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Inversion of Phaseless Total Field Data using a Two-StepStrategy based on the Iterative Multi-S
aling Approa
h
Gabriele Fran
es
hini, Massimo Donelli, Renzo Azaro, and Andrea Massa

Abstra
tIn this paper, a new approa
h for the quantitative ele
tromagneti
 imaging of un-known s
atterers lo
ated in free-spa
e from amplitude-only measurements of thetotal �eld is proposed and dis
ussed. The re
onstru
tion pro
edure splits the prob-lem into two steps. The method is based on the use of an inverse sour
e algorithm to�rst 
omplete the s
attering data by estimating the distribution of the radiated �eldin the investigation domain. The obje
t's fun
tion pro�le is then retrieved from thephaseless data via an iterative multiresolution pro
edure integrated with an e�e
tiveminimization te
hnique based on the parti
le swarm algorithm. Numeri
al examplesare provided to assess the e�e
tiveness of the whole two-step strategy in the presen
eof syntheti
 noise-
orrupted data as well as in dealing with experimental datasets.Comparison with full-data and �bare� approa
hes are reported, as well.
Index Terms - Inverse S
attering, Ele
tromagneti
 Imaging, Phaseless Data, IntegratedMulti-S
aling Approa
h, Parti
le Swarm Optimizer.
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1 Introdu
tionIn the last years, the interest in mi
rowave imaging te
hniques is growing thanks to theirsensitivity to the diele
tri
 properties useful for dete
ting and re
onstru
ting unknownobje
ts in a non-invasive fashion. As a matter of fa
t, the re
onstru
tion of the geometri
aland physi
al 
hara
teristi
s of an unknown obje
t is a key-issue in several appli
ations
on
erned with non-destru
tive tests and evaluations [1℄[2℄ in the framework of appliedgeophysi
s [3℄[4℄, biomedi
al and industrial diagnosti
s [5℄-[8℄ or subsurfa
e sensing [9℄.Nevertheless, although the e�e
tiveness of these te
hniques for diagnosti
 purposes makesthem very appealing, several open issues still remain partially solved or unsolved. Su
han event gives rise to some doubts on the possibility of their large di�usion be
ause oftheir intrinsi
 
omplexity.From the s
ienti�
 literature (see [10℄ and the referen
es 
ited therein for a detailedoverview), it is well known that the main drawba
ks are due to the ill-posedness and thenon-linear nature of the arising inverse s
attering mathemati
al models.On the other hand, for a
hieving a suitable resolution level in the re
onstru
tion of theobje
t pro�le, a non-negligible amount of information is ne
essary. Towards this pur-pose, multi-illumination [12℄ and/or multi-view [13℄ and/or multi-frequen
y systems [14℄are generally used, but the information 
olle
table from the s
attering experiments stillremain limited [10℄ to an upper bound that depends on the geometri
al 
hara
teristi
s ofthe imaging system [15℄ even though some a-priori information (when available) on thes
enario under test [16℄[17℄ or a set of 
onstraints [18℄ on the retrievable diele
tri
 pro�leare imposed. Therefore, various multiresolution strategies able to distribute in a non-uniform fashion the unknowns inside the s
attering domain have been re
ently proposed(see [9℄, [19℄-[25℄ for a detailed analysis) for over
oming the mismat
h between number ofs
attering data and set of unknowns.Besides the intrinsi
 drawba
ks 
on
erned with the mathemati
al model of an inverseproblem, there are others pra
ti
al issues related to the realization of low-
ost and e�e
tivea
quisition setups. As a matter of fa
t, while the amplitude measurement is not a 
riti
alpoint, the measurement of the phase of the s
attered �eld turns out to be very di�
ultor very expensive in several appli
ations and/or 
onditions. Although from a theoreti
al3



point-of-view su
h a measure is not 
ompli
ated at mi
rowave and lower frequen
ies, theuse of amplitude-only data notably simpli�es the imaging setup and it allows a non-negligible redu
tion of 
osts.On the other hand, by 
onsidering frequen
ies beyond tens of gigahertz, the dire
t mea-surement of the distribution of the phase of the ele
tromagneti
 �eld be
omes harder andharder. Moreover, holographi
 and interferometri
 te
hniques, usually used in opti
al ap-pli
ations [26℄[27℄ for determining phase information, are experimentally demanding andoften require an expensive post-pro
essing of the measured data.In order to avoid su
h drawba
ks, some alternatives approa
hes have been proposed. Twomain paths of resear
h seem to be usually taken into a

ount:
• the dire
t appli
ation of a re
onstru
tion algorithm for the pro
essing of phaseless�eld data (Single-Step Strategy) (see for example [28℄-[31℄);
• the splitting of the phaseless-data re
onstru
tion into a two-step pro
ess (Two-StepStrategy) where the �rst step deals with a phase-retrieval problem for 
omplet-ing the amplitude-only inversion data and the latter is 
on
erned with a standardre
onstru
tion from 
omplete �eld data (see for example [32℄[33℄).More in detail, in the framework of approximate methodologies for weak s
atterers, Malekiet al. [28℄ proposed a single-step tomographi
 re
onstru
tion pro
edure for determiningthe 
omplex-valued index-of-refra
tion of inhomogeneous obje
ts from the far-�eld inten-sity patterns generated by the s
atterers in a sequen
e of s
attering experiments. Thesame authors applied in [32℄ an alternative two-step methods based on an iterative phase-retrieval algorithm to extra
t the phase of the s
attered �eld from the measurement ofthe amplitude of the total �eld and from a-priori information on the obje
t support.Unlike methods based on Born approximations, a 
omplete single-step approa
h has beenpresented by Takenaka et al. in [29℄ for the re
onstru
tion of the refra
tive index ofunknown obje
ts from intensity-only far-�eld data. Although based on a 
omplete formu-lation of the s
attering problem, likewise the approa
h in [32℄, su
h an approa
h requiressome a-priori knowledge on the obje
t support and in parti
ular on its outer boundary.Still in the framework of single-step nonlinearized te
hniques, an iterative approa
h basedon a memeti
 algorithm has been des
ribed in [31℄ dealing with diele
tri
 multilayer4



