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Abstract

In this letter, the synthesis of a three-band patch anterovling in E5-1, Galileo and
Wi — Maz frequency bands is described. The geometry of the antendafiised by
performing a Koch-like erosion in a classical rectangulatch structure according to a
Particle Swarm strategy to optimize the values of the almdtparameters within given
specifications. In order to assess the effectiveness oftemaa design, some results from
the numerical synthesis procedure are described and a csmpaetween simulations and

experimental measurements is reported.
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1 Introduction

In recent years, several researchers have devoted lamésdfi develop radiating devices that
satisfy the demands of the mobile telecommunication ingidst improved performances in
terms of multiple frequency bands and miniaturization. Asadter of fact, the design and the
development of a single radiator working in two or more freqay bands is generally not an
easy task especially when restrictive geometrical comgrare imposed on the radiating struc-
ture. In order to overcome the limitations of classical aditig devices (e.g., wire antennas or
microstrip antennas) some investigations, both numeanédlexperimental, have been carried
out to define alternative structures potentially able toalimproved performances [1][2][3][4].
Fractal shapes have proved to be good candidates for thivgewent of miniaturized and multi-
band antennas and several analyses have been carried oudlydlse radiating properties of
Koch [5][6] and Sierpinski [7][8][9] shapes. Unfortunatestandard fractal or prefractal shapes
show a harmonic frequency behavior instead of uncorrelateliband resonances [5]. An ef-
fective way to face such a drawback consists in perturbiregfitactal geometry by “adding”
some degrees of freedom to the antenna structure. Follosuing an approach and avoiding
the insertion of lumped loads as in [10] to obtain a multi-dbhehavior, some interesting results
have been presented in [8] by considering a reference 8&kifractal shape and perturbing its
scale factor. As a matter of fact, the effects of suitabléysbations on the descriptive geometri-
cal parameters of fractals proved to be a possible way toawgptheir performances or modify
their standard electrodynamic behavior. As an exampleptitemization of geometrical pa-
rameters of pre-fractal shapes has been used to improvadreion performances of classical
fractal antennas [11]. According to such an idea, the effetperturbations of Sierpinski-like
antennas on the allocation of operating bands have beeyzadain [8]. MoreoverAzaro et

al. showed in [12] and [13] the syntheses of non-harmonid-daad radiators by means of
the optimization of a perturbed prefractal Koch-like shaperder to comply with user-defined
electrical (i.e., VSWR and gain values) and geometricabt@mts.

In this letter, the multiband antenna synthesis problenolgesi by considering a patch shape
in order to avoid the geometrical impact of monopolar gesretaind by tuning the resonance

frequencies of the structure according to a Koch-like enogirocess.



2 Three-Band Patch Antenna Synthesis

The antenna was required to operate inth@nd E; frequency bands of th@alileo positioning
system {;,, = 1575.42 M Hz andfg, = 1191.795 M H z) and in thel¥/i — M ax frequency band
centered affyy, = 2.5 GHz. Moreover, aReturn Loss lower than—10 dB has been imposed
at the input port of the antenna. Furthermore, the antenadsef a hemispherical coverage
with a main lobe widthy_y,5 > 70°. Finally, the antenna support has also been required to
belong to a physical platform of dimensioh8 x 10 cm? above a low permittivity substrate
(i.e., Arlon substrate with a thickness af= 0.8 mm and dielectric characteristics = 3.38
andtgo = 0.0025 at f = 10 GH 2).

As far as the design of the antenna geometry is concernedch glaucture has been assumed
as reference shape because of the vertical hemispheritiatican pattern suitable for both the
reception of satellite signals and mobile communicatid@§[[L5]. Moreover, patch antennas
are characterized by a low profile with several other ad\gagaver other geometries [16] such
as the weight, costs, and the easy integration into eldctevices (e.g., in automotive or
mobile applications). In addition, recent results havenshthat patch structures can be prof-
itably modified by perturbing their original shapes to imypgdheir geometrical and electrical
performances. As an example, interesting miniaturizatésults have been presented in [17]
and [18] where H-shaped geometries or Koch fractal shapeskieen considered, respectively.
Furthermore, the presence of slit cuts in the patch area éas taken into account in [19] to
tune the resonance frequencies as well as to reduce thenardenension.

