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Dealing with Multi-Frequen
y S
attering Data throughthe IMSA
Davide Fran
es
hini, Massimo Donelli, Renzo Azaro, and Andrea Massa

Abstra
tThis 
ontribution presents a set of representative results obtained with two multi-resolution strategies developed for dealing with multi-frequen
y inverse s
atteringexperiments starting from the iterative multi-s
aling approa
h previously studiedfor mono
hromati
 illuminations. The �rst approa
h is 
on
erned with the integra-tion of the iterative multi-s
aling algorithm into a frequen
y-hopping re
onstru
tions
heme, while the se
ond one allows a multi-resolution simultaneous pro
essing ofmulti-frequen
y data. The numeri
al and the experimental analysis are aimed at as-sessing both the re
onstru
tion e�e
tiveness and the required 
omputational 
osts ofthe two- and three-dimensional implementations of the proposed inversion s
hemesin 
omparison with the mono
hromati
 multi-step pro
ess and to the single-stepoptimization strategy, as well.
Key words:Mi
rowave Imaging, Ele
tromagneti
 Inverse S
attering, Multi-Frequen
y Data,Multi-Resolution Te
hnique, Iterative Multi-S
aling Approa
h.2



1 Introdu
tionMi
rowave imaging te
hniques are aimed at pro
essing the s
attered ele
tromagneti
 ra-diation 
olle
ted in a non-invasive fashion on an external measurement region for deter-mining the ele
tromagneti
 properties of an ina

essible area of investigation [1℄-[3℄.A key problem related to su
h te
hniques is the la
k of 
olle
table information on thes
enario under test. As a matter of fa
t, the information 
ontent available from the s
at-tering experiments 
annot be arbitrarily in
reased by oversampling the s
attered �eld [4℄and, sin
e single-illumination measurement setups do not usually allow a detailed re
on-stru
tion of unknown s
atterers, multi-view and multi-illumination a
quisition systemshave been proposed [5℄ for in
reasing the amount of informative data. In su
h a 
ontext,several works have shown that frequen
y-hopping strategies (e.g., [6℄) or the simultaneouspro
essing of multi-frequen
y data [7℄-[9℄ 
an improve the re
onstru
tion 
apabilities ofinverse s
attering algorithms.However, multi-frequen
y strategies have some intrinsi
 drawba
ks to be 
arefully ad-dressed for realizing e�e
tive and reliable inversion s
hemes. From the point of viewof software/hardware resour
es, the in
rease of inversion data unavoidably needs of addi-tional 
omputational and storage resour
es with respe
t to mono
hromati
 re
onstru
tionmethodologies. Moreover, the obje
t fun
tion modeling the diele
tri
 and 
ondu
tivityparameters of the medium varies in relation to the working frequen
y and a

ording tothe dispersion model. Therefore, suitable 
ountermeasures are 
ommonly adopted, whi
h
onsider a narrow range of frequen
ies or assume a Maxwellian model for des
ribing therelationship between diele
tri
 parameters and operating frequen
y (e.g., [7℄ and [8℄).On the other hand, even though possible advantages of using multi-frequen
y measureshave been deeply investigated in the framework of single-step inversion algorithms, a lim-ited literature deals with the exploitation of multi-frequen
y information through multi-resolution strategies [10℄. Therefore, this paper is aimed at developing su
h an issue byinvestigating how a multi-frequen
y approa
h 
an be pro�tably integrated into a multi-step inversion algorithm (IMSA) [11℄[12℄ previously studied fa
ing mono
hromati
 data.This interest is mainly motivated from the non-negligible advantages that are expe
ted.As a matter of fa
t, multi-frequen
y strategies based on the IMSA 
ould better ex-3



ploit the well-known bene�ts of a multi-resolution expansion of the unknown spa
e (e.g.,[11℄-[14℄) taking into a

ount the enlarged set of information 
oming from the s
atteringexperiments at di�erent frequen
ies.The paper is organized as follows. The mathemati
al formulation of the multi-frequen
yapproa
hes based on the IMSA is brie�y summarized in Se
t. 2 as far as the two-dimensional 
ase is 
on
erned, while a set of representative syntheti
 as well as experi-mental results (regarding two- and three-dimensional 
on�gurations of diele
tri
 and lossybodies) are shown and dis
ussed in Se
t. 3. Finally, in Se
t. 4, some 
on
lusions andfurther possible developments will be outlined.2 Mathemati
al FormulationFor simpli
ity, let us refer to a two-dimensional s
enario (Fig. 1) 
hara
terized by an inho-mogeneous 
ross se
tion DI lying in a homogeneous host medium (ε0, µ0) and illuminatedby a set of P mono
hromati
 (fp being the working frequen
y of the p-th illumination,
p = 1, ..., P ) in
ident ele
tri
 �elds TM-polarized impinging from V di�erent dire
tions(Einc

v,p(x, y) = Einc
v,p (x, y)ẑ, v = 1, ..., V , p = 1, ..., P ). The multi-frequen
y informationavailable from the s
attered radiation Etot

v,p(xmv,p
, ymv,p

) = Etot
v,p(xmv,p

, ymv,p
)ẑ, 
olle
ted at

mv,p = 1, ..., Mv,p points belonging to the observation domain DO, has to be e�
ientlyexploited for re
onstru
ting the frequen
y-dependent 
ontrast fun
tion
τp (x, y) = εr (x, y)− 1− j