ellipti
 
ylinders has been used. On the other hand, in [30℄, the minimization of thetwo-
omponent dis
repan
y fun
tion is performed by means of the binary-
onstrainedmodi�ed gradient method for dete
ting buried 
ylindri
al homogeneous targets.As far as two-step strategies are 
on
erned, Isernia et al. proposed in [33℄ an innovativealgorithm for better 
ontrolling the non-linearity with respe
t to single-step strategiesthrough a 
onvenient exploitation of the theoreti
al results on the inversion of quadrati
operators.The approa
h presented in this paper has several 
ommon and 
omplementary featureswith respe
t to the above te
hniques. As a matter of fa
t, the proposed strategy is atwo-step pro
edure where, nevertheless, the �rst step is not aimed at 
ompleting theamplitude-only s
attering data, but at determining the input data for the so-
alled stateequation for phaseless inputs. Furthermore, the se
ond step is not 
on
erned with a 
lassi-
al full-data inverse s
attering problem, but it deals with a phaseless-data re
onstru
tionthrough a suitable multi-s
aling algorithm in order to fully exploit the limited amountof 
olle
table information. To the best of the authors' knowledge, su
h a two-step re-trieval pro
ess is 
ompletely innovative in the framework of intensity-only methods andit requires only the measurement of the s
attering data in a limited number of lo
ationsin observation domain notably simplifying the 
olle
tion-data pro
ess both in terms ofmeasurement setup and a
quisition time.The paper is organized into four se
tions. The geometry of the problem and the generalar
hite
ture of the proposed two-step strategy are des
ribed in Se
tion 2. The resultsof a sele
ted set of experiments are dis
ussed in Se
tion 3. Finally, Se
tion 4 presents adis
ussion and some 
on
lusions.2 Mathemati
al FormulationLet us 
onsider a 
lassi
al tomographi
 mi
rowave imaging problem where an unknown
ylindri
al obje
t lo
ated in an ina

essible investigation domain Dinv is illuminated ata �xed working frequen
y f by a set of V TM -polarized in
ident ele
tromagneti
 waves
hara
terized by ele
tri
 �elds Ev
inc(r) = Ev

inc(x, y)ẑ, v = 1, ..., V (Figure 1).For a Full-Data (FD) formulation, the s
attered �elds Ev
scatt = Ev

tot−Ev
inc, v = 1, ..., V , are5




olle
ted in M (v) measurement lo
ations [(xm(v), ym(v)

), m(v) = 1, ..., M(v), v = 1, ..., V ℄pla
ed in an observation domain Dobs external to Dinv [13℄ and the inversion pro
ess isaimed at re
onstru
ting the obje
t fun
tion τ(x, y) de�ned as follows
τ(x, y) = [εr(x, y) − 1] − j

σ(x, y)

2πfǫ0
(x, y) ∈ Dinv (1)

εr and σ being the relative diele
tri
 permittivity and the ele
tri
 
ondu
tivity, startingfrom the knowledge in amplitude and phase ofEv
inc(x, y), (x, y) ∈ Dinv, and Ev

scatt

(
xm(v), ym(v)

),
(
xm(v), ym(v)

)
∈ Dobs. Towards this purpose and a

ording to the des
ription of the s
at-tering phenomena in terms of the Fredholm formalism [?℄, the following equations areformulated and solved

Ev
scatt

(
xm(v), ym(v)

)
= −j

k2
0

4

∫ ∫

S
τ(x′, y′)Ev

tot(x
′, y′)H

(2)
0 (k0d) dx′dy′

(
xm(v), ym(v)

)
∈ Dobs(2)

Ev
inc(x, y) = Ev

tot(x, y)+j
k2

0

4

∫ ∫

S
τ(x′, y′)Ev

tot(x
′, y′)H

(2)
0 (k0d) dx′dy′ (x, y) ∈ Dinv (3)where k0 is the free-spa
e wavenumber, H

(2)
0 is the 0-th order se
ond-kind Hankel fun
tion,and d =

√
(x − x′)2 + (y − y′)2.Unlike FD approa
h, let us 
onsider a �phaseless data� (PD) inversion where only theamplitude of the total �eld in the observation domain, ∣∣∣Ev

tot

(
xm(v), ym(v)

)∣∣∣, (
xm(v), ym(v)

)
∈

Dobs, m(v) = 1, ..., M(v), v = 1, ..., V , and of the amplitude of the in
ident �eld in Nlo
ations of the investigation domain, |Ev
inc (xn, yn)|, (xn, yn) ∈ Dinv, n = 1, ..., N , areavailable. Under these hypotheses, the system of equations (2)-(3) is modi�ed as follows

∣∣∣Ev
tot

(
xm(v), ym(v)

)∣∣∣ =
∣∣∣Ev

inc

(
xm(v), ym(v)

)
− j

k2
0

4

∫ ∫
S τ(x′, y′)Ev

tot(x
′, y′)H

(2)
0 (k0dm(v)) dx′dy′

∣∣∣
(
xm(v), ym(v)

)
∈ Dobs (4)
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|Ev
inc (xn, yn)| =

∣∣∣∣∣E
v
tot(xn, yn) + j

k2
0

4

∫ ∫

S
τ(x′, y′)Ev

tot(x
′, y′)H

(2)
0 (k0dn) dx′dy′

∣∣∣∣∣ (xn, yn) ∈ Dinv(5)As 
an be noti
ed, while the mathemati
al formulation of the PD problem does notnotably di�er from that 
on
erned with the FD 
ase, 
ertainly the use of intensity-onlydata turns out in a further redu
tion of the 
olle
table information on the s
enario undertest with respe
t to that already limited in the FD situation. Therefore, even more soin the 
ase of phaseless data, the use of an adaptive multi-resolution strategy seems tobe even more mandatory in order to fully and e�e
tively exploit the limited amount ofavailable information for a
hieving a suitable a

ura
y in the re
onstru
tion. Towardsthis end, a 
ustomized version of the iterative multi-s
aling approa
h (IMSA) 
an bepro�tably used.The appli
ation of the IMSA approa
h to phaseless data requires at ea
h step s (s =

