eprintid: 448 rev_number: 8 eprint_status: archive userid: 5 dir: disk0/00/00/04/48 datestamp: 2011-07-05 lastmod: 2013-07-05 14:01:21 status_changed: 2013-07-05 14:01:21 type: techreport metadata_visibility: show item_issues_count: 0 creators_name: Manica, Luca creators_name: Oliveri, Giacomo creators_name: Takenaka, T. creators_name: Hong Ping, K. creators_name: Moriyama, T. creators_name: Massa, A. title: Time-Domain Inversion with the IMSA-FBTS Approach ispublished: pub subjects: TU full_text_status: public keywords: Microwave Imaging, Forward-Backward Time-Stepping Method, Iterative Multiscaling Method abstract: In this paper, the problem of localization, shaping, and reconstructing the dielectric permittivity of a dielectric target is addressed. The inversion technique processes the time-domain scattered field data to reconstruct with an increasing degree of accuracy the unknown scatterer by exploiting an iterative multiscaling procedure. Preliminary numerical results are presented to validate the time-domain multi-resolution multi-step approach. date: 2011-01 date_type: published institution: University of Trento department: informaticat refereed: FALSE referencetext: 1 D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springler-Verlag, New York, 1992. 2 R. E. Kleiman and P. M. Van den Berg, “A modified gradient method for two-dimensional problems in tomography,” J. Comput. Appl. Math., Vol. 42, no.1, pp. 17-35, 1992. 3 W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imag., Vol. 9, no. 2, June 1990. 4 S. Caorsi, A. Massa and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens., Vol. 38, no. 4, pp. 1697-1708, July 2000. 5 A. Massa, D. Franceschini, G. Franceschini, M. Raffetto, M. Pastorino, and M. Donelli, “Parallel GA-based approach for microwave imaging applications,” IEEE Trans. Antennas Propagat., Vol. 53, no. 10, pp. 3118-3127, October 2005. 6 M Donelli and A. Massa, “A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers,” IEEE Trans. Microwave Theory Techn., Vol. 53, no. 5, pp. 1761-1776, May 2005. 7 W. C. Chew and J.-H. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeneous bodies,” IEEE Microwave Guided Wave Lett., Vol. 5, no. 12, pp. 439-441, Dec. 1995. 8 W. H. Weldon and W.C. Chew, “Time-domain inverse scattering using the local shape function (LSF) method,” Inverse Problems, Vol. 9, pp. 551-564, Oct. 1993. 9 T. Tanaka, T. Takenaka, and S. He, “An FDTD approach to the time-domain inverse scattering for an inhomogeneous cylindrical object,” Microwave Opt. Tech. Lett., Vol. 20, no. 1, pp. 72-77, 1999. 10 J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computational Physics, Vol. 114, no. 2, pp. 185-200, Apr. 1994. 11 S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an Iterative Multiscaling for Microwave Imaging,” IEEE Trans. Antennas Propagat., Vol. 51, no. 4, pp. 1162-1173, Apr. 2003. 12 S. Caorsi, M. Donelli, and A. Massa, “Detection, location and imaging of multiple scatterers by means of the iterative multiscaling method,” IEEE Trans. Microwave Theory Techn., Vol. 52, no. 4, pp. 1217-1228, April 2004. 13 M. Donelli, G. Franceschini, A. Martini, and A. Massa, “An integrated multi-scaling strategy based on a particle swarm algorithm for inverse scattering problems,” IEEE Trans. Geosci. Remote Sens., Vol. 44, no. 2, pp. 298-312, February 2006. citation: Manica, Luca and Oliveri, Giacomo and Takenaka, T. and Hong Ping, K. and Moriyama, T. and Massa, A. (2011) Time-Domain Inversion with the IMSA-FBTS Approach. [Technical Report] document_url: http://www.eledia.org/students-reports/448/1/DISI-11-170.C197.pdf