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Memory Enhanced PSO-Based Optimization Ap-
proach for Smart Antennas Control in Complex

Interference Scenarios

M. Benedetti, R. Azaro, and A. Massa

Abstract

In the framework of control methods for adaptive phased-arrays, this paper deals
with complex communication scenarios by considering a memory-enhanced cooper-
ative algorithm. Compared to existing approaches where far-field interferences are
taken into account, the proposed analysis considers a more realistic situation where
the jamming sources are located either in the near-field or in the far-field of the
receiving antenna. In order to carefully address the arising challenges and to effec-
tively deal with such complex environments, an optimization approach based on an
enhanced PSO-based algorithm is used. The obtained results seem to confirm the
effectiveness of the proposed technique in terms of both signal-to-noise ratio and

computational costs and complexity.

Index Terms:

Smart Antennas, Adaptive Control, Optimization Techniques, Particle Swarm

Optimizer, Phased Arrays.



1 Introduction

The continuous evolution of communication systems requires the development and cus-
tomization of techniques based on the idea of diversity [1|. In the framework of antennas
design, such a theory has been applied for developing smart systems able to improve
the quality of the received signal and to suppress the effects of interfering sources. The
concept of spatial diversity [2| has led to the coupling of array theory with adaptive con-
trol and therefore to the design of antenna architectures able to maximize the system
performances (i.e., the signal-to-interference-plus-noise ratio) by tuning dynamically the

weights of the array elements.

The mathematical theory of adaptive systems has been originally proposed by Applebaum
in 3] dealing with linear arrays of isotropic sources in the presence of far-field (F'F)
narrow-band signals (i.e., a desired signal and a set of jammers). The array weights,
adapted for placing nulls in the far-field pattern in the directions of interference, are
obtained by multiplying the quiescent weights by the inverse of the sampled covariance

matrix formed from the complex signals received at each element in the array.

Alternatively, the adaptive control has been also recast as an optimization problem by
defining a suitable cost functional to be maximized. Originally, deterministic techniques
based on gradient methods (e.g., the least mean square (LM S) algorithm by Widrow et al.
|4]|5]) have been proposed, but the resulting approaches were still characterized by several
non-negligible drawbacks. Because of the need of estimating the covariance matrix of the
desired signal from the measurements of the received signals at each element of the array,
the array must have an expensive receiver or a correlator at each element. Unfortunately,
most arrays (or the simplest/cheapest) have a single receiver at the output of the summer
and the receivers (when available) would require sophisticated calibrations. On the other
side, these methods consider variable analog amplitude and phase weights, but phased
arrays usually have only digital beam steering phase shifters at the elements and the feed
network (fixed) determines the amplitude values. Therefore, the continuous phase values
calculated by the adaptive algorithms are only approximated and the quantization error

limits the null placement.

In order to reduce the complexity and the costs of adaptive systems, the possibility of
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implementing a phase-only control (i.e., adjusting the phase shifter setting) for reducing
the total output power measured by the receiver at the output of the summer has been
investigated [6]. A significant improvement on this technique has been proposed by Haupt
|7| who used a Genetic Algorithm (G'A) to adjust some of the least significant bits of the
beam steering phase shifters for minimizing the total output power thus removing the

interfering signals from the output of the array.

Notwithstanding the success and successive experimental implementation [8|, such a G A-
based approach did not take into account constantly changing conditions and the need
of a readaptation to new environments once the population converged. Such a problem
has been overcome in successive works by Weile and Michielssen |9] or Donelli et al.
[10] by using diploidy and dominance or cooperative algorithms [i.e., the particle swarm
optimizer (PSO)].

In such a framework, this paper is aimed at assessing the effectiveness and reliability of
an enhanced PSO-based technique in the presence of more complex working conditions.
In particular, the signals impinging on the array are characterized by randomly variable
directions and generated by electromagnetic sources located at difference distances from
the antenna system. More in detail, the source of the desired signal is assumed to be
very far from the system, whereas the distance of the interfering sources from the array
varies from the near to the far zone. Such a situation turns out to be quite realistic since
it could model/describe an “info-mobility” scenario where a moving network node (e.g.,
a car or a pedestrian) communicates with a base station or another node of the mobile
network. In this situation, a neighboring node (i.e., close to the receiving system) would

be considered as a near-field jamming source.

