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ABSTRACT 

In the framework of control methods for adaptive phased-arrays, this paper describes an innovative technique based on 
a memory enhanced optimization for dealing with complex scenarios and system models. Compared to other existing 
approaches working with far-field interferences, such a method focus on realistic situations where jamming sources are 
located both in the near-field or in the far-field of the antenna. Moreover, the effects of the mutual coupling are taken 
into account. A set of selected numerical results are presented in order to confirm the effectiveness of the proposed 
technique. 
 
1. INTRODUCTION 

The continuous evolution of communication systems requires even more effective antenna devices able to enhance the 
quality of the received signal by suppressing the noise and interferences at the receiver. In the framework of antennas 
array, the enhancement of the quality of the received signal can be achieved by means of the spatial diversity [1]. By 
adaptively controlling the weights of the array, the system performance can be maximized. 
The mathematical description of the control law has been originally formulated by Applebaum [2] by assuming an ideal 
communication channel and neglecting the interactions between the isotropic elements, as well. Moreover, such a 
theory cannot be applied to the real situations, since it requires the “a priori” knowledge of the directions of the 
interferences. 
However, by means of the reformulation of the problem in terms of an optimization procedure, different plausible 
solutions can be obtained. Initially, some algorithms based on deterministic procedures were considered [3]. Then, 
stochastic techniques have been employed in order to properly address the problem at hand facing its nonlinearity. As a 
matter of fact, through genetic algorithms (GAs) the phase-only control has been investigated [4][5]. Recently, the use 
of the particle swarm optimizer (PSO) demonstrated its effectiveness, allowing a further reduction of the computational 
burden required for the real-time processing [6]. 
In such a framework, this paper is aimed at analyzing a PSO-based technique [7][8] for the adaptive control of phased-
arrays able to handle more realistic scenarios where the jamming sources are located either in the near-field or in the 
far-field of the antenna. Moreover, the array is considered as a group of real radiators and therefore the effects of the 
mutual coupling on the array system are taken into account. Towards this end, a suitable network model [9] is used in 
order to define a mutual coupling matrix. 
The paper is structured as follows. Section 2 presents the mathematical formulation of the PSO-based approach, while 
in Section 3 a set of selected numerical result is proposed for validation purposes. Finally (Sect. 4), some conclusions 
and final remarks are reported. 
 
2. MATHEMATICAL FORMULATION 

Let us consider an array of N elements receiving a set of narrowband signals. The output at the terminals of the n-th 
receiver can be expressed as follows 
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where , , and ; )()()( cossin rrru φθ= )()()( sinsin rrrv φθ= )()( cos rrq θ= λ  is the free-space wavelength, ( )nnn zyx ,,  
defines the position of the n-th element, and the direction of arrival (DoA) of the received signal is denoted by the 
angular coordinates ( ))()( , rr φθ . 
By using a vectorial notation, the N components of the received signal can be written as )()()( )()( rrr htts α= , where 
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Moreover, when co-channel interferences occur, )()( ts r  can be decomposed into a contribution due to the 
 

 
Figure 1, Behavior of the SINR versus time-step index for different scenarios when using the memory 
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according to Eq. (2) by replacing the superscript (r) with (d) and (i), respectively. 
For the sake of clarity, Eq. (3) is representative of a widely used scenario where a desired source and a set of 

 interfering sources are located in the far-field of the receiver. However, a more realistic model can be 
employed by assuming a set of J jamming signals located in whatever area of the array. Therefore, the DoA of the j-th 
jamming source is defined by the new set of coordinates 
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the receiver. According to this model, the phase term of the j-th jammer is modified according to the guidelines 
suggested in [11], namely 
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In order to take into account the electromagnetic interactions between the elements of the array (i.e., usually they are 
not isotropic sources), the theoretical approach proposed in [9] has been considered, as well. Such a model is based on 
the computation of a transformation matrix Ψ  (also called “mutual coupling matrix”), consequently the signal at the 
receiver turns out to be 
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where  is the directivity function and the symbol ∼ identifies the signal perturbed by the mutual coupling (MC) 
effects. 
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where: 
− ( ) ( )[ ]TNjβ  is the weights vector of the adaptive array; Nwjww β exp,,exp 11 K=
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and )()( ηη pI N=Θ , 

NI  being the identity matrix of size N. 