σ (x, y)

2πfpεo

p = 1, ..., P (1)
εr (x, y) and σ (x, y) being the relative permittivity and the 
ondu
tivity, respe
tively. The
hara
teristi
s of the s
enario under test τp (x, y), p = 1, ..., P , are related to the s
atteringdata (namely, the s
attered �eld in the observation domain, Escatt

v,p (x, y), (x, y) ∈ DO,and the in
ident �eld in the investigation domain, Einc
v,p (x, y), (x, y) ∈ DI) through theLippmann-S
hwinger s
attering equations [11℄

Escatt
v,p

(

xmv,p
, ymv,p

)

= Sext
v,p

{

τp(x, y)Etot
v,p(x, y)

}

(x, y) ∈ DI

(

xmv,p
, ymv,p

)

∈ DO

(2)
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Einc
v,p (x, y) = Etot

v,p(x, y)− Sint
v,p

{

τp(x, y)Etot
v,p(x, y)

}

(x, y) ∈ DI (3)where Sext
v,p and Sint

v,p denote the external and internal s
attering operator, respe
tively, and
Escatt

v,p is de�ned as Escatt
v,p (x, y) = Etot

v,p (x, y)−Einc
v,p (x, y).In order to e�e
tively deal with multi-frequen
y data by solving (2) and (3) in terms ofthe unknown 
ontrast fun
tion τp (x, y), p = 1, ..., P , two multi-resolution methodologiesbased on the IMSA will be proposed in the following.2.1 Frequen
y-Hopping Iterative Multi-S
aling Approa
h (IMSA-FH)The �rst inversion algorithm is 
on
erned with an integration of the IMSA into a fre-quen
y hopping s
heme. In su
h an integration the multi-frequen
y data (p = 1, .., P )are used in a 
as
ade fashion starting from the lowest available frequen
y (f = f1). Atea
h stage of the hopping strategy (p = 1, ..., P ), a nested multi-s
aling pro
edure of Spoptimization steps pro
esses the mono
hromati
 data-set related to the p-th frequen
y.More in detail, the pro
edure 
an be summarized as follows(a) Frequen
y-Hopping Re
onstru
tion Loop (p = 1, ..., P )(a.1 ) Initialization (sp = 0)The investigation domain DI is partitioned into Np sub-domains a

ording to the infor-mation 
ontent of the s
attered �eld [8℄ at f = fp and, 
onsequently, a suitable set ofre
tangular basis fun
tions [Bn(x, y), n = 1, ..., Np℄ is de�ned. Moreover, the problemunknowns are initialized to the free-spa
e 
on�guration, by setting Etot

v,p,sp
(x, y)

⌋

p=1,sp=0
=

Einc
v,p (x, y)

⌋

p=1
and τp,sp

(x, y)
⌋

p=1,sp=0
= τ0(x, y), when p = 1, otherwise the pro�le re-
onstru
ted at the 
onvergen
e step of the (p− 1)-th frequen
y stage is suitably mappedinto the investigation domain [i.e., Etot

v,p,sp
(x, y)

⌋

sp=0
= Etot

v,p−1(x, y) and τp,sp
(x, y)

⌋

sp=0
=

τp−1(x, y)℄;(a.2 ) Low-Order Re
onstru
tion (sp = 1)A homogeneous 
oarse re
onstru
tion 5



τp,sp
(x, y)

⌋

sp=1
=

∑N1
n=1 τp,sp

(xn, yn)
⌋

sp=1
Bn (x, y) , (x, y) ∈ DI (4)

Etot
v,p,sp

(x, y)
⌋

sp=1
=

∑N1
n=1 Etot

v,p,sp
(xn, yn)

⌋

sp=1
Bn (x, y) , (x, y) ∈ DI (5)is yielded by determining the set of unknown 
oe�
ients f

p,sp

⌋

sp=1
=

{

τp,sp
(xn, yn)

⌋

sp=1
,

Etot
v,p,sp

(xn, yn)
⌋

sp=1
; n = 1, ..., Np, v = 1, ..., V }, through the minimization of the low-order
ost fun
tion

Ψ
{

f
p,1

}

=

V
∑

v=1

∑Mv,p

mv,p=1|E
scatt
v,p (xmv,p ,ymv,p)−Sext

v,p{τp,1(xn, yn)Etot
v,p,1(xn, yn)}|

2

V
∑

v=1

∑Mv,p

mv,p=1|Escatt
v,p (xmv,p ,ymv,p)|

2

+

V
∑

v=1

∑Np

n=1|E
inc
v,p (xn, yn)−Etot

v,p,1(xn, yn)+Sint
v,p{τp,1(xn, yn)Etot

v,p,1(xn, yn)}|
2

V
∑

v=1

∑Np

n=1|Einc
v,p (xn, yn)|

2

(6)
(a.3 ) Multi-S
aling Pro
ess (sp = 2, ..., Sp)(a.3.I ) Multi-S
aling Pro�le Re
onstru
tionStarting from the solution f

p,sp−1

omputed at the previous step (sp − 1), a set of Qspregions-of-interest (RoIs), D

(q)
O(sp−1), is de�ned a

ording to the 
lustering pro
edure de-s
ribed in [12℄ where the resolution level is in
reased [Rsp

