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Memory Enhan
ed PSO-Based Optimization Ap-proa
h for Smart Antennas Control in ComplexInterferen
e S
enarios
M. Benedetti, R. Azaro, and A. Massa

Abstra
tIn the framework of 
ontrol methods for adaptive phased-arrays, this paper dealswith 
omplex 
ommuni
ation s
enarios by 
onsidering a memory-enhan
ed 
ooper-ative algorithm. Compared to existing approa
hes where far-�eld interferen
es aretaken into a

ount, the proposed analysis 
onsiders a more realisti
 situation wherethe jamming sour
es are lo
ated either in the near-�eld or in the far-�eld of there
eiving antenna. In order to 
arefully address the arising 
hallenges and to e�e
-tively deal with su
h 
omplex environments, an optimization approa
h based on anenhan
ed PSO-based algorithm is used. The obtained results seem to 
on�rm thee�e
tiveness of the proposed te
hnique in terms of both signal-to-noise ratio and
omputational 
osts and 
omplexity.
Index Terms:Smart Antennas, Adaptive Control, Optimization Te
hniques, Parti
le SwarmOptimizer, Phased Arrays. 2



1 Introdu
tionThe 
ontinuous evolution of 
ommuni
ation systems requires the development and 
us-tomization of te
hniques based on the idea of diversity [1℄. In the framework of antennasdesign, su
h a theory has been applied for developing smart systems able to improvethe quality of the re
eived signal and to suppress the e�e
ts of interfering sour
es. The
on
ept of spatial diversity [2℄ has led to the 
oupling of array theory with adaptive 
on-trol and therefore to the design of antenna ar
hite
tures able to maximize the systemperforman
es (i.e., the signal-to-interferen
e-plus-noise ratio) by tuning dynami
ally theweights of the array elements.The mathemati
al theory of adaptive systems has been originally proposed by Applebaumin [3℄ dealing with linear arrays of isotropi
 sour
es in the presen
e of far-�eld (FF )narrow-band signals (i.e., a desired signal and a set of jammers). The array weights,adapted for pla
ing nulls in the far-�eld pattern in the dire
tions of interferen
e, areobtained by multiplying the quies
ent weights by the inverse of the sampled 
ovarian
ematrix formed from the 
omplex signals re
eived at ea
h element in the array.Alternatively, the adaptive 
ontrol has been also re
ast as an optimization problem byde�ning a suitable 
ost fun
tional to be maximized. Originally, deterministi
 te
hniquesbased on gradient methods (e.g., the least mean square (LMS) algorithm by Widrow et al.[4℄[5℄) have been proposed, but the resulting approa
hes were still 
hara
terized by severalnon-negligible drawba
ks. Be
ause of the need of estimating the 
ovarian
e matrix of thedesired signal from the measurements of the re
eived signals at ea
h element of the array,the array must have an expensive re
eiver or a 
orrelator at ea
h element. Unfortunately,most arrays (or the simplest/
heapest) have a single re
eiver at the output of the summerand the re
eivers (when available) would require sophisti
ated 
alibrations. On the otherside, these methods 
onsider variable analog amplitude and phase weights, but phasedarrays usually have only digital beam steering phase shifters at the elements and the feednetwork (�xed) determines the amplitude values. Therefore, the 
ontinuous phase values
al
ulated by the adaptive algorithms are only approximated and the quantization errorlimits the null pla
ement.In order to redu
e the 
omplexity and the 
osts of adaptive systems, the possibility of3



implementing a phase-only 
ontrol (i.e., adjusting the phase shifter setting) for redu
ingthe total output power measured by the re
eiver at the output of the summer has beeninvestigated [6℄. A signi�
ant improvement on this te
hnique has been proposed by Haupt[7℄ who used a Geneti
 Algorithm (GA) to adjust some of the least signi�
ant bits of thebeam steering phase shifters for minimizing the total output power thus removing theinterfering signals from the output of the array.Notwithstanding the su

ess and su

essive experimental implementation [8℄, su
h a GA-based approa
h did not take into a

ount 
onstantly 
hanging 
onditions and the needof a readaptation to new environments on
e the population 
onverged. Su
h a problemhas been over
ome in su

essive works by Weile and Mi
hielssen [9℄ or Donelli et al.[10℄ by using diploidy and dominan
e or 
ooperative algorithms [i.e., the parti
le swarmoptimizer (PSO)℄.In su
h a framework, this paper is aimed at assessing the e�e
tiveness and reliability ofan enhan
ed PSO-based te
hnique in the presen
e of more 
omplex working 
onditions.In parti
ular, the signals impinging on the array are 
hara
terized by randomly variabledire
tions and generated by ele
tromagneti
 sour
es lo
ated at di�eren
e distan
es fromthe antenna system. More in detail, the sour
e of the desired signal is assumed to bevery far from the system, whereas the distan
e of the interfering sour
es from the arrayvaries from the near to the far zone. Su
h a situation turns out to be quite realisti
 sin
eit 
ould model/des
ribe an �info-mobility� s
enario where a moving network node (e.g.,a 
ar or a pedestrian) 
ommuni
ates with a base station or another node of the mobilenetwork. In this situation, a neighboring node (i.e., 
lose to the re
eiving system) wouldbe 
onsidered as a near-�eld jamming sour
e.In order to properly address su
h a topi
, the PSO-based approa
h is added with enhan
edlearning 
apabilities. Similarly to [11℄, the enhan
ed strategy is 
hara
terized by theuse of memory-based operators, whi
h perform an ex
hange of information between theswarm and a set of referen
e solutions (de�ning the �memory� of the pro
ess) iterativelyupdated. Furthermore, the memory me
hanism is further exploited (and 
ustomizedto the 
ooperative optimizer at hand) by introdu
ing a new term in the PSO velo
ityequation. 4