Starting from these assumptions and considerations, thigrierocess has been recast to the
erosion of perturbed Koch-like prefractal areas from a @gdad rectangular patch in order to
tune, according to the project guidelines, multiple nomianic resonant frequencies. More-
over, the position of the input port has been optimized to ifihthe input impedance require-
ments.

Accordingly and referring to a microstrip structure pridten the planar dielectric substrate,
the parameters to be optimized were the perimeter of théalracosion along the patch sides.
Following the notation in [10], the shapes of the perturbddsof the patch antenna have been
generated starting from the Koch curve and repeatedly appihe so-called Hutchinson op-

erator. More in detail, the Hutchinson transformation hasrbapplied only once (= 1) on a



side and two-times/(= 2) on the other one to tune three non-harmonic resonant frenges
The resulting structure turned out to be uniquely defined détgmiining the values of the fol-
lowing parameters (Fig. 1)af segments lengths,; . », s = 1,2 (s being the index that
identifies an eroded side of the patch), = 1, ..., I(,) (i being the fractal stage of theth patch
side),u) = 1,....,4@~! andv = 1,...,4 (v being thev-th segment of the-th self-similar

shape); if) anglesO;;, z = 1,2 (2 denoting thez-angle of theu-th self-similar shape)

5)rU(s)s21

by assuming; ; Os,icyyuy,2 + (€) coordinatesip, yp) of the antenna input port (or

s t(s) 1 T
feed point, denoted by a white dot in Fig. 1 and Fig. 2) belnggo the antenna support.

In order to fit the user-defined requirements, the values etrijgtive parameters have been
determined by minimizing the cost functidh proportional to the difference between require-

ments and estimated electrical parameters:

T (o) = min{¢ (a)} (1)

where

M1 N-1 71 Glmin {1AO,nAGmA [} =D {tAOnAGmA S}
C(@) = 2m=0 2on=0 20 {max [0, Crin (18O .nASmA [} }}*’

V-1 U{r ALY =V SW Rimaa
+ 2 o {max [07 b V;WRWM ]}

(2)

beinga = {LSJ(S),U(S),U, @S%),u(s),z; Tp; Yp; iy = 23 i2) = L5 u) = 1, ... Ao by =1, ... ,4; 2z = 1,2}.
In particular,A f is the sampling step in the,- £5 andW-Max frequency bands)d and A¢
are the angular steps of the gain function. Moreovdefp} = & {tA0,nA¢p, mAf} is the
estimated gain function computed at€ tA0 ,¢ = nA¢, f = mAf)and¥ {a} = UV {rAf}

is the estimated” STV R value at the frequency = rAf.

Towards this end and according to the guidelines reportd@0i{j21], a suitable implemen-
tation of the PSO [22][23] customized to the solution of antenna syntheswbl@ms has
been integrated with a Koch-like perturbed prefractal shggenerator and with a method-of-
moments {/oM) [24] electromagnetic simulator. More in detail, a set tﬁltsolutions@,’“’ (p,

p = 1, ..., P, being the trial solution index) has been iterativelybeing the iteration index)
defined by means of theSO strategy and evaluated by computing the correspondingvebst

opt

uesT® = 1 <g§f“)> until k = K or Y=Fem) < ) ) being the convergence threshold and



Té’;)t = ming {T®} whereT® = min, {T,(,k)}. As far as the computation of the cost values
are concerned, botReturn Loss and gain values have been computed by means olth&/
simulator, which takes into account the presence of thetsatbsas well as of the reference

ground plane assumed of infinite extent.

3 Numerical Simulation and Experimental Validation

In order to synthesize the three-band antenna, the follgpwatup for the?.SO-based optimiza-
tion procedure has been assumed: a dimension of the swamhtegd = 8, the convergence
threshold fixed to) = 103, and a maximum amount of iterations equakfo= 200.