← Rsp
+ 1℄. Therefore amulti-resolution representation of the unknowns

τp,sp
(x, y) =

∑Rsp

rsp=1

∑N(rsp)
n(rsp)=1

τp,sp

(

xn(rsp), yn(rsp)

)

Bn(rsp) (x, y)

(x, y) ∈ DI

Etot
v,p,sp

(x, y) =
∑Rsp

rsp=1

∑N(rsp)
n(rsp)=1

Etot
v,p,sp

(

xn(rsp), yn(rsp)

)

Bn(rsp) (x, y)

(7)
rsp

being the resolution index at the sp-th step ranging from the largest 
hara
teristi
length s
ale (rsp
= 1) up to the smallest basis-fun
tion support (rsp

= Rsp
= sp), islooked for as the minimum of the multi-resolution 
ost fun
tion

6



Ψ
{

f
p,sp

}

=

V
∑

v=1

∑Mv,p

mv,p=1

∣

∣

∣

∣

Escatt
v,p (xmv,p ,ymv,p)−Sext

v,p

{

τp,sp

(

x
n(rsp)

, y
n(rsp)

)

Etot
v,p,sp

(

x
n(rsp)

, y
n(rsp)

)}∣

∣

∣

∣

2

V
∑

v=1

∑Mv,p

mv,p=1|Escatt
v,p (xmv,p ,ymv,p)|

2

+

1
V

∑

v=1

∑Rsp
rsp=1

∑N(rsp)
n(rsp)=1

∣

∣

∣

∣

Einc
v,p

(

x
n(rsp)

, y
n(rsp)

)∣

∣

∣

∣

2

V
∑

v=1

∑Rsp

rsp=1

∑N(rsp)
n(rsp)=1

{

w
(

xn(rsp), yn(rsp)

)

∣

∣

∣

∣

Einc
v,p

(

xn(rsp), yn(rsp)

)

−Etot
v,p,sp

(

xn(rsp), yn(rsp)

)

+

Sint
v,p

{

τp,sp

(

xn(rsp), yn(rsp)

)

Etot
v,p,sp

(

xn(rsp), yn(rsp)

)}
∣

∣

∣

∣

2
} (8)where

w
(

xn(rsp), yn(rsp)

)

=















0 if
(

xn(rsp), yn(rsp)

)

/∈ D
(q)
O(sp−1)

1 if
(

xn(rsp), yn(rsp)

)

∈ D
(q)
O(sp−1)

q = 1, ..., Qsp(a.3.II ) Multi-S
aling TerminationThe multi-s
ale pro
ess is stopped (sp = Sopt
p < Sp) when a set of stability 
riteriaon the re
onstru
tion [11℄ hold true and the rea
hed solution, f

p,Sopt
p

is assumed as theestimated solution at the p-th frequen
y stage [i.e., τp(x, y) = τp,Sopt
p

(x, y) and Etot
v,p(x, y) =

Etot
v,p,Sopt

p
(x, y)℄. Moreover, if p = P then the loop over the frequen
ies (f = f1, ..., fP ) isterminated and the �nal diele
tri
 pro�le returned, τ opt(x, y) = τp(x, y), as well as the�eld distributions Eopt

v,p (x, y) = Etot
v,p(x, y), p = 1, ..., P .2.2 Multi-Frequen
y Iterative Multi-S
aling Approa
h (IMSA-MF)Unlike the IMSA − FH , the IMSA − MF represents a generalization of the IMSApro
essing proposed in [11℄ for the re
onstru
tion of single s
atterers and extended in [12℄for multiple-obje
ts from single-frequen
y data. A

ordingly, some assumptions on thes
attering fun
tion (1) and a di�erent data pro
essing are needed. In the following, thedistin
tive issues of su
h an method will be brie�y resumed.(a) Multiple-Frequen
y Contrast Fun
tion Model7



In order to avoid in
reasing the number of unknowns, hen
e 
ompromising the bene�ts ofdealing with multi-frequen
y data, the maxwellian model for the dispersion relationshipis assumed
τp(x, y) = Re [τref(x, y)] + j

fref

fp
Im [τref(x, y)] (9)where the value of the 
ontrast at the p-th frequen
y, τp(x, y), is related to that of thereferen
e frequen
y fref , τref (x, y). Therefore, the inversion pro
ess aimed at determiningthe unknown referen
e 
ontrast fun
tion, τref (x, y), instead of P distributions, thus prof-itably exploiting the multi-frequen
y data spa
e and limiting the growing of the numberof unknowns (with respe
t to the mono-frequen
y 
ase) to the internal �elds, Etot

v,p(x, y),
p = 1, ..., P , that have to be estimated for ea
h working frequen
y (p = 1, .., P ) of theillumination setup;(b) Multi-Frequen
y Re
onstru
tion Loop (s = 1, ..., S)Likewise the standard IMSA, a multi-s
aling pro
edure of S (s = 1, ..., S) steps is per-formed in order to de�ne the multi-resolution expansion of the unknown parameters