In order to properly address such a topic, the PSO-based approach is added with enhanced
learning capabilities. Similarly to [11], the enhanced strategy is characterized by the
use of memory-based operators, which perform an exchange of information between the
swarm and a set of reference solutions (defining the “memory” of the process) iteratively
updated. Furthermore, the memory mechanism is further exploited (and customized
to the cooperative optimizer at hand) by introducing a new term in the PSO velocity

equation.



The paper is organized as follows. The mathematical formulation is presented in Sect. 2
where the adaptive antenna control is recast as the minimization of the total power of the
array in terms of the quantized phase weights. The optimization procedure is detailed
in Sect. 3 and the results of a numerical validation are shown in Sect. 4. Finally, some

conclusions are drawn (Sect. 5).

2 Mathematical Formulation

Let us consider an array of N elements (Figure 1). The narrowband signal received by the

n-th element of the array at the time-step!) ¢,, £ =1, ..., L, can be expressed as follows

s (ty) = a) (t;) o p = 1,.,N; 1=1,.., L (1)

where a(™) (t;) = h") (t,) /2t A (t,) and f being the slowly-varying envelope of the
received signal and the carrier frequency, respectively. Moreover, <p,(f) is the phase term of
the received signal coming from the angular coordinates (,, ¢,.) that identify the direction-

of-arrival (DoA) of the received signal. Under far-field conditions |12|, the phase term of

(1) turns out to be

2T
o) = (unn + e + gy 2) (2)
where u, = sin#, cos¢,, v, = sinf,.sin¢,, and ¢, = cosf,, and (x,, y,, z,) are the

Cartesian coordinates of the n-th element of the array.

By considering co-channel interferences, s is the result of the summation of the desired

signal s\, a set of I jammers {sz(.f’rz;

[or noise signal 5%0)] characterized by an average power equal to o2,

1=1,.., I}, and an uncorrelated background noise

I
s (t) = s (te) + D 519 (te) + 512 (1) (3)

i=1

(1) A time-step is a slot of time, between two consecutive snapshots (Atyy 1 and Aty), characterized
by the presence of a desired signal and a fixed number of interfering signals with invariant DoAs: t; £
Atopq1 — Dty



. ()
where si (t,) = a(® (t,) e and s;g,z (t;) = a\ (t,) €. Analogously to (2), ¢\ =

2,

2T7r (udxn + VdlYn + den>= while

2 )
o= [m — it = 2 + (o — ) + (pidi — )| n=1, Ny i =1,

(4)
to model [13] the phase term of the i-th interference source located at (p;, 0;, ¢;) either

in the far-field or in the near-field depending on the value of p; (Fig. 2).

As far as the signal s(® available at the the output of the summer is concerned, it appears

that (see Fig. 1)

0 (t) = 3 W0 (1) @

where W,, = w,e’”" is the n-th complex weight. Consequently, the total output power

measured by the single receiver is equal to [3][14]

N N
P (t) =P (W) = Z w,,e?Pn Z wpe_jﬁPQ;n (te) (6)
n=1 p=1

that is a function of W = {W,; n=1,.., N}, (O (t,) being the (p,n)-entry of the co-
variance matrix of the received signal.

In order to minimize the total output power thus removing the interfering signals from the
output of the array, the array coefficients are iteratively updated for taking into account
constantly changing (i.e., at each time-step) conditions and the need of a readaptation
to new environments. Moreover, a time-varying phase-only control is implemented to
reduce the complexity and the costs of the adaptive system. In particular, the following

optimization problem

9 (t) = arg {ming [P ()]} (7)

is solved by means of the enhanced PSO-based strategy (Sect. 3) to determine the optimal
setting of the phases, 3 = {f,; n = 1, ..., N}, since amplitude coefficients {w,; n = 1,..., N}
are fixed quantities (e.g., uniform amplitudes or distributed according to Dolph-Chebychev

pattern).



