eprintid: 870 rev_number: 9 eprint_status: archive userid: 11 dir: disk0/00/00/08/70 datestamp: 2024-02-15 14:42:23 lastmod: 2024-02-19 10:52:54 status_changed: 2024-02-15 14:42:23 type: monograph metadata_visibility: show creators_name: Salucci, Marco creators_name: Anselmi, Nicola creators_name: Massa, Andrea title: Near-Field Antenna Characterization Through a Compressive Sensing Based Approach ispublished: pub subjects: AWC subjects: MCS full_text_status: public monograph_type: technical_report keywords: Antenna measurements, antenna qualification, compres15 sive sensing (CS), near-field (NF) pattern estimation, near-field to far-field (NF-FF) transformation, sparsity retrieval, truncation error. abstract: A novel probabilistic sparsity-promoting method for robust near-field (NF) antenna characterization is proposed. It leverages on the measurements-by-design (MebD) paradigm, and it exploits some a priori information on the antenna under test (AUT) to generate an overcomplete representation basis. Accordingly, the problem at hand is reformulated in a compressive sensing (CS) framework as the retrieval of a maximally sparse distribution (with respect to the overcomplete basis) from a reduced set of measured data, and then, it is solved by means of a Bayesian strategy. Representative numerical results are presented to, also comparatively, assess the effectiveness of the proposed approach in reducing the “burden/cost” of the acquisition process and mitigate (possible) truncation errors when dealing with space-constrained probing systems. date: 2019 publisher: ELEDIA Research Center - University of Trento referencetext: [1] M. Salucci, N. Anselmi, M. D. Migliore, and A. Massa, “A bayesian compressive sensing approach to robust near-field antenna characterization,” IEEE Trans. Antennas Propag., vol. 70, no. 9, pp. 8671-8676, Sep. 2022. [2] B. Li, M. Salucci, W. Tang, and P. Rocca, “Reliable field strength prediction through an adaptive total-variation CS technique,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 9, pp. 1566-1570, Sep. 2020. [3] M. Salucci, M. D. Migliore, P. Rocca, A. Polo, and A. Massa, "Reliable antenna measurements in a near-field cylindrical setup with a sparsity promoting approach," IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 4143-4148, May 2020. [4] G. Oliveri, M. Salucci, N. Anselmi, and A. Massa, "Compressive sensing as applied to inverse problems for imaging: theory, applications, current trends, and open challenges," IEEE Antennas Propag. Mag., vol. 59, no. 5, pp. 34-46, Oct. 2017. [5] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics - A review," IEEE Antennas Propag. Mag., vol. 57, no. 1, pp. 224-238, Feb. 2015. [6] P. Rocca, N. Anselmi, M. A. Hannan, and A. Massa, “Conical frustum multi-beam phased arrays for air traffic control radars,” Sensors, vol. 22, no. 19, 7309, pp. 1-18, 2022. [7] F. Zardi, G. Oliveri, M. Salucci, and A. Massa, "Minimum-complexity failure correction in linear arrays via compressive processing," IEEE Trans. Antennas Propag., vol. 69, no. 8, pp. 4504-4516, Aug. 2021. [8] N. Anselmi, G. Gottardi, G. Oliveri, and A. Massa, "A total-variation sparseness-promoting method for the synthesis of contiguously clustered linear architectures," IEEE Trans. Antennas Propag., vol. 67, no. 7, pp. 4589-4601, Jul. 2019. [9] M. Salucci, A. Gelmini, G. Oliveri, and A. Massa, "Planar arrays diagnosis by means of an advanced bayesian compressive processing," IEEE Tran. Antennas Propag., vol. 66, no. 11, pp. 5892-5906, Nov. 2018. [10] L. Poli, G. Oliveri, P. Rocca, M. Salucci, and A. Massa, "Long-distance WPT unconventional arrays synthesis," J. Electromagn. Waves Appl., vol. 31, no. 14, pp. 1399-1420, Jul. 2017. [11] G. Oliveri, M. Salucci, and A. Massa, "Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver," IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4277-4287, Oct. 2016. [12] M. Carlin, G. Oliveri, and A. Massa, "Hybrid BCS-deterministic approach for sparse concentric ring isophoric arrays," IEEE Trans. Antennas Propag., vol. 63, no. 1, pp. 378-383, Jan. 2015. [13] G. Oliveri, E. T. Bekele, F. Robol, and A. Massa, "Sparsening conformal arrays through a versatile BCS-based method," IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1681-1689, Apr. 2014. [14] F. Viani, G. Oliveri, and A. Massa, "Compressive sensing pattern matching techniques for synthesizing planar sparse arrays," IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4577-4587, Sep. 2013. [15] G. Oliveri, P. Rocca, and A. Massa, "Reliable