τref(x, y) =
∑Rs

rs=1

∑N(rs)
n(rs)=1 τref

(

xn(rs), yn(rs)

)

Bn(rs) (x, y)

(x, y) ∈ DI

Etot
v,p(x, y) =

∑Rs
rs=1

∑N(rs)
n(rs)=1 Etot

v,p

(

xn(rs), yn(rs)

)

Bn(rs) (x, y)

(10)
being N(Rs) = maxp{Np} and Rs = s, by minimizing at ea
h step of the re
onstru
tionloop the Multiple-Frequen
y Multi-Resolution Cost Fun
tion de�ned as follows

Ψ
{

f
s

}

=

P
∑

p=1

V
∑

v=1

∑Mv,p

mv,p=1|E
scatt
v,p (xmv,p ,ymv,p)−Sext

v,p{τref,s(xn(rs), yn(rs))Etot
v,p,s(xn(rs), yn(rs))}|

2

P
∑

p=1

V
∑

v=1

∑Mv,p

mv,p=1|Escatt
v,p (xmv,p ,ymv,p)|

2

+

1
P

∑

p=1

V
∑

v=1

∑Rs

rs=1

∑N(rs)

n(rs)=1|Einc
v,p (xn(rs), yn(rs))|

2

V
∑

v=1

∑Rs
rs=1

∑N(rs)
n(rs)=1

{

w
(

xn(rs), yn(rs)

)

∣

∣

∣Einc
v,p

(

xn(rs), yn(rs)

)

−Etot
v,p,s

(

xn(rs), yn(rs)

)

+

Sint
v,p

{

τref,s

(

xn(rs), yn(rs)

)

Etot
v,p,s

(

xn(rs), yn(rs)

)}∣

∣

∣

2
} (11)where the unknown array turns out to be f

s
=

{

τref

(

xn(rs), yn(rs)

) , Etot
v,p,s

(

xn(rs), yn(rs)

);8



n (rs) = 1, ..., N (rs), rs = 1, ..., Rs, p = 1, ..., P , v = 1, ..., V }.3 Numeri
al AnalysisIn this Se
tion, a sele
ted set of representative inversion results are presented and dis-
ussed. The aim is to assess the re
onstru
tion 
apabilities of the proposed multi-resolution strategies (IMSA−MF and IMSA− FH) in 
omparison with the standard
IMSA [referred in the following as Single-Frequen
y IMSA (IMSA − SF )℄ and withrespe
t to traditional single-step methods. As far as two-dimensional 
on�gurations are
on
erned, both syntheti
 and experimental data are presented and the limitations inre
onstru
ting lossy stru
tures are dis
ussed. Moreover, as a representative example, there
onstru
tion of a three-dimensional layered stru
tures is reported, as well.3.1 Two-Dimensional Con�gurations3.1.1 Numeri
al Testing - Layered Diele
tri
 Pro�leThe geometry of the �rst test 
ase is shown in Fig. 2(a). A layered 
ylinder lies at xref

c =

−yref
c = −0.6 λ (λ being the wavelength at f = 6 GHz) in a square investigation domain

LDI = 3.0 λ- sided. The obje
t fun
tion of the inner square layer (Lin = 0.6 λ in side) is
τin = 0.5, while that of the outer layer (Lout = 0.9 λ-sided) is equal to τout = 2.0. Theinvestigation domain has been illuminated by a set of in
ident plane waves impinging from
V = 8 equally-spa
ed dire
tions. For ea
h illumination, multi-frequen
y data (1) (P = 3,
f1 = 5 GHz, f2 = 6 GHz, f3 = 7 GHz) have been simulated in a set of measurementpoints lo
ated on a 
ir
le rDO

= 3 λ in radius. Be
ause of the di�erent information
ontent available at ea
h frequen
y [4℄[8℄, Mv,1 = 31, Mv,2 = 37 and Mv,3 = 44 �eldsamples have been taken into a

ount at f1, f2 and f3, respe
tively. Therefore, N1 = 121,
N2 = 144, and N3 = 169 basis fun
tions have been used for the lower-order re
onstru
tion(IMSA − FH and IMSA − SF ), while N(Rs) = N3, s = 1, ..., S, has been 
hosen forthe IMSA−MF inversion.In the framework of the 
omparative study, the results of the inversion pro
ess both for the

(1)The data have been blurred adding a Gaussian noise 
hara
terized by SNR = 20dB.9