3 Memory Enhanced PSO-based Optimization (PSOM)

3.1 Structure of the Binary PSO Optimization

The PSO [16]||17] has been introduced by Eberhart and Kennedy in the last decade [18|.
It is a multiple-agent optimization approach based on the imitation of the social behavior
of groups of animals in search of food. A swarm of P particles, which models a set of P
trial solutions, is defined and its evolution in the solution space is controlled by means of

a set of updating equations that take into account and exploit the history of the swarm.

In this paper, following the implementation guidelines of the PSO-based strategy pro-
posed in [10] and concerned with N-sized phased-arrays in the presence of simplified
far-field interferences, the solution space is binarized for allowing the use of digital beam
steering phase shifters. The trajectories of each particle in the binary space are deter-
mined by evaluating the changes in the probability that a coordinate will take on a zero

or one value.

Because of the complexity of the scenario at hand, the learning capabilities of the approach
have been enhanced by defining a memory mechanism as well as an innovative updating
relationship aimed at exploiting the “history” of the optimization for speeding up the
convergence to the optimal solution and the adaptability of the control to the time-varying

conditions.

As far as the mapping between the problem at hand and the swarm structure is concerned,
let us refer to a phased-array controlled by B-bits digital phase shifters. Therefore, the

p-th trial solution turns out to be the sequence of the quantized phase values [10]
B, ={Bvpn€{0,1};n=1,...,N;b=1,..,B}. (8)

Concerning the particle description, B, defines the position of the p-th element of the

swarm in the solution space and the velocity V),

V,={Vpmin=1,...,N;b=1,..,B} 9)



models the capacity of the particle to fly from a given position ﬁ';f to another position
ﬁﬁ‘“ of the solution space, k, being the iteration index at the /-th time-step t,. Moreover,

Vi p.n is the probability that 3, , takes value 1.

The swarm samples the solution space by means of a binary PSO-based strategy. At
each iteration &k, (k, = 1,..., K) of every time-step t,, the P trial solutions are ranked
according to their “fitness” to the environmental scenario by computing (6) in corre-
spondence with E’;‘, 7352 =P (EI;‘Z). Such an operation leads to the definition of the
personal best particle §f} = arg {minhezl,.--ke [73 (ﬁ;}‘f)” and of the global best particle
gﬂ = arg {minp:17,.,7p [73 <§f}>} } Starting from the initial population randomly generated
around the “desired signal” particle (i.e., E';f = {ﬁfi;n such that 3, = gpgd); n=1,.., N},
k¢ =1 and p = 1), the set of solutions iteratively evolves by modifying the particles posi-

tions according to the binary-position updating equation [10]:

1 if ok <%(ka )

kp+1 b,p,n b,p,n
bé)—,’—n = (10)
0 otherwise
where S (.) is the sigmoid function
X (Phe — 1 11
S bpn) ( )

k
1+ exp <—ﬁb§m)
rf‘fp ,, being a random number drawn from an uniform distribution between 0 and 1. As far

as the velocity update is concerned, it is obtained by applying the Thresholding Operator
A (+) to the result Xb'f;;,n of the Memory-Based Velocity Operator U {-}(13)

k
_Vma:c Xb,le,,n < Vma:c
k o k _ k k
Vb;?,” - A {Xb,;f),n} - Xb;;m _Vmaw S Xb,]l),n S Vmax : (12)
k
Vma:c Xb,;e),n > Vmax

During a time step t;, the iterative process stops when a maximum number of iterations K
is reached, k, = K, (i.e., when the maximum reaction time T, of the system is elapsed,

Tresp = K x Ty, T, being the iteration C'PU-time) or if the optimality criterion of the



system performance is attained |i.e., P (§g> < Yopt> Yopt being a user-defined threshold|.
Whatever the termination condition, gz is assumed as the problem solution concerned

with the /-th time-step, ;.

3.2 Memory-Based Learning and Updating Strategy

In order to define a fast “reaction” of the control to the environmental changes, a customi-
zed and integrated strategy based on a memory mechanism has been implemented through
the definition of suitable operators acting during the iterative procedure (k, = 1, ..., K)
and in the whole time-varying process (t;; £ =1, ..., L).