The paper is organized as follows. The mathemati
al formulation is presented in Se
t. 2where the adaptive antenna 
ontrol is re
ast as the minimization of the total power of thearray in terms of the quantized phase weights. The optimization pro
edure is detailedin Se
t. 3 and the results of a numeri
al validation are shown in Se
t. 4. Finally, some
on
lusions are drawn (Se
t. 5).2 Mathemati
al FormulationLet us 
onsider an array of N elements (Figure 1). The narrowband signal re
eived by the
n-th element of the array at the time-step(1) tℓ, ℓ = 1, ..., L, 
an be expressed as follows

s(r)
n (tℓ) = a(r) (tℓ) ejϕ

(r)
n n = 1, ..., N ; l = 1, ..., L (1)where a(r) (tℓ) = h(r) (tℓ) ej2πftℓ , h(r) (tℓ) and f being the slowly-varying envelope of there
eived signal and the 
arrier frequen
y, respe
tively. Moreover, ϕ

(r)
n is the phase term ofthe re
eived signal 
oming from the angular 
oordinates (θr, φr) that identify the dire
tion-of-arrival (DoA) of the re
eived signal. Under far-�eld 
onditions [12℄, the phase term of(1) turns out to be

ϕ(r)
n =

2π

λ
(urxn + vryn + qrzn) (2)where ur = sin θr cos φr, vr = sin θr sin φr, and qr = cos θr, and (xn, yn, zn) are theCartesian 
oordinates of the n-th element of the array.By 
onsidering 
o-
hannel interferen
es, s

(r)
n is the result of the summation of the desiredsignal s

(d)
n , a set of I jammers {

s
(g)
i,n ; i = 1, ..., I

}, and an un
orrelated ba
kground noise[or noise signal s
(o)
n ℄ 
hara
terized by an average power equal to σ2,

s(r)
n (tℓ) = s(d)

n (tℓ) +
I

∑

i=1

s
(g)
i,n (tℓ) + s(o)

n (tℓ) (3)
(1) A time-step is a slot of time, between two 
onse
utive snapshots (△tℓ+1 and △tℓ), 
hara
terizedby the presen
e of a desired signal and a �xed number of interfering signals with invariant DoAs: tℓ ,

△tℓ+1 −△tℓ. 5



where s
(d)
n (tℓ) = a(d) (tℓ) ejϕ

(d)
n and s

(g)
i,n (tℓ) = a

(g)
i,n (tℓ) ejϕ

(g)
i,n . Analogously to (2), ϕ

(d)
n =

2π
λ

(udxn + vdyn + qdzn), while
ϕ

(g)
i,n =

2π

λ

[

ρi −

√

(ρiui − xn)2 + (ρivi − yn)2 + (ρiqi − zn)2

]

n = 1, ..., N ; i = 1, ..., I(4)to model [13℄ the phase term of the i-th interferen
e sour
e lo
ated at (ρi, θi , φi) eitherin the far-�eld or in the near-�eld depending on the value of ρi (Fig. 2).As far as the signal s(e) available at the the output of the summer is 
on
erned, it appearsthat (see Fig. 1)
s(e) (tℓ) =

N
∑

n=1

Wns
(r)
n (tℓ) (5)where Wn = wne

jβn is the n-th 
omplex weight. Consequently, the total output powermeasured by the single re
eiver is equal to [3℄[14℄
P (tℓ) = Pℓ (W ) ,

N
∑

n=1

wne
jβn

N
∑

p=1

wpe
−jβpΩr

p,n (tℓ) (6)that is a fun
tion of W = {Wn; n = 1, ..., N}, Ωr
p,n (tℓ) being the (p, n)-entry of the 
o-varian
e matrix of the re
eived signal.In order to minimize the total output power thus removing the interfering signals from theoutput of the array, the array 
oe�
ients are iteratively updated for taking into a

ount
onstantly 
hanging (i.e., at ea
h time-step) 
onditions and the need of a readaptationto new environments. Moreover, a time-varying phase-only 
ontrol is implemented toredu
e the 
omplexity and the 
osts of the adaptive system. In parti
ular, the followingoptimization problem

βopt (tℓ) = arg
{

minβ [P (tℓ)]
} (7)is solved by means of the enhan
ed PSO-based strategy (Se
t. 3) to determine the optimalsetting of the phases, β = {βn; n = 1, ..., N}, sin
e amplitude 
oe�
ients {wn; n = 1, ..., N}are �xed quantities (e.g., uniform amplitudes or distributed a

ording to Dolph-Cheby
hevpattern).