1, ..., S) of the multi-step pro
edure the minimization of the following multi-resolution
ost fun
tion(1)

Φ(s)





τ
(
xn(r), yn(r)

)
, Ev

tot

(
xn(r), yn(r)

)
;

v = 1, ..., V

n(r) = 1, ..., N(r) r = 1, ..., s





= Φ
(s)
Data + Φ

(s)
State(6)

Φ
(s)
Data =

V∑

v=1

M(v)∑

m(v)=1

||Ev

tot(xm(v), ym(v))|−|ξv

tot(xm(v), ym(v))||
2

V∑

v=1

M(v)∑

m(v)=1

|Ev

tot(xm(v), ym(v))|
2

Φ
(s)
State =

V∑

v=1

s∑

r=1

N(r)∑

n(r)=1

||Ev

inc(xn(r), yn(r))|−|ξv

inc(xn(r), yn(r))||
2

V∑

v=1

s∑

r=1

N(r)∑

n(r)=1

|Ev

inc(xn(r), yn(r))|
2where

(1) Su
h a dis
retized form has been obtained by applying the Ri
hmond's [34℄ pro
edure to thesystem of equations (4)-(5). 7



∣∣∣ξv
tot

(
xm(v), ym(v)

)∣∣∣ =

∣∣∣∣∣∣
Ev

inc

(
xm(v), ym(v)

)
+

s∑

r=1

N(r)∑

n(r)=1

{
ω

(s)
n(r)

[
τ

(
xn(r), yn(r)

)
Ev

tot

(
xn(r), yn(r)

)
Gm(v),n(r)

]}
∣∣∣∣∣∣(7)

∣∣∣ξv
inc

(
xn(r), yn(r)

)∣∣∣ =

∣∣∣∣∣∣
Ev

tot

(
xn(r), yn(r)

)
−

s−1∑

t=0

N(r)∑

q(t)=1

{
ω

(s)
q(t)

[
τ

(
xq(t), yq(t)

)
Ev

tot

(
xq(t), yq(t)

)
Gn(r),q(t)

]}
∣∣∣∣∣∣(8)and ω

(s)
n(r) is the weighting fun
tion de�ned as

ω
(s)
n(r) =





0 if r 6= s and
(
xn(r), yn(r)

)
/∈ D(s)

1 if
(
xn(r), yn(r)

)
∈ D(s)

(9)
r being the index of the resolution level and D(s) the Region of Interest (RoI ) at the
s-th step de�ned on the basis of the information 
olle
ted by the re
onstru
tion of the
(s − 1)-th iteration a

ording to the pro
edure detailed in [22℄.However, it should be noti
ed that su
h an implementation requires the knowledge of
|Ev

inc (x, y)| at di�erent level of resolution with a step-by-step de
reasing of the samplinginterval. From a pra
ti
al point of view, the measure of |Ev
inc (x, y)| is generally 
arriedout in a limited number of measurement points [(xn, yn) , n = 1, ..., N ℄ in Dinv althoughtheoreti
ally it 
ould be performed in whatever lo
ation of the investigation domain.Nevertheless, the experimental system (and in parti
ular the ele
tromagneti
 sensors) ismoved by means of a me
hani
al apparatus with some toleran
es in the positioning (whi
hstrongly depends on the appli
ation, but generally it is of the order of millimeters [5℄).Therefore, a redu
ed sampling distan
e between adja
ent positions in Dinv would resultin an ina

urate measure of the �eld and, 
onsequently, ea
h measured sample would be
orrupted by a non-negligible error.Be
ause of su
h a drawba
k, there is the need of de�ning a suitable model of the radiatingsour
e in order to apply an iterative multi-resolution strategy and thus for 
omputing theradiated �eld in whatever position of the investigation domain. Towards this end, avoidingthe measurement of |Ev

inc (xn, yn)|, (xn, yn) ∈ Dinv, some alternative information on theradiated �eld are ne
essary. Therefore, let us suppose that the knowledge of the in
ident�eld radiated by the ele
tromagneti
 sour
e is available both in amplitude and phase inthe observation domain, Ev
inc

(
xm(v), ym(v)

), (
xm(v), ym(v)

)
∈ Dobs. Su
h an assumption is8



generally veri�ed in real situations as 
on�rmed by the laboratory-
ontrolled experiments
arried out at the Centre Commun de Ressour
es Mi
ro-ondes (CCRM ) in Marseille[35℄[36℄. As a matter of fa
t, su
h an evaluation 
an be performed only on
e and o�-line(i.e., non during the imaging pro
ess of an unknown obje
t) for ea
h measurement system(i.e., the measurement setup 
onstituted by the illuminating sour
e and the re
eivers) andin a non-so-expensive and a

urate fashion for a redu
ed number of adequately-spa
edlo
ations. Furthermore, unlike the measurement in Dinv, the measurement lo
ations in
Dobs are not so 
lose the one to the others and they are in a small number if 
hosena

ording to the �golden rule� de�ned in [15℄.A

ording to these idea, the inversion pro
ess turns out to be 
arried out through thetwo-step strategy s
hematized in Fig. 2 and detailed in the following.Step 1 - Sour
e SynthesisLet us assume that, be
ause of the 
omplexity and di�
ulties in 
olle
ting reliable and in-dependent measures in a dense grid of points, the in
ident �eld is only available at the mea-surement points belonging to the observation domain [Ev

inc

(
xm(v), ym(v)

), (
xm(v), ym(v)