The memory mechanism lies on the definition of a “system memory” composed by a finite-
length buffer M = {¢™; m =1,..., M} (M being the buffer length). At each time-step,
the Storage Operator allows an exchange of information from the swarm to the memory
of the system. In correspondence with a new time-step (t, < t,41), the solutions stored
in M are ranked according to their fitness values such that Py, (51) > > Priq (SM>-
Then, at the end of the time-step, the system memory is updated as follows: ¢, = g”
if Priq (£z+1> < P (§1>' In a complementary fashion, the operator II{-} controls the
exploitation of the system memory to improve the swarm reaction to the changes of the
interference scenario. Unlike |11, a simpler activation mechanism is implemented by
defining a user-fixed lower bound for the system performances, v,... More in detail,

when P (QZ) > ~Ywor then the worst particle is replaced by the best solution stored in M

(v g, being v+ = arg {maz,_, . p [P (Bi+)]}).

Although such a learning strategy effectively uses the available information on the system
history, certainly the exploitation of the information contained in M at each iteration k,
of the swarm evolution would allow a more punctual and immediate use of the acquired
knowledge on the behavior of the environment. Towards this purpose, the Memory-Based

Velocity Operator U {-} is defined as the composition of four terms
k ko— k k m
X =TV} + 888 €} + G { B G} + AL m =1, MY (13)

The first velocity component, usually referred to as inertia, is given by



iyt =iy (14)

b,p,n b,p,n

It models the tendency of a particle to continue in the same direction it is traveling. In
general, the inertial weight « takes a constant value [19] or it decreases during the iterative

process to favor a local searching at the end of the optimization [20][21].

The second term is called self-knowledge and it causes the attraction of the particle to-
wards the best position previously reached for an amount proportional to a fixed constant
coefficient ¢; (cognition coefficient) and a random number r; from an uniform distribution

between 0 and 1
k k
8 { bvi’v”’ é-g,p,n} =an (557]’7” - bé),n) . (15)

Complementary to the self-knowledge component, the group-knowledge term models a

linear attraction towards the optimal position achieved so far

g{ I])Cju,n7 glf,n} = CaT2 <g£,n - Iﬁi},n) (16)

¢z being the social coefficient and ry € [0, 1].

Because of the time-varying scenario and the need to reduce the reaction time taking into
account the similarities among the environmental conditions at different time-steps, the
fourth velocity component (indicated as “ambient-knowledge”) is accordingly defined as

follows

M _ (m—1)
Y et [ggf‘ne Him ]

M

A{qﬁ’fn; m = 1,...,M} = C373 (17)

H, c3 being two constant weighting parameters and 73 is another random number. In such
a manner, the particle velocity is influenced by a historical term related to the optimal

solutions at different time-steps and in correspondence with various interference scenarios.

4 Numerical Validation

In this section, the results of several numerical tests are reported in order to assess the

potentialities and current limitations of the proposed approach. The first subsection
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deals with the calibration of the PSO-based procedure and it is aimed at defining the
optimal configuration of the key parameters of the optimization algorithm. The latter is
concerned with the description of the performances of the adaptive control in complex

scenarios characterized by the presence of near-field interference sources, as well.

4.1 Calibration of the Optimization Algorithm

The key parameters of the optimization algorithm have been selected through numerical
simulations. They have been fixed to those values that allow a favorable trade-off between
the rate of convergence towards a suitable solution and the capability of usefully exploring
the whole solution space. Moreover, due to the intrinsic statistical nature of the approach,
each test case or experiment has been run several times to assess the quality of the solution

as well as its statistical significance.

The reference geometry consisted of a linear array of N = 20 z-oriented and \/2-spaced
dipoles lying on the x-axis. The amplitudes of the array weights have been chosen ac-
cording to the Dolph-Chebyshev distribution. In the following, such a geometry will be

referred to as linear array.