6



3 Memory Enhan
ed PSO-based Optimization (PSOM)3.1 Stru
ture of the Binary PSO OptimizationThe PSO [16℄[17℄ has been introdu
ed by Eberhart and Kennedy in the last de
ade [18℄.It is a multiple-agent optimization approa
h based on the imitation of the so
ial behaviorof groups of animals in sear
h of food. A swarm of P parti
les, whi
h models a set of Ptrial solutions, is de�ned and its evolution in the solution spa
e is 
ontrolled by means ofa set of updating equations that take into a

ount and exploit the history of the swarm.In this paper, following the implementation guidelines of the PSO-based strategy pro-posed in [10℄ and 
on
erned with N-sized phased-arrays in the presen
e of simpli�edfar-�eld interferen
es, the solution spa
e is binarized for allowing the use of digital beamsteering phase shifters. The traje
tories of ea
h parti
le in the binary spa
e are deter-mined by evaluating the 
hanges in the probability that a 
oordinate will take on a zeroor one value.Be
ause of the 
omplexity of the s
enario at hand, the learning 
apabilities of the approa
hhave been enhan
ed by de�ning a memory me
hanism as well as an innovative updatingrelationship aimed at exploiting the �history� of the optimization for speeding up the
onvergen
e to the optimal solution and the adaptability of the 
ontrol to the time-varying
onditions.As far as the mapping between the problem at hand and the swarm stru
ture is 
on
erned,let us refer to a phased-array 
ontrolled by B-bits digital phase shifters. Therefore, the
p-th trial solution turns out to be the sequen
e of the quantized phase values [10℄

Bp = {βb,p,n ∈ {0, 1} ; n = 1, ..., N ; b = 1, ..., B} . (8)Con
erning the parti
le des
ription, Bp de�nes the position of the p-th element of theswarm in the solution spa
e and the velo
ity Vp

Vp = {Vb,p,n; n = 1, ..., N ; b = 1, ..., B} (9)
7



models the 
apa
ity of the parti
le to �y from a given position Bkℓ
p to another position

Bkℓ+1
p of the solution spa
e, kℓ being the iteration index at the ℓ-th time-step tℓ. Moreover,
Vb,p,n is the probability that βb,p,n takes value 1.The swarm samples the solution spa
e by means of a binary PSO-based strategy. Atea
h iteration kℓ (kℓ = 1, ..., K) of every time-step tℓ, the P trial solutions are rankeda

ording to their ��tness� to the environmental s
enario by 
omputing (6) in 
orre-sponden
e with Bkℓ

p , Pkℓ
p = P

(

Bkℓ
p

). Su
h an operation leads to the de�nition of thepersonal best parti
le ξℓ

p
= arg{minhℓ=1,...,kℓ

[

P
(

Bhℓ
p

)]} and of the global best parti
le
ζℓ = arg{minp=1,...,P

[

P
(

ξℓ

p

)]}. Starting from the initial population randomly generatedaround the �desired signal� parti
le (i.e., Bkℓ
p =

{

βkℓ

b,p,n su
h that βn = ϕ
(d)
n ; n = 1, ..., N

},
kℓ = 1 and p = 1), the set of solutions iteratively evolves by modifying the parti
les posi-tions a

ording to the binary-position updating equation [10℄:

βkℓ+1
b,p,n =











1 if rkℓ

b,p,n < ℑ
(

Vkℓ

b,p,n

)

0 otherwise
(10)

where ℑ ( . ) is the sigmoid fun
tion
ℑ

(

Vkℓ

b,p,n

)

=
1

1 + exp (

−βkℓ

b,p,n

) (11)
rkℓ

b,p,n being a random number drawn from an uniform distribution between 0 and 1. As faras the velo
ity update is 
on
erned, it is obtained by applying the Thresholding Operator
Λ (·) to the result X kℓ

b,p,n of the Memory-Based Velo
ity Operator U {·}(13)
Vkℓ

b,p,n = Λ
{

X kℓ

b,p,n

}

=























−Vmax X kℓ

b,p,n < Vmax

X kℓ

b,p,n −Vmax ≤ X
kℓ

b,p,n ≤ Vmax

Vmax X kℓ

b,p,n > Vmax

. (12)
During a time step tℓ, the iterative pro
ess stops when a maximum number of iterations Kis rea
hed, kℓ = K, (i.e., when the maximum rea
tion time Tresp of the system is elapsed,
Tresp = K × Tkℓ

, Tkℓ
being the iteration CPU-time) or if the optimality 
riterion of the8



system performan
e is attained [i.e., P (

ζℓ
)

