eprintid: 804 rev_number: 7 eprint_status: archive userid: 10 dir: disk0/00/00/08/04 datestamp: 2020-10-15 07:18:11 lastmod: 2020-10-15 07:18:11 status_changed: 2020-10-15 07:18:11 type: monograph metadata_visibility: show creators_name: SALUCCI, Marco creators_name: POLO, Alessandro creators_name: MASSA, Andrea creators_id: marco.salucci@unitn.it creators_id: alessandro.polo.1@unitn.it creators_id: andrea.massa@unitn.it title: Integrating the IMSA With a New Integral Equation Method for Imaging Strong Scatterers ispublished: pub subjects: AWC full_text_status: public monograph_type: technical_report keywords: Inverse Scattering, Microwave Imaging, Iterative Multi-Scaling Approach, New Integral Equation abstract: In this work, an innovative inverse scattering (IS) methodology is proposed. The developed technique relies on the suitable integration of the iterative multi‐scaling approach (IMSA) and a New Integral Equation (NIE) strategy. One the one hand, the IMSA allows to effectively tackle both non‐linearity and ill‐posedness of the IS problem thanks to the adaptive refinement of the resolution only within the detected region‐of‐interest and the exploitation of progressively‐acquired information on the solution. On the other hand, the qualitative imaging of strong scatterers is enabled thanks to the NIE, allowing to reformulate the main equations modeling the physics of the problem such that it is possible to reduce its non‐linearity and reduce the occurrence of false solutions. Preliminary numerical results are provided to demonstrate the effectiveness of the proposed IMSA‐NIE methodology. publisher: ELEDIA@UniTN (DISI - University of Trento) referencetext: [1] G. Oliveri, Y. Zhong, X. Chen, and A. Massa, "Multiresolution subspace-based optimization method for inverse scattering problems," J. Opt. Soc. Am. A, vol. 28, no. 10, pp. 2057-2069, Oct. 2011. [2] X. Ye, L. Poli, G. Oliveri, Y. Zhong, K. Agarwal, A. Massa, and X. Chen, "Multi-resolution subspace-based optimization method for solving three-dimensional inverse scattering problems," J. Opt. Soc. Am. A, vol. 32, no. 11, pp. 2218-2226, Nov. 2015. [3] T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, "A multi-scaling forward-backward time-stepping method for microwave imaging," IEICE Electronics Express, vol. 11, no. 16, pp. 20140569(1-10), Aug. 2014. [4] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015. [5] M. Salucci, G. Oliveri, and A. Massa, "GPR prospecting through an inverse scattering frequency-hopping multi-focusing approach," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6573-6592, Dec. 2015. [6] T. Moriyama, M. Salucci, T. Tanaka, and T. Takenaka, "Image reconstruction from total electric field data with no information on incident field," J. Electromagn. Waves Appl., 2016. [7] M. Salucci, L. Poli, and A. Massa, "Advanced multi-frequency GPR data processing for non-linear deterministic imaging," Signal Proc., vol. 132, pp. 306-318, Mar. 2017. [8] M. Salucci, L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1305- 1317, Mar. 2017. [9] N. Anselmi, G. Oliveri, M. A. Hannan, M. Salucci, and A. Massa, "Color compressive sensing imaging of arbitrary-shaped scatterers," IEEE Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 1986-1999, Jun. 2017. [10] G. Oliveri, M. Salucci, N. Anselmi, and A. Massa, "Compressive sensing as applied to inverse problems for imaging: theory, applications, current trends, and open challenges," IEEE Antennas Propag. Mag.,vol. 59, no. 5, pp. 34-46, Oct. 2017. [11] M. Salucci, A. Gelmini, L. Poli, G. Oliveri, and A. Massa, "Progressive compressive sensing for exploiting frequency-diversity in GPR imaging," J. Electromagn. Waves Appl., vol. 32, no. 9, pp. 1164- 1193, 2018. [12] G. Oliveri, M. Salucci, and N. Anselmi, "Tomographic imaging of sparse low-contrast targets in harsh environments through matrix completion," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2714-2730, Jun. 2018. [13] M. Salucci, L. Poli, and G. Oliveri, "Full-vectorial 3D microwave imaging of sparse scatterers through a multi-task Bayesian compressive sensing approach," J. Imaging, vol. 5, no. 1, pp. 1-24, Jan. 2019. [14] M. Salucci, G. Oliveri, and A. Massa, "Real-time electrical impedance tomography of the human chest by means of a learning-by-examples method,", IEEE J. Electromagn., RF, Microw. Med. Biol., vol. 3, no. 2, pp. 88-96, Jun. 2019. [15] G. Oliveri, L. Poli, N. Anselmi, M. Salucci, and A. Massa, "Compressive sensing-based Born iterative method for tomographic imaging," IEEE Trans. Microw. Theory Techn., vol. 67, no. 5, pp. 1753-1765, May 2019. [16] I. Merunka, A. Massa, D. Vrba, O. Fiser, M. Salucci, and J. Vrba, "Microwave tomography system for methodical testing of human brain stroke detection approaches," Int. J. Antennas Propag., vol. 2019, ID 4074862, pp. 1-9, 2019. [17] Y. Zhong, M. Salucci, K. Xu, A. Polo, and A. Massa, "A multi-resolution contraction integral equation method for solving highly non-linear inverse scattering problems," IEEE Trans. Microw. Theory Techn., vol. 68, no. 4, pp. 1234-1247, Apr. 2020. [18] M. Salucci, A. Polo, K. Xu, and Y. Zhong, "A multi-resolution computational method to solve highly non-linear inverse scattering problems," Journal of Physics: Conference Series, vol. 1476, pp. 1-6, 2020. [19] N. Anselmi, L. Poli, G. Oliveri, and A. Massa, "Iterative multi-resolution bayesian CS for microwave imaging," IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3665-3677, Jul. 2018. [20] G. Oliveri, P.-P. Ding, and L. Poli "3D crack detection in anisotropic layered media through a sparseness-regularized solver," IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1031-1034, 2015. [21] L. Poli, G. Oliveri, P.-P. Ding, T. Moriyama, and A. Massa, "Multifrequency Bayesian compressive sensing methods for microwave imaging," J. Opt. Soc. Am. A, vol. 31, no. 11, pp. 2415-2428, 2014. [22] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014. citation: SALUCCI, Marco and POLO, Alessandro and MASSA, Andrea Integrating the IMSA With a New Integral Equation Method for Imaging Strong Scatterers. Technical Report. ELEDIA@UniTN (DISI - University of Trento). document_url: http://www.eledia.org/students-reports/804/1/Integrating_the_IMSA_With_a_New_Integral_Equation_Method_for_Imaging_Strong_Scatterers.pdf