In order to maximize the SINR at the receiver, the smart antennas control problem is recast as an optimization one, 
where a suitable fitness function [4] has to be maximized. In particular, since )(uΘ  and )  are not measurable 

quantities at the receiver, the following expression has to be considered [5] 
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where 
)()()( ~~~ udr

Θ+Θ=Θ  is the covariance matrix of the received signal. 
The maximization of (10) is performed by means of an innovative strategy based on a PSO [7][8]. Such a technique is 
characterized by the definition of a swarm of S particles, whose trajectories in the research space are controlled by 
means of a set of updating equations. In this work, a binary customized version of the PSO has been used [6] in order to 
handle complex scenarios and allow reliable real-time performances. In particular, a memory mechanism and the 
consequent updating strategy have been developed for fully exploiting the “history” of the optimization process and 
speed up the convergence to the optimal solution. 
During a slot of time tl a desired signal and a fixed number J of jammers impinge on the array. In order to maximize the 
SINR in tl, the optimal weight combinations 

optw  has to be found. Therefore, the iterative process starts by defining of a 

population of S trial solution: 
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far as the amplitudes  are concerned, their values are a-priori chosen according to an uniform distribution. 
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equation, defined as follows: 
 
 

 
Figure 2, Behavior of avΦ  versus the distance of the interferers when varying the parameter B in PSOM 

 

 
Figure 3, Behavior of  versus the distance of the interferers for different techniques avΦ
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where: 
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where H is a parameter to be chosen heuristically; 

− qc  and qr  ( 3,,1K=q ) are weighting parameters and random uniform variables, respectively. 

The exchange of individuals between the swarm and the memory is performed by means of the “Resurrection 
Operator” and the “Storage Operator” [12] throughout the sequence of time-steps tl, with . max,,1 Ll K=
At each time-step tl, the PSO algorithm with memory (PSOM) is arrested when a maximum number of iterations 
( ) corresponding to a maximum of reaction time of the system is reached or when a optimality criterion is 

satisfied (
maxKkl =

( ) opt
k
s

l τ<Φℑ , optτ being an user defined parameter). 
 
3. NUMERICAL RESULTS 

In the followings, several numerical test cases are discussed in order to show the potentialities and limitations of the 
proposed approach. 
In order to calibrate the set of characteristic parameters of the optimization technique, a linear array of N=20 equally-
spaced (d=λ/2) z-oriented dipoles lying on the x-axis has been considered. The amplitudes wn (n=1,…,N) of the array 
weights have been chosen according to the Dolph-Chebyshev distribution. Through a large number of simulations, the 
values reported in Table 1 have been determined.  
 

PARAMETER VALUE  PARAMETER VALUE 

wi  0.01  S 30 

1c  2  M 20 

2c  2  H 10 

3c  1  
maxK  20 

Table 1, Result of the calibration process 
 
In particular, the size M of the buffer has been tuned by considering three different scenarios of interfering sources. The 
former is a stochastic model, since the arrival time of the jammers is modeled by means of Poisson process with a 
maximum life-time of 2 iterations [13]. Moreover, the directions of arrivals are randomly distributed in [ ]πφ ,0∈  with 