≤ γopt, γopt being a user-de�ned threshold℄.Whatever the termination 
ondition, ζℓ is assumed as the problem solution 
on
ernedwith the ℓ-th time-step, tℓ.3.2 Memory-Based Learning and Updating StrategyIn order to de�ne a fast �rea
tion� of the 
ontrol to the environmental 
hanges, a 
ustomi-zed and integrated strategy based on amemory me
hanism has been implemented throughthe de�nition of suitable operators a
ting during the iterative pro
edure (kℓ = 1, ..., K)and in the whole time-varying pro
ess (tℓ; ℓ = 1, ..., L).The memory me
hanism lies on the de�nition of a �system memory� 
omposed by a �nite-length bu�er M = {ςm; m = 1, ..., M} (M being the bu�er length). At ea
h time-step,the Storage Operator allows an ex
hange of information from the swarm to the memoryof the system. In 
orresponden
e with a new time-step (tℓ ← tℓ+1), the solutions storedinM are ranked a

ording to their �tness values su
h that Pℓ+1

(

ς
1

)

≥ ...... ≥ Pℓ+1

(

ς
M

).Then, at the end of the time-step, the system memory is updated as follows: ς1 = ζℓ+1if Pℓ+1

(

ζℓ+1
)

< Pℓ+1

(

ς
1

). In a 
omplementary fashion, the operator Π {·} 
ontrols theexploitation of the system memory to improve the swarm rea
tion to the 
hanges of theinterferen
e s
enario. Unlike [11℄, a simpler a
tivation me
hanism is implemented byde�ning a user-�xed lower bound for the system performan
es, γwor. More in detail,when P (

ζℓ
)

> γwor then the worst parti
le is repla
ed by the best solution stored inM(γℓ+1 ← ς
M
, being γℓ+1 = arg

{

maxp=1,...,P

[

P
(

Bkℓ+1
p

)]} ).Although su
h a learning strategy e�e
tively uses the available information on the systemhistory, 
ertainly the exploitation of the information 
ontained inM at ea
h iteration kℓof the swarm evolution would allow a more pun
tual and immediate use of the a
quiredknowledge on the behavior of the environment. Towards this purpose, the Memory-BasedVelo
ity Operator U {·} is de�ned as the 
omposition of four terms
X kℓ

b,p,n = I
{

Vkℓ−1
b,p,n

}

+ S
{

βkℓ

b,p,n, ξℓ
b,p,n

}

+ G
{

βkℓ

b,p,n, ζℓ
b,n

}

+A
{

ςm
b,n; m = 1, ..., M

}

. (13)The �rst velo
ity 
omponent, usually referred to as inertia, is given by9



I
{

Vkℓ−1
b,p,n

}

= αVkℓ−1
b,p,n . (14)It models the tenden
y of a parti
le to 
ontinue in the same dire
tion it is traveling. Ingeneral, the inertial weight α takes a 
onstant value [19℄ or it de
reases during the iterativepro
ess to favor a lo
al sear
hing at the end of the optimization [20℄[21℄.The se
ond term is 
alled self-knowledge and it 
auses the attra
tion of the parti
le to-wards the best position previously rea
hed for an amount proportional to a �xed 
onstant
oe�
ient c1 (
ognition 
oe�
ient) and a random number r1 from an uniform distributionbetween 0 and 1

S
{

βkℓ

b,p,n, ξℓ
b,p,n

}

= c1r1

(

ξℓ
b,p,n − βkℓ

b,p,n

)

. (15)Complementary to the self-knowledge 
omponent, the group-knowledge term models alinear attra
tion towards the optimal position a
hieved so far
G

{

βkℓ

b,p,n, ζℓ
b,n

}

= c2r2

(

ζℓ
b,n − βkℓ

b,p,n

) (16)
c2 being the so
ial 
oe�
ient and r2 ∈ [0, 1].Be
ause of the time-varying s
enario and the need to redu
e the rea
tion time taking intoa

ount the similarities among the environmental 
onditions at di�erent time-steps, thefourth velo
ity 
omponent (indi
ated as �ambient-knowledge�) is a

ordingly de�ned asfollows

A
{

ςm
b,n; m = 1, ..., M

}

= c3r3

∑M
m=1

[

ςm
b,ne

−H
(m−1)

M

]

M
(17)

H , c3 being two 
onstant weighting parameters and r3 is another random number. In su
ha manner, the parti
le velo
ity is in�uen
ed by a histori
al term related to the optimalsolutions at di�erent time-steps and in 
orresponden
e with various interferen
e s
enarios.4 Numeri
al ValidationIn this se
tion, the results of several numeri
al tests are reported in order to assess thepotentialities and 
urrent limitations of the proposed approa
h. The �rst subse
tion10



