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AHybrid Approa
h to the Synthesis of Sub-arrayed MonopulseLinear Arrays
P. Ro

a, L. Mani
a, R. Azaro, and A. Massa

Abstra
tIn this letter, a hybrid approa
h for the synthesis of the �optimal� 
ompromise be-tween sum and di�eren
e patterns for sub-arrayed monopulse antennas is presented.Firstly, the sub-array 
on�guration is determined by exploiting the knowledge ofthe optimum di�eren
e mode 
oe�
ients to redu
e the dimension of the sear
hingspa
e. In the se
ond step, the sub-array weights are 
omputed by means of a 
on-vex programming pro
edure, whi
h takes advantages from the 
onvexity, for a �xed
lustering, of the problem at hand. A set of representative results are reported toassess the e�e
tiveness of the proposed approa
h. Comparisons with state-of-the-artte
hniques are also presented.

Key words: Sum and di�eren
e patterns synthesis, 
ontiguous partition, 
onvex pro-gramming, hybrid optimization. 2



1 Introdu
tionIn the re
ent literature, the use of a hybrid approa
h, namely, the Simulated Anneal-ing Convex Programming (Hybrid − SA) method [1℄, for the synthesis of sub-arrayedmonopulse linear antennas has improved the performan
es in shaping 
ompromise pat-terns with respe
t to referen
e approa
hes [2℄-[4℄. By 
onsidering a sub-arraying strategy[5℄, the pro
edure proposed in [1℄ is aimed at �nding �the sub-array 
on�guration and the
oe�
ients of the sub-array sum signals su
h that the 
orresponding radiation pattern hasa null with the maximum possible slope in a given dire
tion, while being bounded by an ar-bitrary fun
tion elsewhere.� Su
h a solution allows one the use of simpler feeding networksthat guarantee both a redu
ed 
ir
uit 
omplexity and low ele
tromagneti
 interferen
esas well as to obtain patterns with user-de�ned 
hara
teristi
s. It is based on the exploita-tion of the 
onvexity of the fun
tional with respe
t to a subset of the unknowns (i.e., thesub-array gains) and it is 
arried out by means of a Convex Programming (CP ) method[1℄. However, sin
e the sub-array memberships of the array elements are determined bymeans of a Simulated Annealing (SA) algorithm, the pro
edure involves non-negligible
omputational 
osts to a
hieve the global minimum or there is the possibility that thesolution is trapped in a lo
al minimum (whether the 
riterion for the SA 
onvergen
ehas not been veri�ed [6℄). In order to save 
omputational resour
es, an innovative ap-proa
h has been presented in [7℄. It is an optimal pattern mat
hing te
hnique, namelythe Contiguous Partition Method (CPM) [8℄, whi
h has been integrated in an iterativepro
edure 
onsidering di�erent referen
e patterns to deal with 
onstraints on the levelof the sidelobes (SLL), as well. The CPM takes advantage from the knowledge of theoptimal ex
itations of the di�eren
e pattern [9℄[10℄[11℄ and from the 
on
ept of 
ontiguouspartitions [12℄ to redu
e the sear
hing spa
e and, thus, e�e
tively handling the problemof the optimal 
lustering. As a matter of fa
t, the arising 
omputational burden turnsout to be signi�
antly redu
ed 
ompared to that of previous optimization s
hemes.In this letter, a hybrid approa
h (
alled Hybrid − CPM method), whi
h integrates the
CPM [8℄ with a gradient-based CP pro
edure [1℄ to pro�tably bene�t of the positivefeatures of both CPM and CP approa
h is 
arefully des
ribed and validated. At the3



�rst step, the �optimal� sub-array 
on�guration is 
omputed a

ording to the pro
eduredes
ribed in [8℄ by exploiting the relationship between the ex
itation 
oe�
ients of theoptimal sum [14℄[15℄[16℄[17℄ and di�eren
e [9℄[10℄[11℄ modes. On
e the 
lustering has beendetermined, the sub-array gains are 
omputed as in [1℄.2 Mathemati
al FormulationLet us 
onsider a linear array of N = 2M equally-spa
ed isotropi
 elements an, n =