IMSA−SF simulations [Figs. 2(b)-(d)℄ and for the IMSA−MF approa
h [Fig. 2(e)℄ areshown in Fig. 2. As expe
ted, the gray-level images of the obje
t fun
tion pi
torially pointout that the re
onstru
tion bene�ts of non-negligible improvements when multi-frequen
ydata are exploited both in re�ning the outer and the inner layer. Su
h a qualitative im-pression is 
on�rmed by the 
orresponding values of the error �gures reported in Tab. Iand de�ned as in [11℄. Whatever the frequen
y used for the IMSA − SF inversion, the
IMSA−MF turns out to be better guaranteeing enhan
ed performan
es. In parti
ular
minp=1,2,3

{

χ
IMSA−SFp

tot

}

≥ 2.21χIMSA−MF
tot , minp=1,2,3

{

χ
IMSA−SFp

int

}

≥ 1.20χIMSA−MF
int and

minp=1,2,3

{

χ
IMSA−SFp

ext

}

≥ 1.58χIMSA−MF
ext . Su

essively, in order to generalize these indi-
ations, the whole set of simulations in the frequen
y range between 3 GHz and 7 GHzhas been performed. The results are resumed in Fig. 3 in terms of the total re
onstru
-tion error versus frequen
y [or the referen
e frequen
y fref for the IMSA −MF whenthe P = 3 adja
ent frequen
ies (fp−1 = fref − 1 GHz, fp = fref , fp+1 = fref + 1 GHz)are simultaneously pro
essed℄. As it 
an be observed, the a

ura
y of the multi-frequen
ystrategy is on average of about △χ

IMSA−SF/IMSA−MF
tot = 40% (being △χ

i/j
tot =

χi
tot−χj

tot

χi
tot

)better than that of single-frequen
y multi-resolution methods.For 
ompleteness, the IMSA−MF has been 
ompared to the other multi-resolution/multi-frequen
y approa
h (IMSA − FH). Moreover, as a referen
e, the inversion has beenperformed with single-step 
onjugate gradient-based strategies (also referred as �bare�approa
hes sin
e a homogeneous dis
retization, a

ording to the Ri
hmond's 
riterion[15℄, of the DI has been adopted) both in their frequen
y hopping (CG−FH) and multi-frequen
y (CG−MF ) implementations. In Fig. 4(a) the diele
tri
 pro�le retrieved withthe IMSA−FH strategy is shown. As it 
an be noti
ed (and 
on�rmed by the error valuesgiven in Tab. I), the IMSA slightly takes advantage of the frequen
y hopping s
heme [
ar-ried out by 
onsidering the P = 3 di�erent frequen
ies used for the mono
hromati
 simu-lations whose results are presented in Figs. 2(b)-(d)℄. As a matter of fa
t, it turns out that
minp

{

△χ
IMSA−SFp/IMSA−HF
tot

}

= 8.7% and maxp

{

△χ
IMSA−SFp/IMSA−HF
tot

}

= 34% versus
minp

{

△χ
IMSA−SFp/IMSA−MF
tot

}

= 54% and maxp

{

△χ
IMSA−SFp/IMSA−MF
tot

}

= 67%.On the other hand, it should be noti
ed that multi-resolution strategies (IMSA −MFand IMSA−FH) allow a non-negligible improvement of the re
onstru
tion e�e
tiveness10



in 
omparison with the 
orresponding �bare� approa
hes [CG − MF - Fig. 4(b) and
CG−HF - Fig. 4(
)℄ sin
e △χ

CG−FH/IMSA−FH
tot = 36% and △χ

CG−MF/IMSA−MF
tot = 55%.As far as the 
omputational issues are 
on
erned, a general overview is given in Tab.II where a set of representative parameters are reported. In parti
ular, the numberof unknowns (U), the total number of 
onjugate-gradient iterations needed for rea
h-ing the 
onvergen
e solution (Ktot), the mean time per iteration (tk), and the global

CPU time (Ttot) are given. Unavoidably, be
ause of the larger dimension of the set ofs
attering data, the simultaneous multi-frequen
y pro
essing requires greater storage re-sour
es (U IMSA−MF = 8500 and UCG−MF = 18052 vs. U IMSA−SF = U IMSA−FH = 3042and UCG−FH = 6515) and an in
reasing of the 
omputational burden for ea
h itera-tion (tIMSA−MF
k = 4.5 sec and tCG−MF

k = 20.2 sec vs. tIMSA−SF
k = tIMSA−FH

k = 0.5 secand tCG−FH
k = 1.32 sec). On the other hand, as expe
ted and also demonstrated in themono
hromati
 
ase, the multi-resolution te
hnique limit the 
omputational 
osts bothin terms of unknowns (U IMSA−MF ≃ 2.12 UCG−MF and U IMSA−FH ≃ 2.14 UCG−FH) and