deals with the 
alibration of the PSO-based pro
edure and it is aimed at de�ning theoptimal 
on�guration of the key parameters of the optimization algorithm. The latter is
on
erned with the des
ription of the performan
es of the adaptive 
ontrol in 
omplexs
enarios 
hara
terized by the presen
e of near-�eld interferen
e sour
es, as well.4.1 Calibration of the Optimization AlgorithmThe key parameters of the optimization algorithm have been sele
ted through numeri
alsimulations. They have been �xed to those values that allow a favorable trade-o� betweenthe rate of 
onvergen
e towards a suitable solution and the 
apability of usefully exploringthe whole solution spa
e. Moreover, due to the intrinsi
 statisti
al nature of the approa
h,ea
h test 
ase or experiment has been run several times to assess the quality of the solutionas well as its statisti
al signi�
an
e.The referen
e geometry 
onsisted of a linear array of N = 20 z-oriented and λ/2-spa
eddipoles lying on the x-axis. The amplitudes of the array weights have been 
hosen a
-
ording to the Dolph-Chebyshev distribution. In the following, su
h a geometry will bereferred to as linear array .The inertial weight α has been heuristi
ally tuned by verifying the e�e
tiveness of theadaptive 
ontrol in 
orresponden
e with di�erent rules of variation or setting. Towardsthis end, an interferen
e s
enario 
hara
terized by jamming signals with dire
tions ran-domly distributed and arrival-times modeled by means of a Poisson's pro
ess [11℄ has been
onsidered. With referen
e to Fig. 3, where a representative sample of a sto
hasti
 real-ization of the interferen
e generation pro
ess is pi
torially des
ribed, a random number Iof jamming signals [Fig. 3(a)℄ with DoAs uniformly distributed in φ ∈ [0; 180] [Fig. 3(b)℄has been 
onsidered (Poisson's s
enario). The power of the jamming sour
es has been�xed to 30 dB above the power of the desired signal (the power of ba
kground noise hasbeen assumed equal to σ2 = −30 dB). Moreover, the positions of the jamming sour
eshave been randomly 
hosen between 5 λ and 100 λ. In su
h a noisy environment, the
hoi
e of a swarm of P = 30 parti
les is a good trade-o� between 
onvergen
e rate andquality of the adaptive 
ontrol as 
on�rmed by Fig. 4 where the plot of the average valueof the signal-to-interferen
e-plus-noise ratio (SINR) [9℄ versus P is reported to provide11



a quality rating of the algorithm performan
e(2) .Di�erent 
hoi
es of α have been analyzed (Tab. I) taking into a

ount the guidelinessuggested in the referen
e literature. Firstly, a dynami
 law has been used by de
reasingthe inertial weight from 0.9 up to 0.4 in the range of iterations (kℓ = 1, ..., K, K = 1000) ofa time-step tℓ. In general, su
h a 
hoi
e allows a better balan
e between global and lo
alexploration during the minimization en
ouraging the global and the lo
al sear
h at thestart and at the end of the optimization, respe
tively. However, when solving (7) and as
on�rmed by the indexes in Tab. I and related to the SINR averaged over L time-steps,better performan
es have been attained by 
hoosing a small and 
onstant value of theinertial weight (α = 0.1). Su
h a 
hoi
e usually favors the rea
tion and the adaptabilityof the 
ontrol to the environmental 
hanges thus improving the 
onvergen
e rate of thealgorithm. Consequently, the faster the 
ontrol rea
hes a set of suitable weights the lowerbe
omes the response time with a redu
tion of the amount of iterations needed for ea
htime-step without penalizing the e�e
tiveness of the optimization pro
ess. Therefore,starting from su
h an indi
ation and after an exhaustive and statisti
ally relevant set ofnumeri
al tests, K has been set to 20 iterations whatever the interferen
e s
enario.As far as the tuning of the �self-knowledge�, of the �group-knowledge� and of the �ambient-knowledge� terms is 
on
erned, a large number of simulations has been performed by
onsidering the guidelines re
ommended by the PSO literature [16℄[17℄ as referen
esand by taking into a

ount other experimentations in similar optimization frameworks[22℄[19℄[23℄. The hyperspa
e of possible setups of the parameters c1, c2, c3, and H hasbeen sampled to �nd the most suitable setting to allow an e�
ient PSO-based optimiza-tion. As a representative example, let us refer to Fig. 5 where the plot of the averaged
SINR along a sli
e of the PSO parameters hyperspa
e (H = 10 and c1 = 2.0) is shown.The maximum value of su
h a quality index is situated at c2 = 2c3 = 2.0 and su
h aparameters 
on�guration has been assumed in the following analyses/experiments.Finally, the 
ontrol parameters of the �memory me
hanism� have been tuned. Be
ause ofthe novelty of the proposed implementation, no indi
ations are available. Thus, three dif-

(2) Unfortunately, the SINR 
annot be used by the 
ontrol algorithm to rank trial solutions, but onlyas a quality index. As a matter of fa
t, there is no way to 
al
ulate the signal-to-interferen
e-plus-noiseratio for the system ar
hite
ture assumed in this paper (Fig. 1). Therefore, the total output powermeasured by the re
eiver is used as the index of the ��tness to the environment� of ea
h parti
le.12



ferent s
enarios have been 
onsidered. Besides the Poisson's environment, two syntheti
and 
ustomized interferen
e 
on�gurations have been generated to verify the e�e
tive-ness of the approa
h in fully exploiting similarities and o

urren
es of jamming signals.The former (intermittent s
enario) 
oin
ides with that proposed by Weile et al. in [9℄.The latter (deterministi
 s
enario) 
onsiders a 
luster of interferen
es whose DoAs aresupposed to be invariant during a large number of iterations (Tab. II).In order to evaluate the sensitivity of the system to the memory dimension (i.e., the bu�erlength M), let us analyze the behavior of the following index
∆ =