−M, . . . ,−1, 1, . . . , M and the 
orresponding spa
e fa
tor given by:
f (θ) =

M
∑

n=−M

anej(n−sgn(n)/2)kd cos(θ) (1)where k and d = λ
2
are the wavenumber of the ba
kground medium and the inter-elementspa
ing, respe
tively. Moreover, θ indi
ates the angular rotation with respe
t to thedire
tion orthogonal to the array. It is well known that optimal sum [14℄[15℄[16℄[17℄and di�eren
e [9℄[10℄[11℄ patterns are a�orded by independent sets of symmetri
 As =

{as
n; n = ±1, ...,±M} and anti-symmetri
 Ad =

{

ad
n; n = ±1, ...,±M

} ex
itations, there-fore the 
orresponding array spa
e fa
tors (1) turns out to be even [f s (θ) = f s (−θ)℄and odd [fd (θ) = −fd (−θ)℄ fun
tions [1℄. Consequently, only half of the array ele-ments are des
riptive of the whole array. In order to yield at the same time optimalsum and di�eren
e patterns, two independent and 
omplete feeding networks are usuallyneeded. However, su
h a solution is generally very expensive and impra
ti
al due to the
ir
uit 
omplexity, the physi
al spa
e limitations, and the ele
tromagneti
 interferen
es.Therefore, the sub-arraying strategy is usually adopted sin
e it allows a suitable trade-o�between the antenna feasibility and the synthesized pattern features.The Hybrid−CPM approa
h belongs to sub-arraying te
hniques, but unlike the Hybrid−

SA, it 
onsiders a two-stage-iterative pro
edure instead of an iterative one step pro
esswherein ea
h step involves in turn the solution of a 
onvex optimization problem. The�rst step is based on the CPM (i.e., a mat
hing method likewise the Ex
itation Mat
hingMethod (EMM) proposed by M
Namara in [5℄) and it is aimed at de�ning the sub-array4




on�guration CCPM that minimizes the following 
ost fun
tion
ΨCPM (C) =

M
∑

m=1
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2 (2)obtained after simple algebra from the fun
tional used in [5℄ and aimed at quantifyingthe distan
e in the mean square norm of the synthesized solution to the independentlyreferen
e di�eren
e set Ad. In Eq. (2), C = {cm; m = 1, . . . , M} is a ve
tor of integervalues (i.e., cm ∈ [1, Q]) that identi�es the sub-array membership of ea
h element ofthe array [4℄, q is the sub-array index and δqcm
is the Krone
ker delta (i.e., δqcm

= 1 if
q = cm, δqcm

= 0 otherwise). The solution of su
h a problem is �a 
ontiguous partitionof M 
ompletely ordered elements into Q subsets that may be represented by Q− 1 pointsof division lying in any of the M − 1 intervals between adja
ent elements� [12℄. Thissolution represents the best step-wise approximation of the 
onsidered partition and �thenumber of possible 
ontiguous partitions is equal to the number of ways of 
hoosing thedivision points, whi
h is the number of 
ombinations of M − 1 di�erent things taken
Q − 1 at a time [i.e., UCPM =









M − 1

Q− 1









, UCPM being the number of 
ontiguouspartition℄�. A

ordingly, CCPM is determined by generating a sequen
e of 
ontiguouspartitions {

C(k); k = 0, ..., K
} starting from a guess aggregation C(0) and updating thesolution [C(k) ← C(k+1)℄ just modifying the membership of the �border elements� [7℄ ofthe array by means of the lo
al sear
h strategy presented in [7℄.The se
ond step exploits the following property [1℄: �the optimal 
ompromise betweensum and di�eren
e patterns is a 
onvex problem with respe
t to the sub-array weightsfor a �xed sub-array 
on�guration C�. A

ordingly, on
e the element membership hasbeen determined [i.e., C(opt) = CCPM ℄, the optimal weight ve
tor W (opt) is 
omputed byminimizing the following 
ost fun
tion
ΨCP (W ) =

dℜ
{

fd (θ)
}

dθ

∣

∣

∣

∣

∣

∣

θ=θ0

(3)
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subje
t to dℑ{fd(θ)}
dθ

∣

∣

∣

∣

θ=θ0

= 0 and ∣

∣

∣fd (θ)
∣

∣

∣

2
≤ ℵ (θ), where θ0 indi
ates the boresightdire
tion and ℵ (θ) is a non-negative fun
tion that de�nes the upper bounds for the side-lobes. Moreover, W = {wq; q = 1, . . . , Q} is the sub-array weight ve
tor and ℜ and