diagnosis of large linear arrays - A bayesian compressive sensing approach," IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4627-4636, Oct. 2012. [16] G. Oliveri, M. Carlin, and A. Massa, "Complex-weight sparse linear array synthesis by bayesian compressive sampling," IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2309-2326, May 2012. [17] G. Oliveri and A. Massa, "Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays," IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 467-481, Feb. 2011. [18] P. Rocca, M. A. Hannan, M. Salucci, and A. Massa, "Single-snapshot DoA estimation in array antennas with mutual coupling through a multi-scaling BCS strategy," IEEE Trans. on Antennas and Propag., vol. 65, no. 6, pp. 3203-3213, Jun. 2017. [19] M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. Massa, "Directions-of-arrival estimation through bayesian compressive sensing strategies," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3828-3838, Jul. 2013. [20] M. Carlin, P. Rocca, G. Oliveri, and A. Massa, "Bayesian compressive sensing as applied to directions-of-arrival estimation in planar arrays," J. Electromagn. Waves Appl., vol. 2013, pp. 1-12, 2013. [21] G. Oliveri, N. Anselmi, M. Salucci, L. Poli, and A. Massa, “Compressive sampling-based scattering data acquisition in microwave imaging,” J. Electromagn. Waves Appl., vol. 37, no. 5, 693-729, Mar. 2023. [22] G. Oliveri, L. Poli, N. Anselmi, M. Salucci, and A. Massa, "Compressive sensing-based Born iterative method for tomographic imaging," IEEE Tran. Microw. Theory Techn., vol. 67, no. 5, pp. 1753-1765, May 2019. [23] M. Salucci, L. Poli, and G. Oliveri, "Full-vectorial 3D microwave imaging of sparse scatterers through a multi-task Bayesian compressive sensing approach," J. Imag., vol. 5, no. 1, pp. 1-24, Jan. 2019. [24] M. Salucci, A. Gelmini, L. Poli, G. Oliveri, and A. Massa, "Progressive compressive sensing for exploiting frequency-diversity in GPR imaging," J. Electromagn. Waves Appl., vol. 32, no. 9, pp. 1164-1193, 2018. [25] N. Anselmi, L. Poli, G. Oliveri, and A. Massa, "Iterative multi-resolution bayesian CS for microwave imaging," IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3665-3677, Jul. 2018. [26] N. Anselmi, G. Oliveri, M. A. Hannan, M. Salucci, and A. Massa, "Color compressive sensing imaging of arbitrary-shaped scatterers," IEEE Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 1986-1999, Jun. 2017. [27] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015. [28] G. Oliveri, P.-P. Ding, and L. Poli "3D crack detection in anisotropic layered media through a sparseness-regularized solver," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1031-1034, 2015. [29] L. Poli, G. Oliveri, P.-P. Ding, T. Moriyama, and A. Massa, "Multifrequency Bayesian compressive sensing methods for microwave imaging," J. Opt. Soc. Am. A, vol. 31, no. 11, pp. 2415-2428, 2014. [30] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014. [31] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function bayesian compressive sensing approach," J. Opt. Soc. Am. A, vol. 30, no. 6, pp. 1261-1272, 2013. [32] L. Poli, G. Oliveri, F. Viani, and A. Massa, "MT-BCS-based microwave imaging approach through minimum-norm current expansion," IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4722-4732, Sep. 2013. [33] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, "Sparse scatterers imaging through approximated multitask compressive sensing strategies," Microwave Opt. Technol. Lett., vol. 55, no. 7, pp. 1553-1558, Jul. 2013. [34] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2920-2936, May 2013. [35] L. Poli, G. Oliveri, and A. Massa, "Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing," IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2865-2879, Jun. 2012. [36] G. Oliveri, L. Poli, P. Rocca, and A. Massa, "Bayesian compressive optical imaging within the Rytov approximation," Optics Letters, vol. 37, no. 10, pp. 1760-1762, 2012. [37] G. Oliveri, P. Rocca, and A. Massa, "A Bayesian compressive sampling-based inversion for imaging sparse scatterers," IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 10, pp. 3993-4006, Oct. 2011. citation: Salucci, Marco and Anselmi, Nicola and Massa, Andrea (2019) Near-Field Antenna Characterization Through a Compressive Sensing Based Approach. Technical Report. ELEDIA Research Center - University of Trento. document_url: http://www.eledia.org/students-reports/870/1/Near-Field_Antenna_Characterization_Through_a_Compressive_Sensing_Based_Approach.pdf