been designed integrating the iter-
ative multi-resolution reconstruction strategy with a source modeling technique to fully
exploit the limited amount of information achievable from scattering data, without re-
quiring expensive measurement setups or complex acquisition procedures.

The main features of the proposed strategy are the following:

e capability to exploit the limited amount of information achievable from amplitude-
only measurements in an effective fashion by means of the use of a multi-scaling

representation of the problems unknowns;

e capability to deal with complex nonlinear cost functions as well as the occurrence
of possible false solutions (or local minima of the cost functional) thanks to the

effectiveness of a distributed-intelligence optimization algorithm;

e robustness to common levels of noise.

Concerning the methodological novelties of this work, besides the definition of the global

architecture of the whole system, some specific aspects should be pointed out:

e original two-step strategy that allows a reduced number of measures and external

to the investigation domain;

e specific and innovative formulation of the amplitude-only data inversion within the

framework of inverse scattering algorithms;

17



e use of a multi-resolution procedure to address the phaseless-data inversion;

e use of a particle swarm optimizer for the iterative minimization of the non-differentiable

amplitude-only cost function.

In the numerical assessment carried out on different conditions and experimental datasets
concerned with various scattering configurations, the proposed architecture proved effec-
tive, providing both acceptable reconstruction accuracy and robustness to the noise as
well as to false solutions. Final reconstructions have usually shown a general agreement
with those from full data (amplitude and phase) and actual profiles. As far as the in-
formation related to the phase value is concerned, the numerical results pointed out that
phaseless inversions are very close and essentially identical to those obtained with a com-
plete approach in the presence of non-negligible levels of noise (synthetic experiments)
and for lower frequencies (experimental datasets).

Because of the favorable trade-off between complexity/costs of the acquisition setup and
reconstruction effectiveness, the proposed approach seems a very promising tool to be used
in industrial applications for non-destructive tests and evaluations. Towards this purpose,

further developments of this research work will be oriented in two different directions:

1. further simplifying the required imaging system by developing a procedure that does
not require the measure of the phase of the radiated field (even though in such a case
it is limited to the observation domain and it can be performed once and off-line

during the calibration of the measurement setup);

2. extending the two-step strategy from free-space configurations to layered/stratified
media as well as inhomogeneous backgrounds for dealing with biomedical and more

realistic industrial applications.
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Figure Captions

e Figure 1. Problem geometry.

e Figure 2. Block diagram of the Two-Step reconstruction Strategy.

e Figure 3. Centered square dielectric cylinder (L,.; = %, Tref = 1.0) - Weighting

source coefficients A,,, w = 1,...,W of the DCW-Model (W = 15): (a) amplitude
and (b) phase.

e Figure 4. Centered square dielectric cylinder (L,.; = %, Tref = 1.0) - Comparison

between the incident field measured in D,y and the numerically-computed values

of B?Y

mc

(:L'm(v),ym(v)): (a) amplitude and (b) phase (v = 1).

e Figure 5. Centered square dielectric cylinder (L,.r = %, Tref = 1.0) - Actual
dielectric profile (a). PD Approach - Reconstructed profiles at (b) s =1, (¢) s = 2,
and (d) at the convergence step (s = 3) of the IMSA-PSO Strategy. FD Approach

- Reconstructed profiles at the convergence step (s = 3) of the IMSA-PSO Strategy
(e)-

e Figure 6. Centered square dielectric cylinder (L,.; = %, Tref = 1.0) - Compari-

son between actual, estimated with FD approach, and PD approach values of (a)

amplitude and (b) phase of EY, ., (xm(v), ym(v)) in Dps.

e Figure 7. Centered square dielectric cylinder (Lye; = 3, Trep = 1.0) - (a) Ampli-

tudes of the actual £}, (xm(v), ym(v)) and reconstructed &, (xm(v), ym(v)) total field

mc

in Dyps. (b) Amplitudes of the actual EY ( n(r)s yn(r)) estimated Emc ( Tn(r), yn(r)),

and reconstructed &), (mn(r), yn(r)) incident field in D;,,,.

e Figure 8. Centered square dielectric cylinder (L,.; = %, Tref = 1.0) - Comparison

between PD Approach and FD Approach (IMSA-PSO Strategy) in terms of error

figures: (a) p, (b) A, (¢) Yiots (d) Yine and (€) Vear-

e Figure 9. Two square lossy cylinders (Lﬁle)f = % ,S])c = 3.0 — j0.4 and Lgf = %,
7‘753} = 1.5—3j0.25 - SNR = 20dB) - Actual dielectric profile: (a) Re{r.cs (z,y)}

and (b) Im{r..r (x,y)}. PD Approach - Reconstructed profiles at the convergence
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step (s = 3) of the IMSA-PSO Strategy: (¢) Re{r (z,y)} and (d) Im {7 (z,y)}. FD
Approach - Reconstructed profiles at the convergence step (s = 2) of the IMSA-PSO

Strategy: (e) Re{r (x,y)} and (f) Im {7 (z,y)}.