ℑ denote the real part and the imaginary one, respe
tively. Towards this end, a stan-dard gradient-based optimization is performed by generating a su

ession of trial solutions
{

W (h); h = 0, ..., H
} starting from the initial guess given by W (0) =

{

wCPM
q ; q = 1, . . . , Q

}being wCPM
q =

[

∑M

j=1
δqcj (as

j
ad

j )
∑M

j=1
δqcj (as

j)
2

].3 Numeri
al AssessmentIn this se
tion, the e�e
tiveness and potentialities of the proposed hybrid method willbe assessed dealing with three ben
hmarks of the related literature in order to 
ompletethe preliminary validation presented in [13℄ and to further 
on�rm, in a more exhaustivefashion, the underlying proof-of-
on
ept. As a matter of fa
t, the test 
ases under analysisare 
on
erned with linear arrays and, for the sake of 
ompleteness, with both a small(M = 10) and a large (M = 100) number of elements. Whatever the experiment, thesynthesis is aimed at minimizing the SLL of the 
ompromise di�eren
e pattern for a �xedbeamwidth or, analogously, at maximizing the slope along the boresight dire
tion [1℄ �xedat θ0 = 0o.The �rst test 
ase deals with a linear array of N = 20 elements. As far as the summode is 
on
erned, it has been �xed to a Villeneuve sum pattern [16℄, with n̄ = 4 and
SLL = −25 dB, in the �rst experiment, whereas a Dolph-Chebyshev [14℄ pattern with
SLL = −20 dB has been 
hosen for the se
ond one. In the �rst experiment, a 
on�gura-tion with Q = 5 sub-arrays and uniform 
lustering is 
onsidered. Moreover, as regards theoptimal/referen
e di�eren
e pattern of the approa
hes that exploit the 
on
ept of 
on-tiguous partitions, the ex
itations Ad have been �xed to a modi�ed Zolotarev distribution(n = 4, ε = 3) whose pattern is 
hara
terized by SLLref = −25 dB. Figure 1 pi
torially
ompares the patterns obtained with the EMM [5℄, the CMP [8℄, and the Hybrid−CPMapproa
h, whose �nal sub-array 
on�guration and weights are C(opt) = {1 1 2 3 3 5 5 4 4 2}6



and W (opt) = {0.3352, 1.1299, 1.3708, 1.8309, 1.8699}, respe
tively. It is worth notingthat the Hybrid − CPM approa
h outperforms other methods with a redu
tion of over
5 dB and more than 1 dB of the the SLL with respe
t to the EMM and the CPM ,respe
tively (Tab. I).The se
ond experiment is devoted to 
omplete the 
omparison by 
onsidering the state-of-the-art methods based on sto
hasti
 optimizations. In parti
ular, the results from the
Hybrid − SA [1℄ and the Di�erential Evolution (DE) optimization algorithm [4℄ havebeen taken into a

ount. The array 
on�guration is that with Q = 8. The array patternsobtained from the appli
ation of the CPM-based methods a

ording to the guidelines in[8℄ and by assuming a referen
e Zolotarev pattern [10℄ with SLLref = −39 dB are shownin Fig. 2(a) together with those from the other approa
hes. With referen
e to Fig. 2(a)and as quantitatively estimated in Tab. I, the Hybrid − CPM plot presents a SLL of
−37.5 dB (i.e., almost 1 dB below the SLL of the Hybrid− SA [1℄ and more than 15 dBwhen 
ompared to the pattern in [4℄ with the same number of sub-arrays), with C(opt) =