The inertial weight a has been heuristically tuned by verifying the effectiveness of the
adaptive control in correspondence with different rules of variation or setting. Towards
this end, an interference scenario characterized by jamming signals with directions ran-
domly distributed and arrival-times modeled by means of a Poisson’s process |11] has been
considered. With reference to Fig. 3, where a representative sample of a stochastic real-
ization of the interference generation process is pictorially described, a random number [
of jamming signals [Fig. 3(a)| with DoAs uniformly distributed in ¢ € [0; 180] [Fig. 3(b)]
has been considered (Poisson’s scenario). The power of the jamming sources has been
fixed to 30 dB above the power of the desired signal (the power of background noise has
been assumed equal to 02 = —30dB). Moreover, the positions of the jamming sources
have been randomly chosen between 5\ and 100 A. In such a noisy environment, the
choice of a swarm of P = 30 particles is a good trade-off between convergence rate and
quality of the adaptive control as confirmed by Fig. 4 where the plot of the average value

of the signal-to-interference-plus-noise ratio (SINR) [9] versus P is reported to provide
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a quality rating of the algorithm performance®.

Different choices of a have been analyzed (Tab. I) taking into account the guidelines
suggested in the reference literature. Firstly, a dynamic law has been used by decreasing
the inertial weight from 0.9 up to 0.4 in the range of iterations (k, = 1, ..., K, K = 1000) of
a time-step t,. In general, such a choice allows a better balance between global and local
exploration during the minimization encouraging the global and the local search at the
start and at the end of the optimization, respectively. However, when solving (7) and as
confirmed by the indexes in Tab. I and related to the SIN R averaged over L time-steps,
better performances have been attained by choosing a small and constant value of the
inertial weight (o = 0.1). Such a choice usually favors the reaction and the adaptability
of the control to the environmental changes thus improving the convergence rate of the
algorithm. Consequently, the faster the control reaches a set of suitable weights the lower
becomes the response time with a reduction of the amount of iterations needed for each
time-step without penalizing the effectiveness of the optimization process. Therefore,
starting from such an indication and after an exhaustive and statistically relevant set of

numerical tests, K has been set to 20 iterations whatever the interference scenario.

As far as the tuning of the “self-knowledge”, of the “group-knowledge” and of the “ambient-
knowledge” terms is concerned, a large number of simulations has been performed by
considering the guidelines recommended by the PSO literature |16]|17| as references
and by taking into account other experimentations in similar optimization frameworks
[22][19][23]. The hyperspace of possible setups of the parameters ¢, o, ¢3, and H has
been sampled to find the most suitable setting to allow an efficient PSO-based optimiza-
tion. As a representative example, let us refer to Fig. 5 where the plot of the averaged
SINR along a slice of the PSO parameters hyperspace (H = 10 and ¢; = 2.0) is shown.
The maximum value of such a quality index is situated at ¢co = 2¢3 = 2.0 and such a

parameters configuration has been assumed in the following analyses/experiments.

Finally, the control parameters of the “memory mechanism” have been tuned. Because of

the novelty of the proposed implementation, no indications are available. Thus, three dif-

(2) Unfortunately, the STN R cannot be used by the control algorithm to rank trial solutions, but only
as a quality index. As a matter of fact, there is no way to calculate the signal-to-interference-plus-noise
ratio for the system architecture assumed in this paper (Fig. 1). Therefore, the total output power
measured by the receiver is used as the index of the “fitness to the environment” of each particle.
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ferent scenarios have been considered. Besides the Poisson’s environment, two synthetic
and customized interference configurations have been generated to verify the effective-
ness of the approach in fully exploiting similarities and occurrences of jamming signals.
The former (intermittent scenario) coincides with that proposed by Weile et al. in [9].
The latter (deterministic scenario) considers a cluster of interferences whose DoAs are

supposed to be invariant during a large number of iterations (Tab. II).

In order to evaluate the sensitivity of the system to the memory dimension (i.e., the buffer

length M), let us analyze the behavior of the following index

(SINRy—y) — (SINRy—o)
(SINRy—o)

