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Abstract — In this paper, three antenna problems concerned with both the synthesis and the control (i.e., a real-time synthesis) are
formulated and solved by using innovative and ad-hoc versions of evolutionary optimization techniques. In order to assess the
effectiveness of the proposed techniques, some representative results are compared with those obtained with standard versions of
optimizers or state-of-the-art deterministic approaches.

1 INTRODUCTION

Nowadays, the solution of antenna problems by means of evolutionary optimization techniques is a topic
of great interest in electromagnetics. These approaches allow one to define new and satisfactory solutions
fitting in a very effective fashion the requirements of the modern wireless communication systems as the
adaptation to time-varying scenarios, the integration of different services, the size and the costs. Moreover,
they usually outperform the solutions obtained with gradient-based or conventional techniques.

In the following, three test cases concerned with antenna synthesis and control are discussed. In
particular, Particle-Swarm-Optimizer (PSO) based strategies are used for phased array control (Section 2.1)
and synthesis of pre-fractal antennas (Section 2.2). Moreover, a synthesis approach based on the Ant
Colony Optimizer (ACO) is profitably adopted for synthesizing array monopulse antennas (Section 2.3).

2 FORMULATION AND NUMERICAL VALIDATION

2.1 Real-Time Control of Array Antennas through a Memory-Enhanced PSO

The ever-growing diffusion of wireless communications requires Tx/Rx systems able to adapt themselves
to the time-varying environment conditions in order to guarantee a suitable Quality-of-Service (QoS). When
dealing with adaptive arrays, several control techniques have been proposed for interference suppression.
The adaptive real-time control of array weights is generally performed either through analytical procedures
(e.g., [1]) or by means of optimization strategies [2][3][4].

In such a framework, a PSO-based optimization has been successfully applied in [5] dealing with complex
scenarios by considering both linear and planar array geometries. In order to speed up the convergence
rate (i.e., the re-adaptation of the system to the changing conditions) and for facing with a scenario where
jamming sources are located both in near [7] and far-field, an enhanced version of the standard PSO (called
Particle Swarm Optimizer with Memory - PSOM) that exploits the memory of the optimization process, has
been preliminary presented in [6].

Let us consider a set of J narrow-band signals impinging on an array of N elements. The received signal is
given by

J
sO) =50+ 500+ (1)
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where %j" is a jamming and n indicates the background uncorrelated noise. Moreover, s®t)=o®®)h®,

where ¢® stands for the envelope and h® [exp(jp()....expljp® )] (t=r,d,i). By considering both near and far-

field interferences at each snapshot t, the phase term of the j-th interferer can be expressed as follows
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dj(i) being the distance of the j-th jamming source from the antenna center, (x,,y,,z,) is the position of the
n-tharray element, and u{) =sin 9{’ cos ¢, v{ =sin (" sin 4, g = cos O .

Under these assumptions, the maximization of the signal-to-interference-plus-noise ratio (SINR) at the
receiver is usually carried out by maximizing the following fitness function [4]
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where 1 =@ 19" + @ is the covariance matrix of the received signal and w={w, exp(js, Jn=1...N} is

the weights vector. Towards this end, at each snapshot t, the optimal weights Wopt

means of an iterative PSO-based procedure. The process starts from the choice of a suitable global-best
particle from a buffer of trial solutions of size M, tm;m =1..,M }, which defines the so-called “memory” of

are determined by

the optimization process (the exchange of particles between the memory and the swarm is managed
through the “Resurrection Operator” and the “Storage Operator” detailed in [6]). Unlike standard PSO, the
velocity is updated as follows
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where selt,...,s] is the index of the particle of the swarm of size S and beli,...,B] indicates the b-th bit
coding the n-th phase term g, .
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Figure 1: SINR versus time-step index, t,.

In (4), the first term on the right side is the “self-knowledge”, the second one is the “group-knowledge”
term, and A, is the “ambient-knowledge” term that depends on storage solutions and given by

S mnexpl-H 2]
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where H is an integer heuristically-defined. At each time-step t, the PSOM terminates when a maximum
number of iterations or a user-defined SINR threshold is reached.



As an example, Figure 1 shows the behavior of the SINR versus the snapshot index t; when using a planar
array [8] and in correspondence with a scenario characterized by near/far-field interferences with random
directions and arrival times characterized by a Poisson-like distribution [6] (S =30, M = 20, B = 8). As it can
be observed, the PSOM overcomes other optimization strategies (i.e., standard PSO [5] and LRTGA [8])
thanks to a more effective exploitation of the memory buffer. In order to further point out the effectiveness
of the proposed approach, Figure 2 shows the beam pattern at 4=88 synthesized when a jammer with

power 30 dB over the desired signal and located at (dl‘”,@l(”,qﬁl“)):(62.88,32) impinges on the planar array.