{2 3 5 7 8 8 6 4 3 1} and W (opt) = {1.1836, 1.8818, 4.9795, 6.9286, 7.3462, 8.5109, 9.1480, 9.7003}.Furthermore, it is worth analyzing the beamwidths (BW s) (or, similarly, the �rst null posi-tions) of the results in Fig. 2(a). As a matter of fa
t, the Hybrid−CPM solution presentsnot only the lowest SLL value, but also the narrower BW (i.e., BWHybrid−CPM = 0.097vs. BWHybrid−SA = 0.102 and BWDE = 0.113). Su
h a result further 
on�rms the e�e
-tiveness of the Hybrid − CPM in dealing with the non-
onvex part of the problem athand, thus allowing the synthesis of 
ompromise patterns with better 
hara
teristi
s. Asexpe
ted, the improvements in terms of SLL are even larger by setting the same BW
onstraint used with Hybrid − SA [1℄. Towards this aim, the referen
e ex
itations Adhave been 
hosen to a�ord a Zolotarev di�eren
e pattern [10℄ with SLLref = −41 dB.In su
h a 
ase, the a
hieved solution has a SLL = −38.0 dB with an improvement ofabout 0.5 dB [Tab. I℄ 
ompared to that in Fig. 2(a). For 
ompleteness, the values ofthe obtained 
lustering and sub-array weights are equal to C(opt) = {2 4 6 8 8 8 7 5 3 1} and
W (opt) = {0.7461, 2.0518, 4.0934, 5.4616, 6.5563, 8.2545, 8.5060, 10.0768}, respe
tively.As far as the 
omputational 
osts are 
on
erned, the number of iterations, K, required7



to get the �nal 
lustering starting from a uniform one at the initialization, is KCPM = 4and KCPM = 3, for the two CPM-based syntheses, respe
tively, and the total CPU-time is shorter than 10 [µsec] in both 
ases. Moreover, the whole synthesis time of the
Hybrid − CPM amounts to 3.078 [sec] and 3.781 [sec], respe
tively. As regards to thehigher burden of the Hybrid− CPM 
ompared to the CPM , this is due to the solutionof the CP problem, whi
h ends in KCP = 18 iterations. For 
omparative purposes, letus noti
e that a greater 
omputational burden a�e
ts the Hybrid− SA [1℄ method sin
e
KHybrid−SA = 25 have been 
hosen and CP problem is solved at ea
h iteration. Similar
on
lusions hold true also for the DE approa
h [4℄ where the number of iterations hasbeen set to KDE = 10.The last 
omparative example deals with the synthesis of a large array (N = 200). Thanksto the 
omputational saving [18℄, the CPM-based pro
edures are able to e�e
tively fa
ewith su
h a problem dimensionality. The sum 
oe�
ients have been 
hosen to generatea Dolph-Chebyshev [14℄ pattern with SLL = −25 dB, while the values of the referen
edi�eren
e ex
itations have been �xed to those of the Zolotarev di�eren
e pattern with
SLLref = −30 dB. The behaviors of the patterns in Fig. 3 
learly point out that theintegration of the CP optimization with the CPM allows a non-negligible enhan
ementof the SLL performan
es. As a matter of fa
t, the SLL 
omputed in 
orresponden
e withthe 
lustering determined by the Hybrid−CPM method (Tab. II) is of about 3 dB lowerthan that of the standard version of the CPM (see Tab. I).Finally, in order to assess the reliability of the synthesized solutions, let us evaluate theradiated power patterns when mutual 
oupling (MC) e�e
ts are in
luded into the arraymodel. Towards this purpose, the MC models proposed in [19℄ and [20℄ have been takeninto a

ount and 
ompared as in [21℄. The 
ase-of-study example deals with a 20-elementuniform linear array of thin λ/2 dipoles oriented along the z axis [22℄. As a representativeexample, the e�e
ts of the MC on the solution obtained with the Hybrid−CPM approa
hand shown in Fig. 1 are analyzed. Figure 4 shows the pi
torial representations of therelative power patterns for di�erent situations. As it 
an be observed, the radiationpattern obtained by in
luding the MC e�e
ts is similar to the ideal 
ase whatever the8