〈SINRM=Y〉 − 〈SINRM=0〉

〈SINRM=0〉
× 100 (18)where Y is the 
urrent value of M and the operator 〈 . 〉 stands for the average value.Con
erning the deterministi
 s
enario, the obtained results are summarized in Tab. III.As it 
an be noti
ed, the e�
ien
y of the 
ontrol improves in 
orresponden
e with anin
rease of the dimension of the bu�er, until a saturation veri�es when M ≥ 20 (i.e.,

M
P

= 0.67). As a matter of fa
t, M = 20 seems to be the best 
hoi
e sin
e it allows anon-negligible improvement in the 
ontrol 
apabilities (∆ = 39.7) without signi�
antlya�e
ting the 
omputational burden. To further 
on�rm su
h a 
on
lusion, the analysis hasbeen extended to the whole set of s
enarios. Figure 6 shows the plots of the SINR with(M = 20) and without (M = 0) memory versus tℓ (ℓ = 1, ..., L; L = 900). As expe
ted,the most relevant enhan
ement holds for the deterministi
 
on�guration, even though thelearning 
apabilities of the approa
h impa
ts in a non-negligible way in 
orresponden
ewith the �intermittent� 
on�guration and the Poisson's s
enario, as well. Moreover, theobtained results 
on�rm that the introdu
tion of a memory bu�er and of an enhan
edstrategy for the velo
ity updating turns out in a fully exploitation of the existing (whennegligible or limited too) 
orrelations among di�erent time-steps.4.2 Testing of the Optimization AlgorithmBy assuming the optimal setting of the PSOM parameters de�ned after the �
alibration�phase, this sub-se
tion presents the results of a study aimed at evaluating the performan
e13



of the adaptive 
ontrol in various situations and s
enarios. Su
h a study 
onsidered a
omparative assessment, as well. As a matter of fa
t, the enhan
ed PSO-based 
ontrolhas been 
ompared with other state-of-the-art pro
edures in terms of both quality indexesand 
omputational 
osts.The �rst analysis is devoted at evaluating the dependen
e of the adaptive 
ontrol on thelo
ations of the interferen
e sour
es and the re
eiving system ar
hite
ture. As a result,it appears that the performan
es of the PSOM are notably a�e
ted from the number ofbits B of the digital phase shifters espe
ially in 
orresponden
e with small values of thedistan
e ρi. Su
h an event is pointed out in Fig. 7(a) where the behavior of Φav versus Bfor di�erent values of ρi is summarized (Poisson's s
enario). Φav is a quality index de�nedas
Φav =

〈SINRFull〉 − 〈SINRFF 〉

〈SINRFF 〉
× 100where the subs
ripts (Full) and (FF ) indi
ate that the SINR has been 
omputed withthe array weights determined by minimizing (6) and using (4) or (2) for modeling thejammers, respe
tively.As expe
ted and 
on�rming the e�e
tiveness of the �Full� formulation in dealing withnear-�eld interferen
es, Φav in
reases when ρi be
omes smaller and smaller. Moreover,the value of Φav grows as B in
reases up to B = 8. As a matter of fa
t, when B ≥ 10the binary-solution-spa
e 
onsiderably enlarges and it appears to be too large for allowingfast 
onvergen
e and reliable results.For 
omparison purposes, Figure 7(b) shows the results obtained setting B = 8 with the

PSOM approa
h, the Applebaum-based ideal method [3℄, the Applebaum te
hnique withdis
rete phases (DPA), the Least Mean Square algorithm (LMS), the LMS with dis
retephases (DPLMS), the PSO-based approa
h proposed in [10℄ (PSO), and the learnedreal-time GA [24℄ (LRTGA). As it 
an be noti
ed, the proposed approa
h outperformsboth DPLMS and LRTGA, as well as the PSO. Moreover, its behavior turns outto be quite 
lose to that of the DPA whatever the jammers lo
ations, despite a lowerar
hite
tural 
omplexity. Furthermore, the PSOM a
hieves better signal-to-noise ratiosthan LMS when ρi

λ
< 400, while for farther interferen
es the LMS allows slightly betterperforman
es, but with multiple re
eivers one at ea
h array element.14



As a representative example, Figure 8 shows the behavior of the SINR for a realizationof the Poisson's s
enario (L = 900) under the assumption that ρi is randomly distributedin the range [5λ, 100λ] and the interferen
es do not 
hange in K(PSOM) = 20 iterations.Moreover, the 
ontrol methods have been arrested after the same Tresp. Consequently,
K has been �xed to 3000 when using the LMS algorithm sin
e the number of 
om-plex �oating point operations per iteration is O (N), while the �oating point operationsneeded by PSOM/PSO/LRTGA are of the order of O (P 2 ×B ×N). As far as the
LRTGA is 
on
erned, it is of about 4 times 
omputationally heavier than the PSO-basedmethods (Tab. IV). Therefore, ea
h GA-based optimization loop has been terminated at
K(LRTGA) = K(PSO)

4
.In Figure 8(a), the results obtained with the FF formulation are given in terms of thesignal-to-interferen
e-plus-noise ratio (SINRFF ), whereas Fig. 8(b) shows the SINRbehavior when using the 
omplete formulation (SINRFull). Ex
ept for the ideal approa
hand whatever the 
ontrol te
hnique, the system performan
e improves by resorting to theFull formulation as outlined by the plot of the index Φ [Fig. 9(
)℄ given by