A= x 100 (18)

where ) is the current value of M and the operator (.) stands for the average value.
Concerning the deterministic scenario, the obtained results are summarized in Tab. III.
As it can be noticed, the efficiency of the control improves in correspondence with an
increase of the dimension of the buffer, until a saturation verifies when M > 20 (i.e.,
% = 0.67). As a matter of fact, M = 20 seems to be the best choice since it allows a
non-negligible improvement in the control capabilities (A = 39.7) without significantly
affecting the computational burden. To further confirm such a conclusion, the analysis has
been extended to the whole set of scenarios. Figure 6 shows the plots of the SIN R with
(M = 20) and without (M = 0) memory versus t, ({ = 1,...,L; L = 900). As expected,
the most relevant enhancement holds for the deterministic configuration, even though the
learning capabilities of the approach impacts in a non-negligible way in correspondence
with the “intermittent” configuration and the Poisson’s scenario, as well. Moreover, the
obtained results confirm that the introduction of a memory buffer and of an enhanced

strategy for the velocity updating turns out in a fully exploitation of the existing (when

negligible or limited too) correlations among different time-steps.

4.2 Testing of the Optimization Algorithm

By assuming the optimal setting of the PSOM parameters defined after the “calibration”

phase, this sub-section presents the results of a study aimed at evaluating the performance
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of the adaptive control in various situations and scenarios. Such a study considered a
comparative assessment, as well. As a matter of fact, the enhanced PSO-based control
has been compared with other state-of-the-art procedures in terms of both quality indexes

and computational costs.

The first analysis is devoted at evaluating the dependence of the adaptive control on the
locations of the interference sources and the receiving system architecture. As a result,
it appears that the performances of the PSOM are notably affected from the number of
bits B of the digital phase shifters especially in correspondence with small values of the
distance p;. Such an event is pointed out in Fig. 7(a) where the behavior of ®,, versus B
for different values of p; is summarized (Poisson’s scenario). ®,, is a quality index defined

as
SINRpu) — (SINRpp)

4
Qo = (SINRpr)

x 100

where the subscripts (Full) and (F'F) indicate that the SINR has been computed with
the array weights determined by minimizing (6) and using (4) or (2) for modeling the

jammers, respectively.

As expected and confirming the effectiveness of the “Full” formulation in dealing with
near-field interferences, ®,, increases when p; becomes smaller and smaller. Moreover,
the value of ®,, grows as B increases up to B = 8. As a matter of fact, when B > 10
the binary-solution-space considerably enlarges and it appears to be too large for allowing

fast convergence and reliable results.

For comparison purposes, Figure 7(b) shows the results obtained setting B = 8 with the
PSOM approach, the Applebaum-based ideal method |3|, the Applebaum technique with
discrete phases (DPA), the Least Mean Square algorithm (LM S), the LM S with discrete
phases (DPLMS), the PSO-based approach proposed in [10] (PSO), and the learned
real-time GA [24| (LRTGA). As it can be noticed, the proposed approach outperforms
both DPLMS and LRTGA, as well as the PSO. Moreover, its behavior turns out
to be quite close to that of the DPA whatever the jammers locations, despite a lower
architectural complexity. Furthermore, the PSOM achieves better signal-to-noise ratios
than LM S when £ < 400, while for farther interferences the LM S allows slightly better

performances, but with multiple receivers one at each array element.
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As a representative example, Figure 8 shows the behavior of the SINR for a realization
of the Poisson’s scenario (L = 900) under the assumption that p; is randomly distributed

KPSOM) — 9() iterations.

in the range [5A, 100\] and the interferences do not change in
Moreover, the control methods have been arrested after the same T.5,. Consequently,
K has been fixed to 3000 when using the LMS algorithm since the number of com-
plex floating point operations per iteration is O (N), while the floating point operations
needed by PSOM/PSO/LRTGA are of the order of O (P? x B x N). As far as the
LRTGA is concerned, it is of about 4 times computationally heavier than the PSO-based

methods (Tab. IV). Therefore, each G A-based optimization loop has been terminated at

(LRTGA) _ K(P59)
K =0

In Figure 8(a), the results obtained with the F'F' formulation are given in terms of the
signal-to-interference-plus-noise ratio (SINRpp), whereas Fig. 8(b) shows the SINR
behavior when using the complete formulation (SIN Rp,;). Except for the ideal approach
and whatever the control technique, the system performance improves by resorting to the

Full formulation as outlined by the plot of the index ® |Fig. 9(c¢)| given by

 SINRpu — SINRpp
N SINRpr

) x 100.