2
πθ = . At each time-step a random number J of jamming signals impinges the array with a fixed power of 

 above the desired signal, while a background noise with  has been considered. The 
distance  of the interferences has been uniformly distributed between 5λ and 100λ. 
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The second scenario is the so-called “Scenario 1” used by Weile et al., [5]. Finally, the so-called “deterministic 
scenario” is characterized by a cluster of interferences whose direction is supposed to be constant for a large number of 
iterations. 
Fig. 1 shows the behavior of the SINR with (M=20) and without memory (M=0) versus the time-steps tl (Lmax =900). As 
expected, the most significant enhancement holds for the deterministic configuration, even though the learning 
capabilities of the approach impacts in a non-negligible way on the other scenarios, as well. 
As far as the location of the jamming sources are concerned, the capability to place proper null in the synthesized beam 
pattern depends on the number of bits B of the digital phase shifters, especially in correspondence with small values of 
the distance . Fig. 2 shows the quality index )(i

jd avΦ  defined as 
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where the subscripts (Full) and (FF) indicate that the SINR has been computed using the array weights optimized 
through (10) taking into account the relationships (2) and (4), respectively. Moreover, in (15) the SINR has been 
computed neglecting the MC effects (Ψ =

NI ). When B>8, the binary-solution-space turns out to be too large for 
allowing fast convergence and reliable results. 
 
 

 
Figure 4, SINRFull versus the time-steps for different techniques 

 

 
Figure 5, SINRFF versus the time-steps for different techniques 

 

 
Figure 6, mutual coupling effects on the SINR versus the time-step for a planar array 

 
For comparison purposes, the result of Fig. 2 with B=8 by the PSOM has been compared with those of the Applebaum 
optimal method [2], the optimal method with discrete phases (DPA), the learned real-time GA [12], and the PSO [6]. 
Fig. 3 clearly indicates that the proposed approach outperforms the LRTGA and the PSO, approaching the behavior of 
the DPA whatever the jamming location. 
 



 

 
Figure 7, mutual coupling effects on the beam pattern for a planar array 

 
When considering a realization of the Poisson scenario ( , ) under the assumption that  
is a random variable, the behavior of the SINRFull is reported in Fig. 5. Since LRTGA is about 4 times computationally 
heavier than the PSO method,  has been set to  in order to achieve the same reaction time per slot of 
time tl. The achieved results demonstrate that the PSO-based approach outperforms other optimization methods of 
digital 
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Figure 8, Beam pattern optimized through PSOM 

 
control. For the same scenario, the behavior of the SINRFF is shown in Fig. 5. In this case, the optimal method achieves 
almost the same performance of Fig. 4, while the other control methods cannot optimize the beam pattern and properly 
locate the beam pattern nulls. 
The last test case is aimed at evaluating the capabilities of the PSOM in facing the MC effects. A hexagonal planar 
array of N=61 dipoles with uniform amplitudes for the weights has been considered [14]. Let us consider the SINR 
computed through (6) with the array weights optimized neglecting the MC effects (i.e., SINR, is obtained by fixing the 
non-diagonal elements of the matrix Ψ  equal to zero) or not (i.e., SINRMC). Fig. 6 shows the behaviors of the two 
signal-to-noise-ratios versus the time-step index tl. Neglecting the MC effects causes a visible degradation of the 
performances at the receiver, due to the shift of the locations of the nulls in the beam pattern with respect to the actual 
directions of arrival the interferences (Fig. 7, when l=766). 
For the sake of completeness, Fig. 8 shows the beam pattern in correspondence with a scenario characterized by two 
jamming signals [ ( ) ( )15,128,87,, )(

1
)(

1
)(

1 =iiid φθ  and ( ) ( )15,62,147,, )(
2

)(
2

)(
2 =iiid φθ ]. The interferences are correctly cancelled by 

means of a couple of nulls, -59[dB] in depth, placed in proper directions. 
 
4. CONCLUSIONS 

This paper illustrates an innovative technique based on an enhanced optimization strategy for the adaptive control of 
phased array in complex scenarios. 



 

The numerical validation, carried out through different array geometries and in various noisy configurations, confirms 
that the approach presents: (a) an enhanced computational efficiency allowing an improvement of the convergence rate 
without increasing the computational burden of the adaptive control; (b) a robustness to both near-field and far-field 
interferences; (c) the capability to face with and counteract the mutual coupling effects arising in realistic array 
architecture. 
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