Φ =
SINRFull − SINRFF

SINRFF

× 100.On the other hand, the PSO-based approa
hes generally outperform other optimizationmethods as well as the LMS-based te
hniques. Furthermore, they turn out to be very
lose or better than the DPA approa
h [Fig. 8(b)℄. As a matter of fa
t, 〈

SINRPSOM
Full

〉

=

29.90 and 〈

SINRPSO
Full

〉

= 28.82 versus 〈

SINRDPA
Full

〉

= 27.05 (Tab. V).The se
ond test 
ase deals with the same s
enario of Fig. 8, but with a lower response time
Tresp. As a matter of fa
t, the optimization loops have been terminated at K(PSOM) =

K(PSO) = 5, K(LRTGA) = 2, and K(LMS) = 750, respe
tively. Unlike both Applebaumand LMS-based approa
hes, the results from sto
hasti
 strategies signi�
antly 
hange.Whatever the formulation, the average values of SINR redu
e of about 3 ÷ 6 dB asindi
ated in Tab. V and Tab. VI. However, the PSOM still favorably 
ompares with theother digital optimization methods (i.e., DPLMS, PSO, and LRTGA) [Figs. 9(a)-(
)and Tab. VI℄.The last experiment is 
on
erned with a more 
omplex situation. Let us 
onsider a planar15



array of N = 61 z-oriented and λ/2-spa
ed dipoles [11℄ with uniform amplitudes. At ea
htime-step tℓ, a random number of I jamming signals with Poisson-modeled arrival-timesand DoAs uniformly distributed in θ ∈ [0; 180] and φ ∈ [0; 180] (3D-Poisson s
enario)impinges on the array. Likewise the Poisson's s
enario, ea
h jammer is 
hara
terized bya power of 30 dB above the desired signal power and the lo
ations of the interferen
esour
es are random variables uniformly distributed between 5 λ and 100 λ.Figure 10(a) shows the plot of the SINR value in a window of L = 100 time-steps. As ex-pe
ted, the 
omplete formulation allows a more e�e
tive adaptive 
ontrol (〈SINRPSOM
Full

〉

=

38.02 vs. 〈

SINRPSOM
FF

〉

= 26.84). As far as the 
omparative assessment is 
on
erned,Figure 10(b) points out that on average the e�
ien
y of the PSOM tends to that of the
DPA (〈SINRPSOM

Full

〉

= 38.02 vs. 〈

SINRDPA
Full

〉

= 38.31) and it over
omes the LMS-basedstrategies, the PSO as well as the LRTGA (〈SINRLMS
Full

〉

= 31.31, 〈

SINRDPLMS
Full

〉

=

28.62, 〈

SINRPSO
Full

〉

= 31.63, and 〈

SINRLRTGA
Full

〉

= 29.43).For 
ompleteness, Figure 11 shows the 
olor level representations of the quies
ent beampattern [Fig. 11(a)℄ and both near-�eld [13℄ [Fig. 11(b) - ρoss = 25 λ, Fig. 11(
) - ρoss =

59 λ℄ and far-�eld [Fig. 11(d)℄ distributions generated by the adaptive planar array at the
ℓ = 28-th snapshot when two interferen
e sour
es lo
ated at (θ1 = 62o, φ1 = 89o, ρ1 = 25 λ)and (θ2 = 42o, φ2 = 39o, ρ2 = 59 λ) radiates.5 Con
lusionsThis paper has investigated both the theoreti
al and numeri
al aspe
ts of the use of digitalphase-shifters only weighting for adaptive null steering in 
omplex interferen
e s
enarios.It has demonstrated the appli
ation of a PSO-based 
ontrol equipped with enhan
edmemory features for the adaptation of the antenna array to minimize the total outputpower at the re
eiver. The mathemati
al formulation of the approa
h and the algorithmi
sequen
e of the enhan
ed adaptive 
ontrol have been 
arefully des
ribed. The numeri
alvalidation has been 
arried out by 
onsidering di�erent array geometries and variousinterferen
e 
on�gurations.The PSOM-based approa
h demonstrated:16



• an enhan
ed e�
ien
y of the adaptive 
ontrol (Full vs. FF formulation);
• a favorable trade-o� among ar
hite
tural 
omplexity of the re
eiver, 
omputationalload, and fast readaptation to 
hanging environmental 
onditions;
• a robustness to both near-�eld and far-�eld interferen
es.As far as the main novelties of this paper are 
on
erned, they 
an be summarized asfollows:
• the mathemati
al formulation of the smart 
ontrol able to model time-varying s
e-narios 
hara
terized by randomly lo
ated jamming sour
es;
• the enhan
ed PSO-based approa
h, whi
h has been suitably designed to pro�tablyexploit the memory me
hanism.Future developments and resear
h a
tivities will be aimed at improving the model of theinterferen
e s
enario. For example, by 
onsidering the presen
e of s
atterers in the 
lose-ness of the antenna or di�erent statisti
al des
riptions. Moreover, it would be interestingto study the performan
e of the adaptive 
ontrol under 
onditions when array elementsare expe
ted to fail [25℄. In prin
iple, no 
hanges to the proposed algorithm would berequired and 
ertainly, the memory me
hanism 
ould aid under su
h 
onditions, as well.