On the other hand, the PSO-based approaches generally outperform other optimization
methods as well as the LM S-based techniques. Furthermore, they turn out to be very
close or better than the DPA approach [Fig. 8(b)]. As a matter of fact, (SINRES?M) =

29.90 and (SINRESD) = 28.82 versus (SINRPI*) = 27.05 (Tab. V).

The second test case deals with the same scenario of Fig. 8, but with a lower response time

Tresp- As a matter of fact, the optimization loops have been terminated at K(PSOM)

KWPS0) — 5 KLRTGA) — 9 and K(EMS) = 750, respectively. Unlike both Applebaum
and LM S-based approaches, the results from stochastic strategies significantly change.
Whatever the formulation, the average values of SINR reduce of about 3 ~ 6dB as
indicated in Tab. V and Tab. VI. However, the PSOM still favorably compares with the
other digital optimization methods (i.e., DPLMS, PSO, and LRTGA) |Figs. 9(a)-(c)
and Tab. VI].

The last experiment is concerned with a more complex situation. Let us consider a planar

15



array of N = 61 z-oriented and \/2-spaced dipoles [11| with uniform amplitudes. At each
time-step ¢y, a random number of I jamming signals with Poisson-modeled arrival-times
and DoAs uniformly distributed in § € [0;180] and ¢ € [0;180] (3D-Poisson scenario)
impinges on the array. Likewise the Poisson’s scenario, each jammer is characterized by
a power of 30dB above the desired signal power and the locations of the interference

sources are random variables uniformly distributed between 5\ and 100 .

Figure 10(a) shows the plot of the SIN R value in a window of L = 100 time-steps. As ex-
pected, the complete formulation allows a more effective adaptive control (<S[NR§51?M> =
38.02 vs. (SINREZOM) = 26.84). As far as the comparative assessment is concerned,
Figure 10(b) points out that on average the efficiency of the PSOM tends to that of the
DPA ((SINREZOM) = 38.02 vs. (SINRPE!) = 38.31) and it overcomes the LM S-based
strategies, the PSO as well as the LRTGA ((SINREMP) = 31.31, (SINRRLIMS) =
28.62, (SINRESD) = 31.63, and (SINREEIGA) = 29.43).

For completeness, Figure 11 shows the color level representations of the quiescent beam
pattern |Fig. 11(a)] and both near-field [13] [Fig. 11(b) - poss = 25\, Fig. 11(c) - poss =
59 A| and far-field |Fig. 11(d)| distributions generated by the adaptive planar array at the
¢ = 28-th snapshot when two interference sources located at (; = 62°, ¢; = 89°, p; = 25 \)

and (0 = 42°, ¢ = 39°, po = 59 \) radiates.

5 Conclusions

This paper has investigated both the theoretical and numerical aspects of the use of digital
phase-shifters only weighting for adaptive null steering in complex interference scenarios.
It has demonstrated the application of a PSO-based control equipped with enhanced
memory features for the adaptation of the antenna array to minimize the total output
power at the receiver. The mathematical formulation of the approach and the algorithmic
sequence of the enhanced adaptive control have been carefully described. The numerical
validation has been carried out by considering different array geometries and various

interference configurations.

The PSOM-based approach demonstrated:
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e an enhanced efficiency of the adaptive control (Full vs. FF formulation);

e a favorable trade-off among architectural complexity of the receiver, computational

load, and fast readaptation to changing environmental conditions;

e a robustness to both near-field and far-field interferences.

As far as the main novelties of this paper are concerned, they can be summarized as

follows:

e the mathematical formulation of the smart control able to model time-varying sce-

narios characterized by randomly located jamming sources;

e the enhanced PSO-based approach, which has been suitably designed to profitably

exploit the memory mechanism.