CPU time (tCG−MF
k ≃ 4.5 tIMSA−MF

k and tCG−FH
k ≃ 2.64 tIMSA−FH

k ).3.1.2 Numeri
al Testing - Lossy Pro�leThe se
ond test 
ase deals with a lossy pro�le. A square 
ylindri
al stru
ture, whosedimensions are those of the inner layer used of the previous experiments, and 
hara
terizedby an obje
t fun
tion τ = 0.5 − j σ
2πfpεo

has been 
onsidered. For a sensitivity study, σhas been varied in the range 0.0 S
m
≤ σ ≤ 1.0 S

m
.The experiments 
arried out through the IMSA −MF indi
ate that the obje
t undertest is quite faithfully retrieved, even though there is an in
reasing of the values of there
onstru
tion errors [χre

tot - Fig. 5(a); χim
tot - Fig. 5(b)℄ when the 
ondu
tivity grows.Moreover, the 
omparisons with other IMSA-based approa
hes shows that the IMSA−

MF s
heme usually improves the e�e
tiveness of the retrieval pro
edure and the a

ura
yin re
onstru
ting the imaginary part is lower [Fig. 5(b)℄ than that in dealing with thereal part [Fig. 5(a)℄, espe
ially when the FH s
heme is exploited. Therefore, the latterdoes not seem the most e�e
tive methodology for obtaining a good estimation of the
ondu
tivity distribution. Eventually, one 
an also observe that the values of the internal11



[χim
int - Fig. 5(d)℄ and total [χim

tot - Fig. 5(b)℄ errors present a peak below σ = 0.1 S
m
. Thisis due to the di�
ulty of an a

urate re
onstru
tion of the imaginary part when its valueis mu
h lower than that of the real part.Su

essively, a layered 
on�guration for both the permittivity and 
ondu
tivity pro�les hasbeen taken into a

ount. In parti
ular, the real part of the 
ontrast is distributed as in thetest 
ase of Fig. 2(a), while the imaginary part is shown in Fig. 6(a), where the inner layeris 
hara
terized by σin = 0.5 S

m
and the outer one by σout = 0.1 S

m
. Su
h a referen
e pro�lehas been re
onstru
ted with the IMSA−MF and the results reported in Figs. 6(b)(
).As it 
an be noti
ed, the layered distribution has been satisfa
torily imaged. Moreover,in order to give a wider overview on potentialities and 
urrent limitations of the proposedstrategies, the behaviors of the error �gures when varying σin and σout from 0.0 S

m
up to

0.5 S
m
are shown in Fig. 7. As expe
ted, they 
on�rm that the a

ura
y in estimating the
ondu
tivity distribution is lower than that in retrieving than the permittivity pro�le. Asa matter of fa
t, χre

tot < 3.8% while χim
tot < 11%.3.1.3 Experimental Testing - Multiple S
atterersIn order to further assess the indi
ations drawn from the syntheti
 testing, an experimentalvalidation has been then performed. The s
attering data are kindly available from theInstitute Fresnel in Marseille (Fran
e) and the 
on�guration of the measurement set-up has been 
arefully des
ribed in [16℄. The measurements have been 
olle
ted in thefrequen
y range from 2 GHz and 10 GHz at Mv,p = 241 positions for ea
h of the V = 18illuminations. As a representative ben
hmark, the TM-polarized data 
on
erned withthe so-
alled �FoamDielExtTM � geometry [Fig. 8(a)℄ have been pro
essed. In su
h atest 
ase, the s
atterer under test is 
omposed by two 
ylinders 
hara
terized by obje
tfun
tions: τ1 = 0.45 and τ2 = 2.0. Moreover, the two-dimensional assumption 
an bemade sin
e the s
atterers are long with respe
t to the wavelength in the z-dire
tion.As far as the 
omparative study is 
on
erned, let us 
onsider as a referen
e result thatobtained pro
essing mono
hromati
 data (f = 5 GHz) with the IMSA− SF [Fig. 8(b)℄and by 
onsidering an initial dis
retization grid of N = 256 sub-domains (more results atdi�erent frequen
ies are presented in [17℄). Con
erning the IMSA −MF , the inversion12



[Fig. 8(
)℄ has been 
arried out by using P = 4 frequen
ies in the range between fmin =

2 GHz and fmax = 5 GHz with a frequen
y step of △f = 1 GHz. Moreover, the analysishas been 
ompleted with the re
onstru
tions by means of the IMSA − FH [Fig. 9(a)℄,the CG −MF [Fig. 9(b)℄, and the CG − FH [Fig. 9(
)℄. It is worth noting that theinvestigation domain DI for the �bare� approa
hes has been partitioned into N = 400sub-domains in order to rea
h a satisfa
tory spatial resolution in the estimated pro�le.From a qualitative point of view, the gray-level plots 
on�rm that usually the use ofmulti-frequen
y data improves the a

ura
y of the re
onstru
tions. More in detail, there
onstru
ted pro�les better reprodu
e the a
tual distribution espe
ially 
on
erning thehomogeneity of the s
atterers ex
ept for the IMSA − FH . In su
h a 
ase, the hoppingstrategy turns out to be e�e
tive in de�ning the stru
ture and the 
ontrast value of thestronger s
atterer, while some problems o

ur in shaping the weaker obje
t. On theother hand, it should be noti
ed that single step algorithms [Fig. 9(b) e Fig. 9(
)℄underestimate the value of obje
t fun
tion inside the support of the smaller s
atterer(τCG−MF
2 ≃ τCG−FH