)
∈

Dobs℄. Therefore, in order to apply the 
onstraints stated through the �State� equation(5) and before fa
ing with the data inversion, it is mandatory to develop a suitable modelable to predi
t the in
ident �eld radiated by the a
tual ele
tromagneti
 sour
e in theinvestigation domain Dinv.Towards this aim, let us 
onsider the so-
alled Distributed-Cylindri
al-Waves Model (pro-posed and validated in [37℄ when dealing with experimental) where the a
tual sour
e isrepresented by a linear array of W equally-spa
ed line-sour
es, whi
h radiates an ele
tri
�eld given by
Ẽv

inc (x, y) = −
k2

0

8πfε0

W∑

w=1

A (xw, yw) H
(2)
0 (k0dw) (10)where A(xw, yw) is the unknown 
oe�
ient related to the w-th element of the array.Su
h a model is 
ompletely de�ned when the set of unknown 
oe�
ients, A = {A(xw, yw) ,

w = 1, ..., W}, is determined starting from the knowledge of the in
ident �eld measured9



in the observation domain through the solution of the following problem
Aopt = arg





minA




∑V
v=1

∥∥∥Ev
inc − Ẽv

inc

∥∥∥
2

∑V
v=1 ‖E

v
inc‖

2








(11)where Ev
inc is an array of the measures 
olle
ted for the v-th view at M(v) measurementpoints of the observation domain whose m(v)-th element is equal to Ev

inc

(
xm(v)

, ym(v)

);
Ẽv

inc is the array of numeri
ally-
omputed values of the in
ident �eld in the observationdomain given by Ẽv
inc = [G]A, [G] being a W × M(v) matrix whose generi
 element isequal to Gm(v),w = −

k2
0

8πfε0
H

(2)
0

(
k0dm(v),w

).Unfortunately, (11) involves the limitations of an inverse-sour
e problem, that is [G] is ill-
onditioned and the solution is usually non-stable and non-unique. In order to over
omesu
h a drawba
k, the solution of (11) is re
ast as the inversion of the linear operator
[G] through a SVD-de
omposition [38℄ by looking for the optimal 
on�guration Aopt thatprovides the optimal mat
hing between measured and numeri
ally-
omputed values of thein
ident �eld in the observation domain

Aopt = arg





minW




∑V
v=1

∥∥∥
{
Ωv [Γv]

−1 Θ∗

v

}
Ev

inc

∥∥∥
2

∑V
v=1 ‖E

v
inc‖

2








(12)where Ωv and Θv are isometri
 matri
es, (∗) denotes the adjoint operator, and [Γv] is adiagonal matrix whose positive diagonal elements are the singular values of [G] [10℄.Step 2 - Obje
t Fun
tion Re
onstru
tionFollowing the general ar
hite
ture of the multi-step pro
edure detailed in [21℄ for the FDproblem, the IMSA is applied to the phaseless data problem by repeating the followingpro
edural operations until the termination 
onditions hold true [22℄:
• Data ComputationStarting from the modeling of the ele
tromagneti
 sour
e derived at the �Step 1 �with the determination of Aopt, 
ompute ∣∣∣Ẽv

inc

(
xn(r), yn(r)

)∣∣∣, (
xn(r), yn(r)

)
∈ Dinv,

n(r) = 1, ..., N(r), r = s, through Eq. (10);
• Retrieval Pro
ess 10



Minimize the multi-resolution 
ost fun
tion Φ̃(s) de�ned as follows
Φ̃(s) = Φ

(s)
Data + Φ̃

(s)
State (13)

being
Φ̃

(s)
State =

V∑

v=1

s∑

r=1

N(r)∑

n(r)=1

||Ẽv

inc(xn(r), yn(r))|−|ξv

inc(xn(r), yn(r))||
2

V∑

v=1

s∑

r=1

N(r)∑

n(r)=1

|Ẽv

inc(xn(r), yn(r))|
2by 
onsidering the multiresolution representation of the unknowns at the s-th step

{
τ

(
xn(r), yn(r)

)
, Ev

tot

(
xn(r), yn(r)

) ; n(r) = 1, ... , N(r); r = 1, ... , s; v = 1, ... , V }and a

ording to the iterative PSO-based approa
h [11℄.
3 Numeri
al ValidationThis se
tion is aimed at presenting the results obtained during the testing and numeri
alvalidation of the two-step re
onstru
tion strategy. After a short overview of the 
har-a
teristi
s of the measurement setup and of the s
enario 
onditions that we followed inour study, several experiments are presented in order to: (a) assess the e�e
tiveness and
urrent limitations of the proposed PD approa
h in various environmental 
onditions ands
atterers 
on�gurations; (b) 
ompare the obtained results with those rea
hed exploit-ing the information 
ontained in both amplitude and phase of the s
attered �eld (FDapproa
h) both qualitatively, in terms of diele
tri
 pro�le maps, and quantitatively, interms of the re
onstru
tion errors as de�ned in [21℄. Towards these purposes and in orderto better understand and appre
iate the usefulness of the implemented phaseless-datastrategy, two meaningful 
lasses of test 
ases are 
onsidered. The �rst one deals with syn-theti
 examples where s
attering data are 
orrupted with di�erent levels of an additiveGaussian noise (de�ned as in [22℄) for evaluating the robustness of the approa
h. Whilethe se
ond one is 
on
erned with some of the experimental datasets of the �Marseille�database [35℄[36℄. 11



3.1 Syntheti
 AssessmentThe �rst step of the numeri
al assessment deals with syntheti
 test 
ases for whi
h s
at-tering data are user-de�ned (thus 
ontrolled) as well as the sour
es of noise.In all the following examples, the unknown s
atterers belong to a square investigationdomain of side Linv = 2 λ and they are illuminated by plane waves impinging from V = 32equally-spa
ed dire
tions [θv = 2π (v−1)
V

, v = 1, ..., V ℄. The observation domain is a 
ir
le
Robs = 5 λ in radius and the s
attering data are 
omputed in M(v) = 32, v = 1, ..., V ,measurement points equally-distributed along Dobs.As far as the PSO-based method for the �retrieval pro
ess� is 
on
erned, the following
on�guration of parameters has been adopted a

ording to the guidelines in the relatedliterature [39℄[40℄ and to the heuristi
 study 
arried out in [11℄: w = 0.4 (
onstant inertialweight), I = 5

