eprintid: 416 rev_number: 7 eprint_status: archive userid: 5 dir: disk0/00/00/04/16 datestamp: 2004-09-01 lastmod: 2013-07-04 15:25:42 status_changed: 2013-07-04 15:25:42 type: techreport metadata_visibility: show item_issues_count: 0 creators_name: Donelli, Massimo creators_name: Massa, Andrea title: A Computational Approach based on a Particle Swarm Optimizer for Microwave Imaging of Two-Dimensional Dielectric Scatterers ispublished: submitted subjects: TU full_text_status: public abstract: A computational approach based on an innovative stochastic algorithm, namely the Particle Swarm Optimizer (PSO), is proposed for the solution of the inverse scattering problem arising in microwave imaging applications. The original inverse scattering problem is reformulated in a global nonlinear optimization one by defining a suitable cost function, which is minimized through a customized PSO. In such a framework, the paper is aimed at assessing the effectiveness of the proposed approach in locating, shaping, and reconstructing the dielectric parameters of unknown two-dimensional scatterers. Such an analysis is carried out by comparing the performance of the PSO-based approach with others state-of-the-art methods (deterministic as well as stochastic) in terms of retrieval accuracy as well as from a computational point of view. Moreover, an integrated strategy (based on the combination of the PSO and the iterative multi-scaling method (IMM) is proposed and analyzed to fully exploit complementary advantages of nonlinear optimization techniques and multi-resolution approaches. Selected numerical experiments, concerning dielectric scatterers different in shape, dimension, and dielectric profile, are performed starting from synthetic as well as experimental inverse scattering data. date: 2004-08 date_type: published institution: University of Trento department: informaticat refereed: FALSE referencetext: 1. J. C. Bolomey, A. Izadnegahdar, L. Jofre, C. Pichot, G. Peronnet, and M. Solaimani, "Microwave diffraction tomography for biomedical applications", IEEE Trans. Microw. Theory Tech., vol. MTT-82, no. 11, pp.1998 -2000 1982 2. J. C. Bolomey, "Recent European developments in active microwave imaging for industrial, scientific and medical applications", IEEE Trans. Microw. Theory Tech., vol. 37, no. 12, pp.2109 -2117 1989 3. H. Hoole, S. Subramaniam, R. Saldanha, J. L. Coulomb, and J. C. Sabonnadiere, "Inverse problem methodology and finite elements in the identifications of cracks, sources, materials, and their geometry in inaccessible locations", IEEE Trans. Magn., vol. 27, no. 5, pp.3433 -3443 1991 4. S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, "Improved microwave imaging procedures for nondestructive evaluations of two-dimensional structures", IEEE Trans. Antennas Propag., vol. 52, no. 6, pp.1386 -1397 2004 5. A. C. Dubey, I. Cindrich, M. Ralston, and K. A. Rigano, "Detection technologies for mines and minelike targets", Proc. SPIE, vol. 2496, pp.568 -569 1995 6. R. E. Kleinman and P. M. van den Berg, "An extended range modified gradient technique for profile inversion", Radio Sci., vol. 28, pp.877 -884 1993 7. K. Belkebir, R. E. Kleinman, and C. Pichot, "Microwave imaging-Location and shape reconstruction from multifrequency scattering data", IEEE Trans. Microw. Theory Tech., vol. 45, no. 4, pp.469 -476 1997 8. H. Harada, D. J. N. Wall, T. Takenaka, and M. Tanaka, "Conjugate gradient method applied to inverse scattering problem", IEEE Trans. Antennas Propag., vol. 43, no. 8, pp.784 -792 1995 9. A. Massa, S. G. Pandalai, "Genetic algorithm based techniques for 2-D microwave inverse scattering", Recent Research Developments in Microwave Theory Techniques, 2002 :Transworld Res. Network Press 10. R. E. Kleinman and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography", J. Comput. Appl. Math., vol. 42, pp.17 -35 1992 11. P. M. van den Berg and R. E. Kleinman, "A contrast source inversion method", Inverse Problems, vol. 13, pp.1607 -1620 1997 12. Z. Q. Meng, T. Takenaka, and T. Tanaka, "Image reconstruction of two-dimensional impenetrable objects using genetic algorithm", J. Electromagn. Waves Applicat., vol. 13, pp.95 -118 1999 13. M. Pastorino, A. Massa, and S. Caorsi, "A microwave inverse scattering technique for image reconstruction based on a genetic algorithm", IEEE Trans. Instrum. Meas., vol. 49, no. 3, pp.573 -578 2000 14. H. K. Choi, S. K. Park, and