2 ≃ 1.5) and they require more 
omputational resour
es than IMSA-based pro
edures as pointed out in the previous sub-se
tion.3.2 Three-Dimensional Con�gurationThis se
tion presents some representative results and 
onsiderations on the re
onstru
tionof three-dimensional multilayer stru
tures from multi-frequen
y data. In su
h a 
ase, theinvestigation domain is a 
ube Lind = 1.2 λ-sided and it has been illuminated by V = 4plane waves impinging from θinc = π/2, φinc = (v−1)π
2


lo
kwise with respe
t to the z axis.A set of points-like re
eivers (Mv,p = 21) has been lo
ated in G = 3 rings (ρm,v,p = 2.93λin radius) at the positions φscatt
m,v,p = φinc

v,p + 2πG (mv,p−1)
Mv,p

and zv,m =
[

1−G (mv,p−1)
Mv,p

]

z0,
z0 = 0.06λ. Moreover, the 
olle
ted data have been blurred by adding a Gaussian noisewith SNR = 30 dB.In su
h an arrangement, a multilayer pro�le of volume 0.6×0.6×0.6λ3 has been positionedat (xb = yb = zb = 0.0). The obje
t fun
tion of the three layers is τ1 = 0.5, τ2 = 1.0 and
τ3 = 1.5, respe
tively, and the volume of ea
h layer is 0.2 × 0.6 × 0.6λ3. The referen
edistribution is shown in Fig. 10 [z = 0.0 plane in Fig. 10(a) and x = 0.0 plane in13



Fig. 10(b)℄. As far as the inverse problem is 
on
erned, the investigation domain hasbeen initially uniformly dis
retized into N = 5 × 5 × 5 
ubi
 
ells and a 3D frequen
yhopping s
heme has been adopted (P = 2 - f1 = 1 GHz, f2 = 2 GHz). The retrievalobtained at the se
ond hop (s2 = 2) of the IMSA − FH (Fig. 11) 
learly points outthe layered stru
ture of the obje
t under test. The use of the hopping s
heme togetherwith the multi-s
aling approa
h improves the a

ura
y of the re
onstru
tion pro
edure asindi
ated by the behaviors of the error �gures in Tab. III.On the other hand, it should be pointed out that 
ertainly the simultaneous pro
essing ofmulti-frequen
y data would allow a further improvement of the re
onstru
tion a

ura
y,but this would unavoidably require additional 
omputational resour
es. In order to limitthe impa
t of su
h an issue in multi-frequen
y approa
hes, fast and e�
ient numeri
almethods are needed to be fully exploited through a multi-resolution allo
ation of theunknowns. A preliminary indi
ation of su
h a possibility and of the arising advantages, letus 
onsider the re
onstru
tion of the previous s
attering s
enario when both the imaginaryand the real part of the 
ontrast fun
tion are unknown. By 
onsidering a �bare� singlefrequen
y approa
h (CG− SF ), UGC−SF = 3250 are the unknowns parameters and themean time per iteration is of about tCG−SF
k ≃ 5.80 s. Dealing with a multi-frequen
yimplementation, the dimension of the unknowns spa
e be
omes UGC−MF = 25600 and

tCG−MF
k ≃ 45.64 s(2). On the 
ontrary, an exploitation of the proposed IMSA − MFstrategy would require a mean time per iteration of tIMSA−MF

k ≃ 11.14 s for re
onstru
ting
U IMSA−MF = 6250 parameters (su
h a 
on�guration provides a resolution level of thesame order of the CG−MF ) without leading to an in
reasing of the 
omputational 
osts(with respe
t to the standard single-step approa
h), thanks to the adaptive allo
ation atea
h step of the unknowns.4 Con
lusionsIn this paper, starting from a set of representative test 
ases, a 
omparative assessmentof two multi-resolution approa
hes exploiting multi-frequen
y data has been 
arried out.The obje
tive was that of giving some indi
ations on the most suitable strategy able to

(2) It has been supposed to dis
retize the investigation domain in N = 8× 8× 8 
ubi
 
ells.14



improve in a non-negligible fashion the re
onstru
tion a

ura
y with a reasonable amountof 
omputational resour
es 
ompared to that of single-step methodologies. As a matterof fa
t, unlike the IMSA− FH , the IMSA−MF provided numeri
al proofs of the en-han
ed e�e
tiveness in pro
essing multi-frequen
y information. Moreover, the numeri
aland experimental analysis pointed out 
urrent limitations of the proposed approa
h inre
onstru
ting lossy pro�les and the 
omputational needs of the three-dimensional multi-frequen
y multi-s
aling pro
edure that, even though demanding, is 
onsiderably moree�e
tive than the single step pro
edure. On the other hand, although the IMSA−MFdemonstrated an a