100
U (swarm dimension, U being the number of problem unknowns), and

C1 = C2 = 2.0 (a

eleration 
oe�
ients). Moreover, the IMSA has been used with theparameters setting de�ned in [22℄.In the �rst example, the s
atterer is a 
entered (xref = xRoI = 0.0, yref = yRoI = 0.0)homogeneous diele
tri
 (τref = 1.0) square 
ylinder Lref = LRoI = λ
2
sided. After solvingthe �sour
e-synthesis� step, the array 
oe�
ients turned out to be distributed as shownin Fig. 3. Su
h a 
on�guration 
an be 
onsidered optimal in terms of the mat
hingwith problem data as requested by (12). In order to give an idea of the �tting between�measured� and estimated data, Figure 4 shows the values of the amplitudes and phasesof the radiated-�elds in Dobs for v = 1. As 
an be seen, an a

urate re
onstru
tion isa
hieved both in amplitude [Fig. 4(a)℄ and phase [Fig. 4(b)℄. Similar 
on
lusions holdtrue for all in
iden
e angles.Starting from the estimated model of the sour
e, the �obje
t-fun
tion re
onstru
tion� hasbeen 
arried out applying the iterative multi-s
aling approa
h. In Fig. 5, pro
essingresults at various stages through the multi-step re
onstru
tion are shown. As a referen
e,the ideal re
onstru
tion is displayed in [Fig. 5(a)℄. For 
omparison purposes, the pro�leestimated with the FD approa
h is reported in Fig. 5(e), as well. As it 
an be observed,the s
atterer appears fairly well retrieved by the IMSA, be this inversion led with orwithout the phase information (Tab. I). The 
orresponding obje
t-fun
tion maps illustrate12



that, whatever the approa
h, both a good lo
ation and shape retrieval are obtained. Theonly di�eren
e 
omes from the fa
t that the PD inversion slightly shifts the lo
ation ofthe obje
t with respe
t to its real position as 
on�rmed by the value of the lo
alizationerror (ρ(PD)
⌋
S=3

= 2.80 vs. ρ(FD)
⌋
S=3

= 0.02). In order to further 
on�rm the similarbehavior of the two approa
hes, let us 
onsider the distribution of the s
attered �eld inthe observation domain (Fig. 6) as a similarity index.For 
ompleteness and in order to point out the e�e
tiveness of the optimization approa
hbased on the PSO algorithm [11℄, Figure 7 gives an indi
ation of the �tting betweena
tual and estimated data both in Dobs [Fig. 7(a)℄ and in the RoI at di�erent steps ofthe re
onstru
tion pro
ess [e.g., (r = 0) indi
ates the lo
ations in Dind that belong to theRoI estimated at (s = 1)℄.The last experiment of this syntheti
 test 
ase is aimed at evaluating the robustness ofthe two-step PD approa
h to the presen
e of the noise in the inversion data. In orderto ben
hmark how the �two-step� strategy adapts to a 
hanging environment, di�erentamounts of gaussian noise [22℄ have been added to ∣∣∣Ev
tot

(
xm(v), ym(v)

)∣∣∣, (
xm(v), ym(v)

)
∈

Dobs.Figure 8 shows the evolution through di�erent signal-to-noise ratios (SNRs) of the errorindexes. The SNR has been varied between 5 dB and 40 dB and 100 realizations wereaveraged for ea
h value, whi
h 
onstitutes a reasonable 
on�den
e margin for a statisti
evaluation. As expe
ted, the FD approa
h yields the best results through the wholesignal-to-noise domain. It is also noti
eable that the di�eren
es between FD and PDredu
es when the noise level in
reases indi
ating a signi�
ant impa
t of the noise espe
iallyin the phase information. Moreover, sin
e both qualitative and quantitative error �guresassume similar values for non-negligible noise levels, it seems to indi
ate that the PDstrategy 
ould be pro�tably adopted in su
h 
onditions be
ause of the favorable trade-o�between a

ura
y and simpli
ity of the imaging setup with respe
t to a FD methodology.Similar results hold true for other test 
ases. As an example, let us observe the estimatedpro�les [Figs. 9(
)-9(d)℄ when SNR = 20 dB and the s
attering s
enario is that shownin [Figs. 9(a)-9(b)℄.
13



3.2 Experimental AssessmentIn the light of the a

eptable results obtained in dealing with syntheti
 data 
orruptedby various amounts of an additive noise and simulating real situations (where real-timea
quired phaseless data are subje
t to temperature and/or humidity variations, mea-surement noise at the sensors, observation noise, et
.), the �two-step� strategy has beenassessed fa
ing the real s
attering data kindly provided by M. Saillard and K. Belkebir[35℄[36℄.As far as the PD approa
h is 
on
erned, even though the knowledge of the total �eldin Dobs was available both in phase and amplitude, only the amplitude has been used.Moreover, the laboratory-a
quired measures of Ev
inc

(
xm(v), ym(v)

), (
xm(v), ym(v)

)
∈ Dobs,have been 
onsidered for de�ning the model of the a
tual sour
e.The �rst test 
ase 
onsiders the so-
alled �dielTM_de
8f.exp� s
attering 
on�guration[35℄, whi
h 
onsists of a homogeneous diele
tri
 (τref = 2.0 ± 0.3) 
ylinder of radius

LRoI

2
= 1.5 × 10−2 [mt] lo
ated in an o�-
entered position (xref = xRoI = 0.0, yref =

yRoI = −3.0 × 10−2 [mt]) in the investigation domain (Linv = 30.0 × 10−2 [mt]) wherethe s
atterer is assumed to lie. Be
ause of the aspe
t-limited nature of the a
quisitionsetup, the 
omplete set of measures [M(v) = 49, v = 1, ..., V , V = 36℄ 
olle
ted in a 
ir
le
Robs = 76.1×10−2 [mt] in radius has been used, but only mono-frequen
y data have been
onsidered.In the �rst experiment, the re
onstru
tion has been 
arried out at the working frequen
yof f = 1 GHz. Moreover, di�erent methods 
onsidering both 
omplex and amplitude-onlydata have been used for allowing an exhaustive 
omparative analysis.Let us 
onsider the retrieved diele
tri
 maps obtained with PD through the �bare�(2)PSO-based approa
h [Fig. 10(a)℄ and the IMSA-PSO strategy [Fig. 10(b)℄ des
ribed inthis paper. Con
erning the FD, we will show the results obtained with sto
hasti
 [the�bare� PSO-based approa
h - Fig. 10(
) - and the IMSA-PSO strategy [11℄ - Fig. 10(d)℄as well as deterministi
 [the �bare� CG-based approa
h - Fig. 10(e) - and the IMSA-CGstrategy [21℄ - Fig. 10(f )℄ optimization methods.Let us observe the re
onstru
ted pro�le shown in Fig. 10(b), even though some artifa
ts