J. W. Ra, "Reconstruction of a high-contrast penetrable object in pulsed time domain by using the genetic algorithm", Proc. IEEE Int. Geoscience Remote Sensing Symp., pp.136 -138 1997 15. J. Kennedy and R. C. Eberhart, "Particle swarm optimization", Proc. IEEE Int. Neural Networks Conf., vol. IV, pp.1942 -1948 1995 16. J. Robinson, S. Sinton, and Y. Rahmat-Samii, "Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna", IEEE AP-S Int. Symp. Dig., vol. 1, pp.314 -317 2002 17. D. Gies and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase-differentiated array design", Microwave Opt. Technol. Lett., vol. 38, pp.168 -175 2003 18. D. W. Boeringer and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis", IEEE Trans. Antennas Propag., vol. 52, no. 3, pp.771 -779 2004 19. J. R. Robinson and Y. Rahmat Sami, "Particle swarm optimization in electromagnetics", IEEE Trans. Antennas Propag., vol. 52, no. 2, pp.397 -407 2004 20. D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization", IEEE Trans. Evol. Comput., vol. 1, no. 2, pp.67 -82 1997 21. D. Colton and R. Krees, Inverse Acoustics and Electromagnetic Scattering Theory, 1992: Springer-Verlag 22. J. H. Richmond, "Scattering by a dielectric cylinder of arbitrary cross section shape", IEEE Trans. Antennas Propag., vol. AP-13, no. 5, pp.334 -341 1965 23. J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, 2001 :Morgan Kaufmann 24. M. Clerc and J. Kennedy, "The particle swarm-explosion, stability, and convergence in a multidimensional complex space", IEEE Trans. Evol. Comput., vol. 6, no. 1, pp.58 -73 2002 25. A. Carlisle and G. Doizier, "An off-the-shelf PSO", Particle Swarm Optimization Workshop, 2001 26. R. C. Eberhart and Y. Shi, "Particle swarm optimization: Developments, applications and resources", Proc. Congr. Evolutionary Computation , pp.81 -86 2001 27. R. C. Eberhart and Y. Shi, "Comparing inertia weights and constriction factors in particle swarm optimization", Proc. Congr. Evolutionary Computation, pp.84 -88 2000 28. Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization", Proc. Congr. Evolutionary Computation, pp.1945 -1950 1999 29. F. van den Berg and A. P. Engelbrecht, "Effect of swarm size on cooperative particle swarm optimizers", Proc. Evolutionary Computation Conf. , pp.892 -899 2001 30. Y. Shi and R. Eberhart, "A modified particle swarm optimizer", Proc. IEEE World Congr. Computational Intelligence Evolutionary Computation, pp.69 -73 1998 31. A. I. El-Gallad, M. El-Hawary, A. A. Sallam, and A. I Kalas, "Swarm intelligence for hybrid cost dispatch problem", Proc. Can. Electrical and Computer Engineering Conf., vol. 2, pp.753 -757 2001 32. S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging", IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp.1162 -1173 2003 33. D. S. Jones, The Theory of the Electromagnetism, 1964 :Pergamon 34. R. V. Kohn and A. McKenney, "Numerical implementation of a variational method for electrical impedance tomography", Inverse Problems, vol. 6, pp.389 -414 1990 35. S. Caorsi, A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes", IEEE Trans. Geosci. Remote Sens., vol. 38, no. 7, pp.1697 -1708 2000 36. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1989 :Addison-Wesley 37. O. M. Bucci and G. Franceschetti, "On the degrees of freedom of scattered fields", IEEE Trans. Antennas Propag., vol. 37, no. 7, pp.918 -926 1989 38. S. Caorsi, M. Donelli, and A. Massa, "Location, detection, and imaging of multiple scatterers by means of the iterative multiscaling method", IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp.1217 -1228 2004 39. K. Belkebir, S. Bonnard, F. Sabouroux, and M. Saillard, "Validation of 2-D inverse scattering algorithms from multifrequency experimental data", J. Electromagn. Waves Applicat., vol. 14, pp.1637 -1668 2000 40. K. Belkebir and M. Saillard, "Testing inversion algorithms against experimental data", Inverse Problems, vol. 17, pp.1565 -1702 2001 41. S. Caorsi, M. Donelli, and A. Massa, "Analysis of the stability and robustness of the iterative multiscaling approach for microwave imaging applications", Radio Sci., vol. 39, pp.1 -17 2004 citation: Donelli, Massimo and Massa, Andrea (2004) A Computational Approach based on a Particle Swarm Optimizer for Microwave Imaging of Two-Dimensional Dielectric Scatterers. [Technical Report] (Submitted) document_url: http://www.eledia.org/students-reports/416/1/DIT-04-076.pdf