eprintid: 488 rev_number: 4 eprint_status: archive userid: 5 dir: disk0/00/00/04/88 datestamp: 2011-07-08 lastmod: 2013-07-01 11:17:21 status_changed: 2013-07-01 11:17:21 type: techreport metadata_visibility: show item_issues_count: 0 creators_name: Benedetti, Manuel creators_name: Oliveri, Giacomo creators_name: Massa, Andrea title: Validation of a Smart Antenna Prototype: Model and Experiments ispublished: pub subjects: TU full_text_status: public note: This version is a pre-print of the final version available at IEEE. abstract: In this paper, the architecture of a smart antenna prototype is described and its functionality assessed. The system prototype is composed by an 8-elements linear array of dipoles with a finite reflecting plane and the adaptive behavior is obtained modifying a set of array weights with electronically-driven vector modulators. In order to real-time react to complex interference scenarios, the system is controlled by a software control module based on a Particle Swarm Optimizer. To demonstrate the feasibility and the effectiveness of the proposed implementation, a set of representative results concerned with realistic interference scenarios is reported and discussed. date: 2011-01 date_type: published institution: University of Trento department: informaticat refereed: FALSE referencetext: [1] A. Alexiou and M. Haardt, “Smart antenna technologies for future wireless systems: trends and challenges,” IEEE Comm. Mag., vol. 42, pp. 90-97, Sep. 2004. [2] M. Chryssomallis, "Smart antennas," IEEE Antennas Propag. Mag., vol. 42, pp. 129-136, Jun. 2000. [3] S. P. Applebaum, "Adaptive arrays," IEEE Trans. Antennas Propag., vol. 24, pp. 585-598, Sep. 1976. [4] M. D. Migliore, D. Pinchera, and F. Schettino, “A simple and robust adaptive parasitic antenna,” IEEE Antennas Propag. Mag., vol. 53, pp. 3262-3272, Oct. 2005. [5] N. Celik, W. Kim, M. F. Demirkol, M. F. Iskander, and R. Emrick, “Implementation and experimental verification of hybrid smart-antenna beamforming algorithm,” IEEE Antenna Wir. Propag. Lett., vol. 5, pp. 280-283, 2006. [6] M. Diop, J.F. Diouris, and J. Saillard, “A low-cost experimental adaptive array built in the UHF band (900 MHz) for a minimum response time in interference cancellation”, in Proc. IEEE Vehicular Technology Conference, 1992, pp. 25-28. [7] R. L. Haupt and H. Southall, “Experimental adaptive cylindrical array,” in Proc. IEEE Aerospace Conference, 1999, pp. 291-296. [8] M. Benedetti, R. Azaro, and A. Massa, “Experimental validation of a fully-adaptive smart antenna prototype,” Elect. Lett., vol. 44, no. 11, pp. 661-662, May 2008. [9] M. Benedetti, R. Azaro, and A. Massa, “Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios,” IEEE Trans. Antennas Propag., vol. 56, pp. 1939-1947, Jul. 2008. [10] R. T. Compton Jr., Adaptive Antennas. Englewood Cliffs, NJ: Prentice Hall, 1988. [11] L. C. Godara, Smart Antennas. Boca Raton, FL: CRC Press, 2004. [12] H.-R. Chuang and L.-C. Kuo, “3-D FDTD design analysis of a 2.4-GHz polarization-diversity printed dipole antenna with integrated balun and polarization switching circuit for WLAN and wireless communication applications,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 374-381, Feb. 2003. [13] Analog Devices, 2004. 1.5 GHz to 2.4 GHz RF vector modulator. One Technology Way, MA. [Online]. Available: www.analog.com/UploadedFiles/Data_Sheets/AD8341.pdf. [14] D. M. Pozar, Microwave Engineering. Hoboken, NJ: John Wiley, 2005. citation: Benedetti, Manuel and Oliveri, Giacomo and Massa, Andrea (2011) Validation of a Smart Antenna Prototype: Model and Experiments. [Technical Report] document_url: http://www.eledia.org/students-reports/488/1/DISI-11-181.C186.pdf