Future developments and research activities will be aimed at improving the model of the
interference scenario. For example, by considering the presence of scatterers in the close-
ness of the antenna or different statistical descriptions. Moreover, it would be interesting
to study the performance of the adaptive control under conditions when array elements
are expected to fail [25]. In principle, no changes to the proposed algorithm would be

required and certainly, the memory mechanism could aid under such conditions, as well.
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FIGURE CAPTIONS

e Figure 1. Architecture of the adaptive array with a single receiver at the output

of the summer.
e Figure 2. Geometry of the scenario under test.

e Figure 3. Poisson’s interference scenario. (a) Number of interference signals I and

(b) distribution of the angles of arrival of the jammers versus the time-step index.
e Figure 4. Calibration Phase. Averaged SIN R for different sizes of the swarm, P.

e Figure 5. Calibration Phase. Behavior of the averaged SINR versus c; and c3
(1 =2, H=10).

e Figure 6. Calibration Phase. Behavior of the SINR versus the time-step index
for different interference scenarios with (M = 20) and without memory mechanism

(M = 0).

e Figure 7. Testing Phase (Poisson’s interference scenario). Behavior of ®,, versus
p; for (a) different values of B (PSOM) and in correspondence with (b) different

control techniques (B = 8).

e Figure 8. Testing Phase (Poisson’s interference scenario, p; € [5A, 100\ - Linear
Array). Plots of (a) SINRpuy, (b) SINRpp, and (¢) ® versus the time-step index

for different adaptive control methods [KT59M = 20].

e Figure 9. Testing Phase (Poisson’s interference scenario, p; € [5A, 100\ - Linear
Array). Plots of (a) SINRpuu, (b) SINRpp, and (c¢) ® versus the time-step index

for different adaptive control methods [K?59M = 5.

e Figure 10. Testing Phase (Poisson’s interference scenario, p; € [5A, 100)\] - Planar
Array). (a) Plots of SIN Rp,; and SIN Rpp versus the time-step index when using

PSOM. (b) Comparison between different control methods.

e Figure 11. Testing Phase (3D Poisson’s interference scenario, p; € [5A, 100)] -
Planar Array). (a) Quiescent beam pattern. Beam patterns generated at the

¢ = 28-th snapshot when (b) pops = 25, (¢) dops = 59N and (d) in the F'F' region.
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TABLE CAPTIONS

e Table I. Calibration Phase. Impact of the inertial weight setting o on the system

performance (A).
e Table II. Descriptive parameters of the Deterministic Scenario.

e Table III. Calibration Phase. Impact of the dimension M of the memory buffer on

the system performance (A).

e Table IV. Computational costs of the digital optimization approaches (C'PU Intel

Ty,
min(Tkl) ’

P4,28GHz 512 MB RAM). T £

e Table V. Testing Phase (Poisson’s interference scenario, p; € [5A, 100)\| - Linear
Array). Average values of SIN Rp,; and of SIN Rpp for different adaptive control
methods [K(7SOM) = 20].

e Table VI. Testing Phase (Poisson’s interference scenario, p; € [5A, 100\] - Linear
Array). Average values of SIN Rpyy; and of SIN Rpp for different adaptive control

methods |K("90M) = 5],
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a (SINR) [dB]
0.4 — 0.9 13.81

0.9 13.73

0.4 13.86

0.1 13.93

0.01 13.84

Table I - M. Benedetti et al., “Memory Enhanced PSO-based ...”
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M A
5 10.9
10 27.3
20 39.7
40 41.1

Table IIT - M. Benedetti et al., “Memory Enhanced PSO-based ...”
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Control Algorithm Ty, Ims|| T
PSOM 1.62 1.02

PSO 1.59 1.0
LRTGA 6.48 4.07

Table IV - M. Benedetti et al., “Memory Enhanced PSO-based ...”
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(SINRp,;) |dB]

(SINRpp) |dB]

Applebaum 42.80 42.52
DPA 27.05 20.44
LMS 25.82 20.09

DPLMS 23.54 19.82
PSOM 29.90 23.25
PSO 28.82 22.81
LRTGA 25.56 22.87

Table V - M. Benedetti et al., “Memory Enhanced PSO-based ...”
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(SINRpyn) [dB]| (SINRpp) |dB]
Applebaum 42.80 42.52
DPA 27.05 20.44
LMS 25.82 20.09
DPLMS 23.54 19.82
PSOM 24.48 21.24
PSO 21.98 20.07
LRTGA 21.84 20.55

Table VI - M. Benedetti et al., “Memory Enhanced PSO-based ...”
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