onsidered MC model. More in detail, the null positions are equal to those of the idealpattern, while some perturbations only a�e
t the behavior of the se
ondary lobes without
ompromising the performan
e of the di�eren
e beam.4 Con
lusions and Dis
ussionsIn this letter, a hybrid approa
h devoted to the synthesis of the �optimal� 
ompromisebetween sum and di�eren
e patterns for sub-arrayed monopulse antennas has been pre-sented. In su
h a method, the element memberships are de�ned through the CPM thatexploits the knowledge of the optimal di�eren
e mode 
oe�
ients to redu
e the set ofadmissible sub-array 
on�gurations and to speed up the 
onvergen
e of the 
ompromisesynthesis. The sub-array gains are then 
omputed by means of a 
onvex programmingpro
edure that takes advantage from the 
onvexity of the arising 
ost fun
tion in 
orre-sponden
e with a �xed 
lustering. Representative results have been reported in order toassess the potentialities of the proposed Hybrid − CPM te
hnique in dealing with thesynthesis of both small and large monopulse arrays, where mutual 
oupling e�e
ts havebeen taken into a

ount, as well.Con
erning the optimization problem at hand, the proposed CPM-based pro
edure doesnot guarantee that the retrieved sub-array 
on�guration is the best 
hoi
e for optimizingthe SLL. As a matter of fa
t, su
h a 
on�guration 
an be (theoreti
ally) obtained only bymeans of global optimization pro
edures. However, the proposed pro
edure has shown tooutperform state-of-the-art global optimization strategies. Furthermore, starting from theassumption that CPM-based strategies are mat
hing te
hniques, the proposed approa
h
an be easily extended to arbitrary sidelobe masks or pattern shapes (for both sum anddi�eren
e patterns) by pro�tably using the state-of-the-art approa
hes (e.g., [17℄[11℄) toset the referen
e patterns. Future resear
h works will be aimed at implementing su
hextensions and di�erent antenna appli
ations.
9
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FIGURE CAPTIONS
• Figure 1. Uniform Sub-arraying (M = 10, Q = 5) - Normalized 
ompromisedi�eren
e patterns obtained by means of the Hybrid − CPM method, the CPM[8℄, and the EMM [5℄.
• Figure 2. Non-Uniform Sub-arraying (M = 10, Q = 8) - Normalized 
ompromisedi�eren
e patterns obtained by means of the Hybrid − CPM method, the CPM[8℄, the SA− CP approa
h [1℄, and the DE optimization [4℄.
• Figure 3. Large Arrays (M = 100, Q = 6) - Normalized 
ompromise di�eren
epatterns obtained with the Hybrid− CPM method and the CPM [8℄.
• Figure 4. Mutual Coupling (M = 10, Q = 5) - Normalized 
ompromise di�eren
epatterns obtained with the Hybrid − CPM in 
orresponden
e with ideal sour
esand dipoles without and with mutual 
oupling e�e
ts.

TABLE CAPTIONS
• Table I. Values of the SLL of the array fa
tors in Figs. 1-3.
• Table II. Large Arrays (M = 100, Q = 6) - Sub-array 
on�guration and weightsdetermined by the Hybrid− CPM method (see Fig. 3 for the 
orresponding pat-tern).
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[dB] Reference Hybrid− CPM CPM EMM Hybrid− SA DE

M = 10 Q = 5 −25.0 −22.4 −21.0 −17.0 − −

M = 10 Q = 8 −39.0 −37.5 −35.2 − −36.5 −21.6

M = 10 Q = 8 −41.0 −38.0 −32.7 − −36.5 −21.6

M = 100 Q = 6 −30.0 −28.3 −25.7 − − −

Tab.I-P.Ro

aetal.,�AHybridApproa
hfortheSynthesis...�
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M = 100 C
11111111111111222222223333333344444444555555555666

66666666666666666666666666666555555555444444433331

Q = 6 W 0.2133 0.7235 0.9417 1.0909 1.2752 1.4294

Tab.II-P.Ro

aetal.,�AHybridApproa
hfortheSynthesis...�
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