eprintid: 486 rev_number: 4 eprint_status: archive userid: 5 dir: disk0/00/00/04/86 datestamp: 2011-05-25 lastmod: 2013-07-01 11:16:18 status_changed: 2013-07-01 11:16:18 type: techreport metadata_visibility: show item_issues_count: 0 creators_name: Benedetti, Manuel creators_name: Lesselier, Dominique creators_name: Lambert, Marc creators_name: Massa, Andrea title: Multiple-Shape Reconstruction by Means of Multiregion Level Sets ispublished: pub subjects: TU full_text_status: public keywords: Homogeneous scatterers , inverse scattering , level set , microwave imaging , multiple objects , multiscale reconstruction abstract: In the framework of inverse scattering techniques for microwave imaging, this paper proposes an approach based on the integration between a multiscaling procedure and the level-set-based optimization in order to properly deal with the shape reconstruction of multiple and disconnected homogeneous scatterers. The effectiveness and robustness of the proposed approach is assessed against both synthetic and experimental data. A selected set of results concerned with complex shapes is presented and discussed. "(c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works." date: 2011-01 date_type: published institution: University of Trento department: informaticat refereed: TRUE referencetext: [1] P. J. Shull, Nondestructive Evaluation: Theory, Techniques and Applications. CRC Press, Boca Raton, 2002. [2] H. Schubert and A. Kuznetsov, Detection of Explosives and Landmines: Methods and Field Experience. Kluwer Academic Pub., Boston, 2001. [3] A. G.Webb, Introduction to Biomedical Imaging, IEEE Press Series on Biomedical Engineering. Wiley-IEEE Press, Hoboken, 2002. [4] D. D. Ferris and N. C. Currie, “A survey of current technologies for through-wallsurveillance (TWS),” Proc. SPIE, vol. 3577, pp. 62-68, 1998. [5] J. Ch. Bolomey, “Microwave imaging techniques for NDT and NDE,” Proc. Training Workshop on Advanced Microwave NDT/NDE Techniques, Supelec/CNRS, Paris, Sept. 7-9, 1999. [6] S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances,” IEEE Instrum. Meas. Mag., vol. 10, pp. 26-38, Apr. 2007. [7] A. Abubakar, P.M. van den Berg, and J. J.Mallorqui, “Imaging of biomedical data using a multiplicative regularized contrast source inversion method,” IEEE Trans.Microw. Theory Tech., vol. 50, pp. 1761-1771, Jul. 2002. [8] S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes ,” IEEE Trans. Geosci. Remote Sens., vol. 38, pp. 1697-1708, 2000. [9] A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-based approach for microwave imaging applications,” IEEE Trans. Antennas Propag., vol. 53, pp. 3118-3127, 2005. [10] S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 41, pp. 2745-2753, 2003. [11] M. Donelli and A. Massa, “Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 5, pp. 1761-1776, May 2005. [12] M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 298-312, 2006. [13] A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 116-125, 2006. [14] Q. Dong and C. M. Rappaport, “Microwave subsurface imaging using direct finitedifference frequency-domain-based inversion,” IEEE Trans. Geosci. Remote Sensing, vol. 47, pp. 3664-3670, Nov. 2009. [15] L. Li, H. Zheng, and F. Li, “Two-dimensional contrast source inversion method with phaseless data: TM case,” IEEE Trans. Geosci. Remote Sensing, vol. 47, pp. 1719-1736, Jun. 2009. [16] J. De Zaeytijd, A. Franchois, C. Eyraud, and J. M. Geffrin, “Full-wave three-dimensional microwave imaging with a regularized gauss-newton method: theory and experiments,” IEEE Trans. Antennas Propag., vol. 55, pp. 3279-3292, Nov. 2007. [17] M. Brignone, G. Bozza, A. Randazzo, M. Piana, and M. Pastorino, “A hybrid approach to 3D microwave imaging by using linear sampling and ACO,” IEEE Trans. Antennas Propag., vol. 56, pp. 3224-3232, 2008. [18] M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Remote Sens., vol. 47, pp. 1467-1481, 2009. [19] H. Zhou, T. Takenaka, J. Johnson, and T. Tanaka, “Breast imaging model using microwaves and a time domain three dimensional reconstruction method,” Progress In Electromagnetics Research, vol. 93, pp. 57-70, 2009. [20] R. Solimene, F. Soldovieri, G. Prisco, and R. Pierri, “Three-dimensional through-wall imaging under ambiguous wall parameters,” IEEE Trans. Geosci. Remote Sensing, vol. 47, pp. 1310-1317, May 2009. [21] T. Rubk, P.M.Meaney, P.Meincke, and K. D. Paulsen, “Nonlinear microwave imaging for breast-cancer screening using gauss-newton’smethod and the CGLS inversion algorithm,” IEEE Trans. Antennas Propagat., vol. 55, pp. 2320-2331, Aug. 2007. [22] F. Soldovieri, R. Solimene, and G. Prisco, “A multiarray tomographic approach for through-wall imaging,” IEEE Trans. Geosci. Remote Sensing, vol. 46, pp. 1192-1199, Apr. 2008. [23] O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: retrievable information and measurement strategies,” Radio Sci., vol. 32, pp. 2123-2138, Nov.-Dec. 1997. [24] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging. IOP Publishing Ltd, Bristol, 1998. [25] O. M. Bucci and G. Franceschetti, “On the spatial bandwidth of scattered fields,” IEEE Trans. Antennas Propagat., vol. 35, no. 12, pp. 1445-1455, Dec. 1987. [26] T. Isernia, V. Pascazio, and R. Pierri, “On the local minima in a tomographic imaging technique,” IEEE Trans. Antennas Propagat., vol. 39, no. 7, pp. 1696-1607, Jul. 2001. [27] O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying, qualifying, and achieving the available information,” IEEE Trans. Geosci. Remote Sensing, vol. 39, pp. 2527-2537, Nov. 2001. [28] E. L. Miller and A. S. Willsky, “A multiscale, statistically based inversion scheme for linearized inverse scattering problems,” IEEE Trans. Antennas Propag., vol. 34, no. 2, pp. 346-357, Mar. 1996. [29] A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive muliscale reconstruction of buried objects,” Inverse Problems, vol. 20, pp. S1-S15, Dec. 2004. [30] S. Caorsi,M. Donelli, and A.Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. Microwave Theory Tech., vol. 52, no. 4, pp. 1217-1228, Apr. 2004. [31] G. Franceschini, M. Donelli, R. Azaro, and A. Massa, “Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach,” IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 3527-3539, 2006. [32] A. Litman, “Reconstruction by level sets of n-ary scattering obstacles,” Inverse Problems, vol. 21, pp. S131-S152, Dec. 2005. [33] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, Psicataway, 1995. [34] A. Bréard, G. Perrusson, and D. Lesselier, “Hybrid differential evolution and retrieval of buried spheres in subsoil,” IEEE Geosci. Remote Sens. Lett., vol. 5, pp. 788-792, 2008. [35] S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Trans. Antennas Propag., vol. 52, pp. 1386-1397, Jun. 2004. [36] M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in two-dimensional structures by means of GA-based strategies,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 205-215, Jan. 2007. [37] V. Cingoski, N. Kowata, K. Kaneda, and H. Yamashita, “Inverse shape optimization using dynamically adjustable genetic algorithms,” IEEE Trans. Energ. Convers., vol. 14, no. 3, pp. 661-666, Sept. 1999. [38] I. T. Rekanos, “Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization,” IEEE Trans. Geosci. Remote Sensing, vol. 46, pp. 1967-1974, Jul. 2008. [39] J. Cea, S. Garreau, P. Guillame, and M. Masmoudi, “The shape and topological optimizations connection,” Comput. Methods Appl. Mech. Eng., vol. 188, no. 4, pp. 713-726, 2000. [40] M. Masmoudi, J. Pommier, and B. Samet, “The topological asymptotic expansion for the Maxwell equations and some applications,” Inverse Problems, vol. 21, pp. 547-564, Apr. 2005. [41] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys., 79, pp. 12-49, Nov. 1988. [42] J. A. Sethian, Level Set and Fast Marching Methods. Cambridge University Press, Cambridge, UK, 2nd ed., 1999. [43] F. Santosa, “A level-set approach for inverse problems involving obstacles,” ESAIM: COCV, vol. 1, pp. 17-33, Jan. 1996. [44] O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Problems, vol. 22, pp. R67-R131, Aug. 2006. [45] A. Litman, D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Problems, vol. 14, pp. 685-706, Jun. 1998. [46] R. Ferraye, J. Y. Dauvignac, and Ch. Pichot, “Reconstruction of complex and multiple shape object contours using a level set method,” J. Electromagn. Waves Applic., vol. 17, pp. 153-181, 2003. [47] R. Ferraye, J. Y. Dauvignac, and Ch. Pichot, “An inverse scattering method based on contour deformations by means of a level set method using frequency hopping technique,” IEEE Trans. Antennas Propagat., vol. 51, pp. 1100-1113, May 2003. [48] M. R. Hajihashemi andM. El-Shenawee, “Shape reconstruction using the level set method for microwave applications,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 92-96, 2008. [49] L. Souriau, B. Duchene, D. Lesselier, and R. E. Kleinman, “Modified gradient approach to inverse scattering for binary objects in stratified media,” Inverse Problems, vol. 12, pp. 463-481, 1996. [50] I. T. Rekanos and T. D. Tsiboukis, "An inverse scattering technique formicrowave imaging of binary objects," IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1439-1441, May 2002. [51] F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. Springer, Berlin, 2006. [52] R. Aramini, M. Brignone, and M. Piana, “The linear sampling method without sampling,” Inverse Problems, vol. 22, pp. 2237-2254, 2006. [53] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems. Oxford University Press Inc., New York, 2008. [54] M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, “A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects,” Inverse Problems, vol. 25, pp. 1-26, Jan. 2009. [55] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Edition. Springer, Berlin, 1998. [56] D. P. Huttenlocher, G. A. Klanderman, andW. J. Rucklidge, “Comparing images using the Hausdorff distance,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, pp. 850-863, Sep. 1993. [57] D.-G. Sim, O.-K. Kwon, and R.-H. Park, “Object matching algorithms using robust Hausdorff distance measures,” IEEE Trans. Image Processing, vol. 8, pp. 425-429, Mar. 1999. [58] J. P. Bustos, F. Donoso, A. Guesalaga, andM. Torres, “Matching radar and satellite images for ship trajectory estimation using the Hausdorff distance,” IET Radar Sonar Navigation, vol. 1, pp. 50-58, Feb. 2007. [59] P. Gastaldo and R. Zunino, “Hausdorff distance for robust and adaptive template selection in visual target detection,” Electron. Lett., vol. 38, pp. 1651-1653, Dec. 2002. [60] G. Thürmer, “Closed curves in n-dimensional discrete space,” Graphical Models, vol. 65, pp. 43-60, Jan. 2003. [61] K. Belkebir and M. Saillard, “Testing inversion algorithms against experimental data,” Inverse Problems, vol. 17, pp. 1565-1702, Dec. 2001. citation: Benedetti, Manuel and Lesselier, Dominique and Lambert, Marc and Massa, Andrea (2011) Multiple-Shape Reconstruction by Means of Multiregion Level Sets. [Technical Report] document_url: http://www.eledia.org/students-reports/486/1/DISI-11-090-R186.pdf