17
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Figure Captions
• Figure 1. Ar
hite
ture of the adaptive array with a single re
eiver at the outputof the summer.
• Figure 2. Geometry of the s
enario under test.
• Figure 3. Poisson's interferen
e s
enario. (a) Number of interferen
e signals I and(b) distribution of the angles of arrival of the jammers versus the time-step index.
• Figure 4. Calibration Phase. Averaged SINR for di�erent sizes of the swarm, P .
• Figure 5. Calibration Phase. Behavior of the averaged SINR versus c2 and c3(c1 = 2, H = 10).
• Figure 6. Calibration Phase. Behavior of the SINR versus the time-step indexfor di�erent interferen
e s
enarios with (M = 20) and without memory me
hanism(M = 0).
• Figure 7. Testing Phase (Poisson's interferen
e s
enario). Behavior of Φav versus

ρi for (a) di�erent values of B (PSOM) and in 
orresponden
e with (b) di�erent
ontrol te
hniques (B = 8).
• Figure 8. Testing Phase (Poisson's interferen
e s
enario, ρi ∈ [5λ, 100λ] - LinearArray). Plots of (a) SINRFull, (b) SINRFF , and (
) Φ versus the time-step indexfor di�erent adaptive 
ontrol methods [KPSOM = 20℄.
• Figure 9. Testing Phase (Poisson's interferen
e s
enario, ρi ∈ [5λ, 100λ] - LinearArray). Plots of (a) SINRFull, (b) SINRFF , and (
) Φ versus the time-step indexfor di�erent adaptive 
ontrol methods [KPSOM = 5℄.
• Figure 10. Testing Phase (Poisson's interferen
e s
enario, ρi ∈ [5λ, 100λ] - PlanarArray). (a) Plots of SINRFull and SINRFF versus the time-step index when using

PSOM . (b) Comparison between di�erent 
ontrol methods.
• Figure 11. Testing Phase (3D Poisson's interferen
e s
enario, ρi ∈ [5λ, 100λ] -Planar Array). (a) Quies
ent beam pattern. Beam patterns generated at the

ℓ = 28-th snapshot when (b) ρobs = 25λ, (
) dobs = 59λ and (d) in the FF region.21



Table Captions
• Table I. Calibration Phase. Impa
t of the inertial weight setting α on the systemperforman
e (∆).
• Table II. Des
riptive parameters of the Deterministi
 S
enario.
• Table III. Calibration Phase. Impa
t of the dimension M of the memory bu�er onthe system performan
e (∆).
• Table IV. Computational 
osts of the digital optimization approa
hes (CPU Intel

P4, 2.8 GHz, 512 MB RAM). T ,
Tkℓ

min(Tkℓ)
.

• Table V. Testing Phase (Poisson's interferen
e s
enario, ρi ∈ [5λ, 100λ] - LinearArray). Average values of SINRFull and of SINRFF for di�erent adaptive 
ontrolmethods [K(PSOM) = 20℄.
• Table VI. Testing Phase (Poisson's interferen
e s
enario, ρi ∈ [5λ, 100λ] - LinearArray). Average values of SINRFull and of SINRFF for di�erent adaptive 
ontrolmethods [K(PSOM) = 5℄.
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α 〈SINR〉 [dB]

0.4 → 0.9 13.81

0.9 13.73

0.4 13.86

0.1 13.93

0.01 13.84

Table I - M. Benedetti et al., �Memory Enhan
ed PSO-based ...�34



ℓ θ1 φ1 ρ1 [λ]

0→ 330 90 165 5

330→ 660 90 120 10

660→ 990 90 42 7

Table II - M. Benedetti et al., �Memory Enhan
ed PSO-based ...�35



M ∆

5 10.9

10 27.3

20 39.7

40 41.1

Table III - M. Benedetti et al., �Memory Enhan
ed PSO-based ...�36



Control Algorithm Tkℓ
[ms] T

PSOM 1.62 1.02

PSO 1.59 1.0

LRTGA 6.48 4.07

Table IV - M. Benedetti et al., �Memory Enhan
ed PSO-based ...�37



〈SINRFull〉 [dB] 〈SINRFF 〉 [dB]

Applebaum 42.80 42.52

DPA 27.05 20.44

LMS 25.82 20.09

DPLMS 23.54 19.82

PSOM 29.90 23.25

PSO 28.82 22.81

LRTGA 25.56 22.87

Table V - M. Benedetti et al., �Memory Enhan
ed PSO-based ...�38



〈SINRFull〉 [dB] 〈SINRFF 〉 [dB]

Applebaum 42.80 42.52

DPA 27.05 20.44

LMS 25.82 20.09

DPLMS 23.54 19.82

PSOM 24.48 21.24

PSO 21.98 20.07

LRTGA 21.84 20.55

Table VI - M. Benedetti et al., �Memory Enhan
ed PSO-based ...�39