(2) A single-step inversion where the whole investigation domain is dis
retized with a spatial samplingsize equal to that rea
hed in the RoI by the IMSA estimated at the 
onvergen
e step.14



are present and the image turns out partially smoothed, it is possible to distinguish theshape and infer the position of the a
tual obje
t. On the 
ontrary, neither the lo
ationnor the shape of the s
atterer 
an be dedu
ted from the re
onstru
tion obtained throughthe PD �bare� PSO-based approa
h [Fig. 10(a)℄.By 
omparing these results with those of the FD approa
hes [Figs. 10(
)-10(f )℄, some dif-feren
es 
an be observed. As expe
ted, the amplitude-only knowledge 
auses a redu
tionof the quality of the re
onstru
tion with respe
t to a 
omplete data inversion. However,it turns out that the retrieved pro�le through the �two-step� PD strategy is better thanthose of the single-step �bare� methods both using PD [Fig. 10(a)℄ and FD [Fig. 10(
)and Fig. 10(e)℄. Moreover, it 
ompares in an a

eptable fashion with others IMSA−FDmethods as 
on�rmed by the values reported in Tab. II. These 
onsiderations furtherpoint out the need of fa
ing the la
k of information (in this 
ase, the phase of the �eld)with an e�e
tive use of that available by means of e�e
tive multiresolution methodologies.Therefore, whether in [21℄ the need of improving the a
hievable spatial resolution moti-vated the use of an IMSA approa
h, it be
omes essential for a
hieving a fair inversionwhen 
onsidering amplitude-only data.Finally, in order to give some indi
ations on the relationship between re
onstru
tion a
-
ura
y and information 
ontent of the data, let us observe the plots of the �elds thatare produ
ed by the inversion algorithm (di�erent from those whi
h 
ould be derived bythe retrieved diele
tri
 map by solving the dire
t problem independently). The reasonof a redu
ed a

ura
y in the re
onstru
tion when dealing with PD 
annot be as
ribedto an unsatisfa
tory minimization of (13), sin
e the �tting between a
tual and estimateds
attering data is optimal at the 
onvergen
e [Fig. 11℄. It is 
ertainly related to theinformation on the phase as indire
tly pointed out in Fig. 12 where it is evident the mis-mat
hing between the amplitude of the s
attered �eld estimated by using the retrievedpro�le with the PD approa
h and the a
tual one, whereas the FD algorithm suitablyreprodu
es the referen
e plot.The se
ond experiment of this se
tion is aimed at evaluating the impa
t of the phaseinformation on the re
onstru
tion at di�erent frequen
ies. Towards this end, the datasetsof the �Marseille� ben
hmark 
on
erned with di�erent frequen
ies from 1 GHz up to15



8 GHz have been pro
essed.Likewise the FD approa
hes, the e�e
tiveness of PD methods in re
onstru
ting the s
at-terer signi�
antly redu
es when the frequen
y in
reases as 
on�rmed by the evolution ofthe lo
alization error (Fig. 13). Moreover, by 
omparing the lo
alization a

ura
ies ofthe IMSA approa
hes, it turns out that the di�eren
e between the error indexes (i.e.,
Θ = ρ(IMSA−PD) − ρ(IMSA−FD)) enlarges as the frequen
y in
reases. Su
h a behavior
learly indi
ates the more and more negative e�e
t in negle
ting the phase informationwhen higher frequen
ies are used for sensing the s
atterer under test.In order to show the 
apability of the proposed strategy in dete
ting and re
onstru
tinglayered stru
tures, the last test 
ase deals with a two-layer 
ir
ular stru
ture des
ribed inthe new �Marseille� database [36℄ and denoted by the a
ronym �FoamDielIntTM �. Su
ha s
attering 
on�guration is 
hara
terized by the following quantities: τ

(1)
ref = 2.0 ± 0.3,

L
(1)
ref = 1.5 × 10−2 [mt], τ

(2)
ref = 0.45 ± 0.15 and L

(2)
ref = 4.0 × 10−2 [mt]. As far as theimaging setup is 
on
erned, the des
riptive parameters are all the same as in the �rstexperimental s
attering database [35℄, ex
ept for the radius of the observation domain(Robs = 1.67 [mt]) and the number of views and measurement lo
ations [M(v) = 241,

v = 1, ..., V , V = 8℄. For a detailed des
ription of the measurement setup please see [41℄.Taking into a

ount previous results in dealing with diele
tri
 obsta
les, the dataset re-lated to the lowest working frequen
y has been 
onsidered (f = 2 GHz). Moreover, thesame number of array elements used for the �rst example of this sub-se
tion has been
onsidered for modeling the a
tual sour
e and 
omputing their amplitudes by means ofthe SV D. Su
h a 
onstraint has been imposed to verify the validity of the same sour
emodel for both the �Marseille� datasets as well as the dependen
e of the re
onstru
tionon the a

ura
y of the equivalent sour
e.Even though the adopted sour
e model faithfully reprodu
es the phase [Fig. 14(b)℄ ofthe radiated �eld in the observation domain, some deviations from the real data 
an benoti
ed in the 
orresponding amplitudes [Fig. 14(a)℄. Su
h an event 
learly indi
ates thatthe sour
e modeling is not 
ompletely optimal. Starting from su
h sour
e-synthesis, theresults of the retrieval pro
esses 
arried out with PD and FD approa
hes are shown in Fig.15. Despite the approximate model of the radiating sour
e, both the inversion performed16