For illustrative purposes, Figures 2 and 3 show the evahubicthe optimal trial solutiorgg;,l,
and the correspondinigeturn Loss behavior during the minimization process, respectively. A
it can be noticed (Fig. 2), the geometrical parameters ofrdretal boundary are mainly var-
ied during the first iterations [Figs. &f(b)], while the location of the feed point is modified
throughout the whole process [Figsap(e)] for a precise tuning and matching of the antenna
with minor modification to the fractal perimeter whén> 10. Accordingly (see Fig. 3), start-
ing from a very poor solution [Fig. 2] - £ = 0] the optimization process is able to determine
better and better geometries until the final structure [Ri@) - £ = kconv, D€INGE o, = 103]
fully fits the requirements both in terms of electrical (F&- V. SW R; Fig. 4 - Horizontal gain
values; Fig. 5 - Vertical gain values) and geometrical pat@ms {8 [mm| along thez-axis
and61 [mm] along they-axis with the feed point located ap = 3.2 mm andyp = 4.2 mm).

As far as the radiation properties are concerned, the dedigntenna allows a hemispherical

coverage as expected when dealing with patch-like strestand further confirmed by both

numerical and experimental results shown in [17] [18] [19].
(k)

optr VETSUS the itera-

For completeness, the behavior of the optimal value of tis¢ ftmctionY
tion numberk is shown in Fig. 6. Concerning the computational burdenhdag0 iteration
took aC' PU-time of about30 sec on a Pentium IVI800 M H z with 512 M B RAM memory.

In order to perform an experimental validation, a prototgpthe synthesized antenna has been
fabricated (Fig. 7) and measured. During the measuremirgqrototype has been equipped
with an SM A connector and placed on a reference finite ground plane viitierssions of

90 x 140 cm?. The Return Loss values have been measured with a scalar network analyzer
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in a controlled environment and the results are comparel mimmerical data in Fig. 8. As it
can be observed, although an satisfactory agreement hasabbieved, there are some differ-
ences between numerical and experimental results (edlgdoidhe Wi-Max band) probably
due to the following motivations:aj the electromagnetic model of the dielectric substrate is
more carefully approximated at the lower frequencies aedibdel accuracy reduces at higher
frequencies;lf) unlike simulations, the measurement ground plane is defiextent and finite
conductivity.

Concerning the bandwidth issue, theand E5 Galileo signals present narrow spectra (approx-
imately of aboutl0 + 20 M H z) and the resonance bands of the synthesized antenna mbet suc
a requirement. The same conclusion holds true for the Wi-bend, as well, since a sufficient
bandwidth (of approximatelg0 M H =) has been obtained to allocate a finite set of Wi-Max

channels.

4 Conclusions

The design of a three-band patch antenna workingsil.; Galileo andWi — Max frequency
bands has been presented. The synthesis problem has beenuleted in terms of an opti-
mization one by considering a reference patch antenna aiugssive perturbations according
to fractal-shaped erosion in order to tune the resonangeémcies. A prototype of the antenna
has been built and some comparisons between measured amdtsithReturn Loss values

have been carried out to demonstrate the effectivenessetiallility of the synthesis process.
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Figure Captions

e Figure 1. Descriptive parameters.

e Figure 2. Geometrical structure of the patch antenna at differematiens of the opti-

mization process:d) k = 0, (b) £ = 10, (c) £ = 50, (d) £ = 80, and €) k = kcon-

e Figure 3. Behavior of theReturn Loss values at the input port of the patch antenna at

different iterations of the optimization process.
e Figure 4. Behavior of the simulated gain function in the horizontalre p = 90°].

e Figure5. Behavior of the simulated gain function in the vertical @aii@) - ¢ = 0°, (b)

- ¢ = 90°].

e Figure 6. Behavior of the optimal value of the cost functitﬂﬁ’;,i, versus the iteration

numberk.
e Figure7. Photograph of the prototype of the three-band patch antenna

e Figure 8. Comparison between measured and simul&g&tdrn Loss amplitude values.
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