eprintid: 799 rev_number: 9 eprint_status: archive userid: 10 dir: disk0/00/00/07/99 datestamp: 2019-07-18 11:14:03 lastmod: 2019-07-18 11:14:03 status_changed: 2019-07-18 11:14:03 type: monograph metadata_visibility: show creators_name: OLIVERI, Giacomo creators_name: Poli, Lorenzo creators_name: Anselmi, Nicola creators_name: SALUCCI, Marco creators_name: MASSA, Andrea creators_id: giacomo.oliveri@unitn.it creators_id: lorenzo.poli@unitn.it creators_id: nicola.anselmi.1@unitn.it creators_id: marco.salucci@unitn.it creators_id: andrea.massa@unitn.it title: A New Compressive Sensing Born Iterative Method to Image Non‐Weak Scatterers ispublished: pub subjects: AWC subjects: MCS full_text_status: public monograph_type: technical_report keywords: Microwave Imaging, Inverse Scattering, Compressive Sensing, Born Iterative Method abstract: In this work, the solution of the non‐linear inverse scattering (IS) problem in presence of non‐weak scatterers is dealt with. More in detail, a customized hybrid solution approach is developed based on the effective combination of the Born iterative method (BIM) formulation and a multi‐task Bayesian compressive sensing (MT‐BCS) solution approach. Thanks to the adopted strategy, it is possible to avoid the contrast source formulation (CSF) of the IS problem, as well as the use of time‐consuming full‐wave simulations for the computation of the electric field inside the imaged domain. Some numerical results are shown to verify the effectiveness of the proposed IS solution method when dealing with the imaging of different pixel‐sparse targets under several noisy conditions. publisher: ELEDIA Research Center - University of Trento referencetext: [1] G. Oliveri, M. Salucci, N. Anselmi, and A. Massa, "Compressive sensing as applied to inverse problems for imaging: theory, applications, current trends, and open challenges," IEEE Antennas Propag. Mag., vol. 59, no. 5, pp. 34-46, Oct. 2017. [2] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics - A review," IEEE Antennas Propag. Mag., pp. 224-238, vol. 57, no. 1, Feb. 2015. [3] G. Oliveri, L. Poli, N. Anselmi, M. Salucci, and A. Massa, "Compressive sensing-based Born iterative method for tomographic imaging," IEEE Trans. Microw. Theory Techn., vol. 67, no. 5, pp. 1753-1765, May 2019. [4] M. Salucci, A. Gelmini, L. Poli, G. Oliveri, and A. Massa, "Progressive compressive sensing for exploiting frequency-diversity in GPR imaging," Journal of Electromagnetic Waves and Applications, vol. 32, no. 9, pp. 1164-1193, 2018. [5] N. Anselmi, L. Poli, G. Oliveri, and A. Massa, "Iterative multi-resolution bayesian CS for microwave imaging," IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3665-3677, Jul. 2018. [6] N. Anselmi, G. Oliveri, M. A. Hannan, M. Salucci, and A. Massa, "Color compressive sensing imaging of arbitrary-shaped scatterers," IEEE Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 1986-1999, Jun. 2017. [7] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," IEEE Trans. Antennas Propag., vol. 63, no. 11, pp. 4889-4900, Nov. 2015. [8] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas Propag., vol. 62, no. 10, pp. 5157-5170, Oct. 2014. [9] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach," Journal of Optical Society of America A, vol. 30, no. 6, pp. 1261-1272, 2013. [10] L. Poli, G. Oliveri, F. Viani, and A. Massa, "MT-BCS-based microwave imaging approach through minimum-norm current expansion," IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4722-4732, Sep. 2013. [11] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2920-2936, May 2013. [12] L. Poli, G. Oliveri, and A. Massa, "Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing," IEEE Trans. Antennas Propag., vol. 60, no. 6, pp. 2865-2879, Jun. 2012. [13] G. Oliveri, L. Poli, P. Rocca, and A. Massa, "Bayesian compressive optical imaging within the Rytov approximation," Optics Letters, vol. 37, no. 10, pp. 1760-1762, 2012. [14] G. Oliveri, P. Rocca, and A. Massa, "A Bayesian compressive sampling-based inversion for imaging sparse scatterers," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3993-4006, Oct. 2011. [15] M. Salucci, A. Gelmini, G. Oliveri, and A. Massa, "Planar arrays diagnosis by means of an advanced Bayesian compressive processing," IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 5892-5906, Nov. 2018. [16] L. Poli, G. Oliveri, P. Rocca, M. Salucci, and A. Massa, "Long-distance WPT unconventional arrays synthesis," Journal of Electromagnetic Waves and Applications, vol. 31, no. 14, pp. 1399-1420, Jul. 2017. [17] G. Oliveri, M. Salucci, and A. Massa, "Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver," IEEE Trans. Antennas Propag., vol. 64, no. 10, pp. 4277-4287, Oct. 2016. [18] P. Rocca, M. A. Hannan, M. Salucci, and A. Massa, "Single-snapshot DoA estimation in array antennas with mutual coupling through a multi-scaling BCS strategy," IEEE Trans. Antennas Propag., vol. 65, no. 6, pp. 3203-3213, Jun. 2017. [19] M. Salucci, L. Poli, and G. Oliveri, "Full-vectorial 3D microwave imaging of sparse scatterers through a multi-task Bayesian compressive sensing approach," Journal of Imaging, vol. 5, no. 1, pp. 1-24, Jan. 2019. citation: OLIVERI, Giacomo and Poli, Lorenzo and Anselmi, Nicola and SALUCCI, Marco and MASSA, Andrea A New Compressive Sensing Born Iterative Method to Image Non‐Weak Scatterers. Technical Report. ELEDIA Research Center - University of Trento. document_url: http://www.eledia.org/students-reports/799/1/A_New_Compressive_Sensing_Born_Iterative_Method_to_Image_Non-Weak_Scatterers.pdf