with the IMSA − PD and with the IMSA − FD lead to a

eptable results. Although,the s
atterer 
annot be exa
tly identi�ed, the algorithms 
onverged to a stru
ture thato

upies a large subset of the true obsta
le and both of them revealed the boundaries ofthe layers. In parti
ular, it should be pointed out that the �nal re
onstru
tion obtainedby the �two-step� PD strategy is essentially almost identi
al to that one a
hieves startingfrom 
omplete s
attering data as 
on�rmed by the values in Tab. III.4 Con
lusionsA two-step strategy based on amplitude-only measurements of the total �eld has beenproposed and analyzed. The system ar
hite
ture has been designed integrating the iter-ative multi-resolution re
onstru
tion strategy with a sour
e modeling te
hnique to fullyexploit the limited amount of information a
hievable from s
attering data, without re-quiring expensive measurement setups or 
omplex a
quisition pro
edures.The main features of the proposed strategy are the following:
• 
apability to exploit the limited amount of information a
hievable from amplitude-only measurements in an e�e
tive fashion by means of the use of a multi-s
alingrepresentation of the problems unknowns;
• 
apability to deal with 
omplex nonlinear 
ost fun
tions as well as the o

urren
eof possible false solutions (or lo
al minima of the 
ost fun
tional) thanks to thee�e
tiveness of a distributed-intelligen
e optimization algorithm;
• robustness to 
ommon levels of noise.Con
erning the methodologi
al novelties of this work, besides the de�nition of the globalar
hite
ture of the whole system, some spe
i�
 aspe
ts should be pointed out:
• original two-step strategy that allows a redu
ed number of measures and externalto the investigation domain;
• spe
i�
 and innovative formulation of the amplitude-only data inversion within theframework of inverse s
attering algorithms;17



• use of a multi-resolution pro
edure to address the phaseless-data inversion;
• use of a parti
le swarm optimizer for the iterative minimization of the non-di�erentiableamplitude-only 
ost fun
tion.In the numeri
al assessment 
arried out on di�erent 
onditions and experimental datasets
on
erned with various s
attering 
on�gurations, the proposed ar
hite
ture proved e�e
-tive, providing both a

eptable re
onstru
tion a

ura
y and robustness to the noise aswell as to false solutions. Final re
onstru
tions have usually shown a general agreementwith those from full data (amplitude and phase) and a
tual pro�les. As far as the in-formation related to the phase value is 
on
erned, the numeri
al results pointed out thatphaseless inversions are very 
lose and essentially identi
al to those obtained with a 
om-plete approa
h in the presen
e of non-negligible levels of noise (syntheti
 experiments)and for lower frequen
ies (experimental datasets).Be
ause of the favorable trade-o� between 
omplexity/
osts of the a
quisition setup andre
onstru
tion e�e
tiveness, the proposed approa
h seems a very promising tool to be usedin industrial appli
ations for non-destru
tive tests and evaluations. Towards this purpose,further developments of this resear
h work will be oriented in two di�erent dire
tions:1. further simplifying the required imaging system by developing a pro
edure that doesnot require the measure of the phase of the radiated �eld (even though in su
h a 
aseit is limited to the observation domain and it 
an be performed on
e and o�-lineduring the 
alibration of the measurement setup);2. extending the two-step strategy from free-spa
e 
on�gurations to layered/strati�edmedia as well as inhomogeneous ba
kgrounds for dealing with biomedi
al and morerealisti
 industrial appli
ations.
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Figure Captions
• Figure 1. Problem geometry.
• Figure 2. Blo
k diagram of the Two-Step re
onstru
tion Strategy.
• Figure 3. Centered square diele
tri
 
ylinder (Lref = λ

2
, τref = 1.0) - Weightingsour
e 
oe�
ients Aw, w = 1, ..., W of the DCW-Model (W = 15): (a) amplitudeand (b) phase.

• Figure 4. Centered square diele
tri
 
ylinder (Lref = λ
2
, τref = 1.0) - Comparisonbetween the in
ident �eld measured in Dobs and the numeri
ally-
omputed valuesof Ev

inc

(
xm(v), ym(v)

): (a) amplitude and (b) phase (v = 1).
• Figure 5. Centered square diele
tri
 
ylinder (Lref = λ

2
, τref = 1.0) - A
tualdiele
tri
 pro�le (a). PD Approa
h - Re
onstru
ted pro�les at (b) s = 1, (
) s = 2,and (d) at the 
onvergen
e step (s = 3) of the IMSA-PSO Strategy . FD Approa
h- Re
onstru
ted pro�les at the 
onvergen
e step (s = 3) of the IMSA-PSO Strategy(e).

• Figure 6. Centered square diele
tri
 
ylinder (Lref = λ
2
, τref = 1.0) - Compari-son between a
tual, estimated with FD approa
h, and PD approa
h values of (a)amplitude and (b) phase of Ev

scatt

(
xm(v), ym(v)

) in Dobs.
• Figure 7. Centered square diele
tri
 
ylinder (Lref = λ

2
, τref = 1.0) - (a) Ampli-tudes of the a
tual Ev

tot

(
xm(v), ym(v)

) and re
onstru
ted ξv
tot

(
xm(v), ym(v)

) total �eldin Dobs. (b) Amplitudes of the a
tual Ev
inc

(
xn(r), yn(r)

), estimated Ẽv
inc

(
xn(r), yn(r)

),and re
onstru
ted ξv
inc

(
xn(r), yn(r)

) in
ident �eld in Dinv.
• Figure 8. Centered square diele
tri
 
ylinder (Lref = λ

2
, τref = 1.0) - Comparisonbetween PD Approa
h and FD Approa
h (IMSA-PSO Strategy) in terms of error�gures: (a) ρ, (b) ∆, (
) γtot, (d) γint and (e) γext.