Figure 10. Off-centered homogeneous circular dielectric cylinder (Real dataset [35]
"dielTM dec8f.exp” - f = 1GHz). PD Approach - Reconstructed profiles with (a)
“bare” PSO-based Approach and (b) IMSA-PSO Strategy. FD Approach - Recon-
structed profiles with (¢) “bare” PSO-based Approach, (d) IMSA-PSO Strategy, (e)
“bare” CG-based Approach, and (f) IMSA-CG Strategy.

Figure 11. Off-centered homogeneous circular dielectric cylinder (Real dataset |35]
“dielTM _dec8f.exp” - f = 1GHz) - (a) Amplitudes of the actual £}, (xm(v), ym(v))
and reconstructed &, (l’m(v), ym(v)) total field in Dyps. (b) Amplitudes of the esti-

mated @;c (a:n(r), yn(r)) and reconstructed & . (:En(r), yn(r)) incident field in D;,,,,.

Figure 12. Off-centered homogeneous circular dielectric cylinder (Real dataset
[35] "dielTM dec8f.exp” - f = 1GHz) - Comparison between actual, estimated

with FD approach, and PD approach values of (a) amplitude and (b) phase of

E;)catt (xm(v)a ym(v)) in Dobs-

Figure 13. Off-centered homogeneous circular dielectric cylinder (Real dataset |35]

"dielTM _dec8f.exp”) - Behavior of the localization error p versus frequency.

Figure 14. Multi-layer dielectric circular cylinder (Real dataset [36]” FoamDiellnt TM”
- f = 2GHz) - Comparison between the incident field measured in D,y and the

numerically-computed values of E? (:Bm(v),ym(v)): (a) amplitude and (b) phase

wmc

Figure 15. Multi-layer dielectric circular cylinder (Real dataset [36]” FoamDiellnt TM”
- f = 2GHz). PD Approach - Reconstructed profiles with (a) “bare” PSO-based
Approach and (b) IMSA-PSO Strategy. FD Approach - Reconstructed profiles with
(¢) “bare” PSO-based Approach and (d) IMSA-PSO Strategy.

26



Table Captions

e Table I. Centered square dielectric cylinder (L,.; = %, Tref = 1.0) - Values of the
qualitative (p and ¢) and quantitative (Yo, Yint, and Yez) error figures at different
steps s (s = 1, 2, 3) of the IMSA-PSO strategy for the FD and PD approach,

respectively.

e Table II. Off-centered homogeneous circular dielectric cylinder (Real dataset |35]

"dielTM _dec8f.exp” - f = 1GHz) - Location and shape parameters.

e Table III. Multi-layer dielectric circular cylinder (Real dataset [36] ” FoamDiellnt TM”

- f =2GH?z) - Location and shape parameters.
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Fig. 14 - G. Franceschini et al., "Inversion of phaseless total field data using ...”
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Fig. 15 - G. Franceschini et al., "Inversion of phaseless total field data using ...”
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Step No. | Viot | Vint | Yeat | P | A
PD Approach
s=1 | 7.25[28.6|5.83|2.65| 161
s=2 |541(22.9|4.25/2.4944.1
s =3 3.49121.112.32]2.80|31.8

FD Approach

s=1 |841/32.8]16.79|1.08] 191
s=2 |4.19]25.7]2.09|0.82|61.8
s=23 |2.02]15.1]2.00]0.02|7.83

Tab. I - G. Franceschini et al., "Inversion of phaseless total field data using ...”
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Actual Profile
0.0 —1.0x 1071 |5.0 x 1072
Reconstructed Profile (PD Approach)

PSO 1.3x 1072 | —4.0x 107*]2.9 x 107!
IMSA—PSO| 43x1073 | =6.0x 1072 |1.2 x 107!
Reconstructed Profile (FD Approach)

PSO 7.0x 1073 | —1.1x1071]2.0 x 107!
IMSA—PSO| 60x10% | =1.1x 1071 |5.0 x 1072
CG 23%x1072 | =1.3x 107" [1.9 x 107!
IMSA—-CG | -87x1073| —-1.0x107'|1.1 x 107!

Tab. II - G. Franceschini et al., "Inversion of phaseless total field data using ...”

47




TRol

YRoI

L Rol

) ) 2\
Actual Profile

7.3 x 1073 0.0 2.7 x 1071

Reconstructed Profile (PD Approach)
PSO 2.5x 1072 1.3 x 1072 | 8.7 x 107}
IMSA—PSO |35%x 1072 -1.3x 107225 x 107!

Reconstructed Profile (F'D Approach)
PSO 3.5x 1072 25 x 1072 |3.0 x 1071
IMSA—PSO|31x107% =87x 1077 |2.6 x 107"

Tab. III - G. Franceschini et al., "Inversion of phaseless total field data using ...”
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