eptable robustness to the 
hoi
e of illumination frequen
ies, the nu-meri
al and experimental analysis pointed out that great 
are should be exer
ised indetermining the informative amount in multi-frequen
y s
attering data and how (and inwhi
h quantity) to pro
ess di�erent data-sets. As a matter of fa
t, su
h issues, 
urrentlyunder study, strongly a�e
t the performan
e of ea
h multi-resolution multi-frequen
ypro
edure sin
e they play a key-role both in allowing a good trade-o� between suitableresolution level in the re
onstru
tion, o

urren
e of lo
al minima, and ill-
onditioning ofthe whole inversion.Future developments of su
h a resear
h work will be aimed at theoreti
ally (withoutheuristi
 rules or expensive test-and-trial numeri
al investigations) quantifying the di-mension of the s
attering data spa
e as well as the independent information 
ontent ofea
h frequen
y data-set for a more e�e
tive exploitation of multi-frequen
y measurementsthrough multi-resolution approa
hes.
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Figure Caption
• Figure 1. Sket
h of the two-dimensional imaging 
on�guration.
• Figure 2. Numeri
al Testing - Layered pro�le. (a) Referen
e distribution of theobje
t fun
tion. Re
onstru
ted pro�les (SNR = 20dB) by means of the IMSA−SFat the working frequen
y of (b) f = 5 GHz, (
) f = 6 GHz and (d) f = 7 GHz.(e) Comparison with the results obtained by means of the IMSA − MF (f =

5, 6, 7 GHz).
• Figure 3. Numeri
al Testing - Layered pro�le. Behavior of the quantitative error�gures versus the working frequen
y (IMSA−SF ) and the referen
e frequen
y fref(IMSA−MF ).
• Figure 4. Numeri
al Testing - Layered pro�le. Re
onstru
tions obtained with (a)

IMSA− FH , (b) CG−MF , and (
) CG− FH , respe
tively.
• Figure 5. Homogeneous lossy pro�le. Behavior of the error �gures versus the
ondu
tivity. (a) χre

tot, (b) χim
tot, (
) χre

int and (d) χim
int .

• Figure 6. Layered lossy pro�le. (a) Imaginary part of the referen
e distributionof the obje
t fun
tion. Re
onstru
ted pro�le (SNR = 20dB) by means of the
IMSA − MF (f = 5, 6, 7 GHz) [(b) real and (
) imaginary part℄ when σint =

0.5 S/m and σext = 0.1 S/m.
• Figure 7. Layered lossy pro�le. Behavior of (a) χre

tot and (b) χim
tot versus the 
on-du
tivity.

• Figure 8. Experimental Testing - 'FoamDielExtTM ' Con�guration. (a) Sket
hof the obje
t under test. Re
onstru
tion results obtained with (b) IMSA − SF(f = 5 GHz) and (
) IMSA−MF (f = 2, 3, 4, 5 GHz).
• Figure 9. Experimental Testing - 'FoamDielExtTM 'Con�guration. Re
onstru
tionresults obtained with (a) IMSA−FH , (b) CG−MF , and (
) CG−FH pro
essingthe set of frequen
ies f = 2, 3, 4, 5 GHz.18



• Figure 10. Multi-layer diele
tri
 
ube - A
tual pro�le: (a) z − plane and (b)
x− plane.
• Figure 11. Multi-layer diele
tri
 
ube - Re
onstru
tion obtained at s2 = Sopt = 2:(a) z = 0.0λ plane and (b) x = 0.0λ plane.
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Table Caption
• Table I. Numeri
al Testing - Layered pro�le. Values of the quantitative error �guresat the 
onvergen
e.
• Table II. Numeri
al Testing - Layered pro�le. Values of the 
omputational indexes.
• Table III. Multi-layer diele
tri
 
ube - Error �gures vs steps at the di�erent hopsof the IMSA− FH .
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χtot χint χext

IMSA− SF (f = 5 GHz) 6.40 41.51 3.03
IMSA− SF (f = 6 GHz) 5.32 37.26 2.69
IMSA− SF (f = 7 GHz) 4.59 27.35 2.34

IMSA−MF (f = 5, 6, 7 GHz) 2.07 23.10 1.48
IMSA− FH (f = 5, 6, 7 GHz) 4.19 28.69 1.77

CG−MF (f = 5, 6, 7 GHz) 4.62 25.12 2.60

CG− FH (f = 5, 6, 7 GHz) 6.62 25.32 4.77

TableI-D.Fran
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U Ktot tk[s] Ttot[s]

IMSA− SF (f = 7 GHz) 3042 1820 0.5 0.8× 103

IMSA−MF (f = 5, 6, 7 GHz) 8500 4553 4.5 20.5× 103

IMSA− FH (f = 5, 6, 7 GHz) 3042 7287 0.5 3.4× 103

CG−MF (f = 5, 6, 7 GHz) 18052 1356 20.2 27.4× 103

CG− FH (f = 5, 6, 7 GHz) 6515 2180 1.32 2.9× 103

TableII-D.Fran
es
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yS
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33



p sp χtot χint χext

1 1 19.31 53.01 38.87

1 2 8.45 15.68 24.06

2 1 7.21 13.11 21.17

2 2 6.95 10.11 17.61

Table III - D. Fran
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