• Figure 9. Two square lossy 
ylinders (L(1)
ref = λ

4
, τ

(1)
ref = 3.0 − j0.4 and L

(2)
ref = λ

2
,

τ
(2)
ref = 1.5 − j0.25 - SNR = 20 dB) - A
tual diele
tri
 pro�le: (a) Re {τref (x, y)}and (b) Im {τref (x, y)}. PD Approa
h - Re
onstru
ted pro�les at the 
onvergen
e25



step (s = 3) of the IMSA-PSO Strategy : (
) Re {τ (x, y)} and (d) Im {τ (x, y)}. FDApproa
h - Re
onstru
ted pro�les at the 
onvergen
e step (s = 2) of the IMSA-PSOStrategy : (e) Re {τ (x, y)} and (f ) Im {τ (x, y)}.
• Figure 10. O�-
entered homogeneous 
ir
ular diele
tri
 
ylinder (Real dataset [35℄�dielTM_de
8f.exp� - f = 1 GHz). PD Approa
h - Re
onstru
ted pro�les with (a)�bare� PSO-based Approa
h and (b) IMSA-PSO Strategy . FD Approa
h - Re
on-stru
ted pro�les with (
) �bare� PSO-based Approa
h, (d) IMSA-PSO Strategy, (e)�bare� CG-based Approa
h, and (f ) IMSA-CG Strategy .
• Figure 11. O�-
entered homogeneous 
ir
ular diele
tri
 
ylinder (Real dataset [35℄�dielTM_de
8f.exp� - f = 1 GHz) - (a) Amplitudes of the a
tual Ev

tot

(
xm(v), ym(v)

)and re
onstru
ted ξv
tot

(
xm(v), ym(v)

) total �eld in Dobs. (b) Amplitudes of the esti-mated Ẽv
inc

(
xn(r), yn(r)

) and re
onstru
ted ξv
inc

(
xn(r), yn(r)

) in
ident �eld in Dinv.
• Figure 12. O�-
entered homogeneous 
ir
ular diele
tri
 
ylinder (Real dataset[35℄ �dielTM_de
8f.exp� - f = 1 GHz) - Comparison between a
tual, estimatedwith FD approa
h, and PD approa
h values of (a) amplitude and (b) phase of

Ev
scatt

(
xm(v), ym(v)

) in Dobs.
• Figure 13. O�-
entered homogeneous 
ir
ular diele
tri
 
ylinder (Real dataset [35℄�dielTM_de
8f.exp�) - Behavior of the lo
alization error ρ versus frequen
y.
• Figure 14. Multi-layer diele
tri
 
ir
ular 
ylinder (Real dataset [36℄ �FoamDielIntTM �- f = 2GHz) - Comparison between the in
ident �eld measured in Dobs and thenumeri
ally-
omputed values of Ev

inc

(
xm(v), ym(v)

): (a) amplitude and (b) phase(v = 1).
• Figure 15. Multi-layer diele
tri
 
ir
ular 
ylinder (Real dataset [36℄ �FoamDielIntTM �- f = 2GHz). PD Approa
h - Re
onstru
ted pro�les with (a) �bare� PSO-basedApproa
h and (b) IMSA-PSO Strategy . FD Approa
h - Re
onstru
ted pro�les with(
) �bare� PSO-based Approa
h and (d) IMSA-PSO Strategy .
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Table Captions
• Table I. Centered square diele
tri
 
ylinder (Lref = λ

2
, τref = 1.0) - Values of thequalitative (ρ and δ) and quantitative (γtot, γint, and γext) error �gures at di�erentsteps s (s = 1, 2, 3) of the IMSA-PSO strategy for the FD and PD approa
h,respe
tively.

• Table II. O�-
entered homogeneous 
ir
ular diele
tri
 
ylinder (Real dataset [35℄�dielTM_de
8f.exp� - f = 1 GHz) - Lo
ation and shape parameters.
• Table III.Multi-layer diele
tri
 
ir
ular 
ylinder (Real dataset [36℄ �FoamDielIntTM �- f = 2GHz) - Lo
ation and shape parameters.
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Step No. γtot γint γext ρ ∆

PD Approach

s = 1 7.25 28.6 5.83 2.65 161

s = 2 5.41 22.9 4.25 2.49 44.1

s = 3 3.49 21.1 2.32 2.80 31.8

FD Approach

s = 1 8.41 32.8 6.79 1.08 191

s = 2 4.19 25.7 2.09 0.82 61.8

s = 3 2.02 15.1 2.00 0.02 7.83

Tab. I - G. Fran
es
hini et al., �Inversion of phaseless total �eld data using ...�
46



xRoI

λ
yRoI

λ
LRoI

2λ

Actual Profile

0.0 −1.0 × 10−1 5.0 × 10−2

Reconstructed Profile (PD Approach)

PSO 1.3 × 10−2 −4.0 × 10−4 2.9 × 10−1

IMSA − PSO 4.3 × 10−3 −6.0 × 10−2 1.2 × 10−1

Reconstructed Profile (FD Approach)

PSO 7.0 × 10−3 −1.1 × 10−1 2.0 × 10−1

IMSA − PSO 6.0 × 10−3 −1.1 × 10−1 5.0 × 10−2

CG 2.3 × 10−2 −1.3 × 10−1 1.9 × 10−1

IMSA − CG −8.7 × 10−3 −1.0 × 10−1 1.1 × 10−1

Tab. II - G. Fran
es
hini et al., �Inversion of phaseless total �eld data using ...�
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xRoI

λ
yRoI

λ
LRoI

2λ

Actual Profile

7.3 × 10−3 0.0 2.7 × 10−1

Reconstructed Profile (PD Approach)

PSO 2.5 × 10−2 1.3 × 10−3 8.7 × 10−1

IMSA − PSO 3.5 × 10−2 −1.3 × 10−2 2.5 × 10−1

Reconstructed Profile (FD Approach)

PSO 3.5 × 10−2 2.5 × 10−2 3.0 × 10−1

IMSA − PSO 3.1 × 10−2 −8.7 × 10−3 2.6 × 10−1

Tab. III - G. Fran
es
hini et al., �Inversion of phaseless total �eld data using ...�
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