Both LRTGA and PSO are able to reject the interference signal placing a null of -66 dB and -117 dB in depth,
respectively, but the PSOM places a deeper null (-140 dB).
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Figure 2: Beam pattern synthesized at t;, / = 119.

2.2 PSO-Based Strategy for Pre-Fractal Multi-Band Antenna Synthesis

In the last years, besides devices able to adapt themselves to time-varying electromagnetic environments,
a growing interest and researches have been attracted towards the synthesis of antenna systems able to
contemporarily qualify different services on the wireless channel. In this framework, fractal antennas seem
to be an effective solution [9] due to their implicit multi-band behavior and miniaturization properties.
However, since fractal shapes present a harmonic-frequency rather than a multi-band behavior [10], an
innovative fractal-based methodology has been proposed for synthesizing fractal-like antennas with (in
principle) unconstrained multi-band behaviors [11]. Towards this end, reference pre-fractal shapes are
iteratively modified according to a PSO-based optimization procedure aimed at minimizing the following

cost function
M-IN-1T-1
oly)-
m=0n=0 t=0 (6)
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where suitable constraints on dimensions and electrical requirements are imposed (e.g., gain values I’
greater than G,;,, and impedance matching at the input port of the antenna, i.e., synthesized voltage-
standing-wave-ratio values ‘¥ smaller than VSWR,.., ).

As a representative result, the synthesis of a dual-band antenna allowing L;-GPS and Wi-Fi services is
discussed. As far as the geometrical and electrical requirements are concerned, the following constraints
have been imposed: (a) ¥ <VSWR,. =20, (b) a gain greater than G,;, =3.0dB; at =0° and
I'>G,,;, =—4.0dB; at #=70° in the L,-GPS band by taking into account the presence of a 20dB
preamplifier, (c) an hemispherical coverage in the Wi-Fi band, and (d) a physical dimension larger than
Aaldx A 14.



Staring from a reference geometry generated by applying two-times (i =1,2) the so-called Hutchinson

operator on a Sierpinski-like fractal shape [12], the minimization of (6) has been carried out by integrating
the PSO with a Method-of-Moments (MoM) electromagnetic modeling tool for carefully simulating the
presence of the support dielectric slab and of a reference ground plane. Figure 3 shows the cost function
behavior versus the iteration index. For completeness, the plots of the corresponding VSWR values are
reported (Fig. 4), as well.
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Figure 3: Cost function versus the iteration number.
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Figure 4: Measured and simulated VSWR values.

Finally, the prototype of the synthesized dual-band Sierpinski-like pre-fractal antennas is shown in Figure 5.

Figure 5: Antenna prototype.

2.3 ACO for Tree-Searching-based Synthesis of Monopulse Array Antennas

Another interesting topic in the field of antenna design is concerned with radar applications and the
synthesis of monopulse arrays. In particular, the definition of an optimal compromise among sum and
difference patterns through sub-arraying techniques has been widely studied and innovative solutions
based on evolutionary techniques have been recently proposed [13].



In such a case, the synthesis problem can be stated as follows “for a fixed array geometry and a given
optimal sum mode, defining the elements aggregation and the sub-array weights such that compromise
excitations afford a difference pattern as close as possible to the optimum difference in the Dolph-
Chebyschev fashion”. Towards this purpose, an effective optimal matching method has been preliminary
presented in [14]. By exploiting the relationship between independently optimal sum A® ={g ;n=1..,N}
and difference B® ={g,; n=1..,N} excitations, a non-complete binary tree that identifies the whole set of
admissible sub-array aggregations C={c,; n=1..,N}, c, e[l;Q], is defined and a cost value is assigned to
each tree branch

(7)

The optimal solution is then defined as the minimum of (7) to be identified by effectively sampling the
solution tree. Accordingly, an optimization procedure based on the ACO [15] aimed at looking for the
minimum-cost path is used and the sub-arrays gains are
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5. o being the Kronecker delta (6, G =1ifc,=q, 6.4=0 otherwise) and v, :%;nzl,m, N . More in detail,
each ant f,,i=1..,1 codes a vector of integer values, namely the aggregation vector C ={c,; n=1..,N} and

the ants are moving from the root to the leafs.

At the first iteration, the same cost value is assigned to every branch of the solution-tree. Then the
probability of exploring a branch is modified according the pheromone update and evaporation, as detailed
in [15].

As an example, a N =100 elements array has been considered and the number of sub-arrays has been set to
Q=6. Furthermore, the optimal difference pattern has been chosen equal to the Zolotarev beam with

—-30dB sidelobe level (SLL). For comparison purposes, Figure 6 shows the pattern synthesized with the

ACO-based strategy and that determined by means of a deterministic method called Border Element (BE)
[14]. It is worth noting that the ACO method guarantees a SLL of —26dB more than 3dB better than that of

the BE solution.
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Figure 6: Compromise difference patterns.
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