eprintid: 353 rev_number: 6 eprint_status: archive userid: 5 dir: disk0/00/00/03/53 datestamp: 2011-07-08 lastmod: 2013-07-03 08:34:18 status_changed: 2013-07-03 08:34:18 type: techreport metadata_visibility: show item_issues_count: 0 creators_name: Caramanica, Federico creators_name: Donelli, Massimo creators_name: Oliveri, Giacomo creators_name: Rocca, Paolo creators_name: Massa, Andrea title: Evolutionary Algorithms for Inverse Scattering: Advances and State-of-the-art Comparisons ispublished: pub subjects: TU full_text_status: public keywords: Evolutionary Algorithms, Inverse Scattering abstract: This work is aimed at presenting the recent advances and the procedures available in the state-of-the-art for the solution of inverse scattering problems through Evolutionary Algorithms (EAs). The main emphasis is on the use of population-based optimization algorithms used for the retrieval of unknown objects embedded in an inaccessible region when illuminated by a set of microwave radiations. Starting from a description of the general architecture of EAs, advantages and limitation of state-of-the-art approached are pointed out and discussed. date: 2011-01 date_type: published institution: University of Trento department: informaticat refereed: FALSE referencetext: 1 D. Dasgupta and Z. Michalewicz, Evolutionary Algorithms in Engineering Applications. Berlin, Germany: Springer‐Verlag, 1997. 2 L. Garnero, A. Franchois, J.‐P. Hugonin, C. Pichot, and N. Joachimowicz, “Microwave imaging‐complexpermittivity reconstruction by simulated annealing,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1801‐1807, 1991. 3 C.‐C. Chiu and P.‐T. Liu, “Image reconstruction of a perfectly conducting cylinder by the genetic algorithm,” IEE Proc. Microwave Antennas Propag., vol. 143, pp. 249‐253, 1996. 4 Y. Zhou, J. Li, and H. Ling, “Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list,” Electron. Lett., vol. 39, pp. 280‐281, 2003. 5 Z. Q. Meng, T. Takenaka, and T. Tanaka, “Image reconstruction of two‐dimensional impenetrable objects using genetic algorithm,” J. Electromag. Waves Appl., vol. 13, pp. 95‐118, 1999. 6 S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real‐coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens., vol. 38, pp. 1697‐1708, 2000. 7 A. Qing, “Electromagnetic inverse scattering of multiple two‐dimensional perfectly conducting objects by the differential evolution strategy," IEEE Trans. Antennas Propag., vol. 51, pp. 1251‐1262, 2003. 8 A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two‐dimensional buried objects by a differential evolutionmethod,” Inverse Problems, vol. 20, pp. 135‐150, 2004. 9 M. Donelli and A. Massa, “Computational approach based on a particle swarm optimizer for microwave imaging of two‐dimensional dielectric scatterers,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1761‐ 1776, 2005. 10 T. Huang and A. S. Mohan, “A hybrid boundary condition for robust particle swarm optimization,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 112‐117, 2005. 11 M. Pastorino, “Stochastic optimization methods applied to microwave imaging: A review,” IEEE Trans. Antennas Propag., vol. 55, pp. 538‐548, 2007. 12 S.‐Y. Yang, H.‐K. Choi, J.‐W. Ra, “Reconstruction of a large and high‐contrast penetrable object by using the genetic and Levenberg‐Marquardt algorithms,” Microw.Opt. Tech. Lett., vol. 16, pp. 17‐21, 1997. 13 S. Caorsi, A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, “Detection of buried inhomogeneous elliptic cylinders by amemetic algorithm,” IEEE Trans. Antennas Propag., vol. 51, pp. 2878‐2884, 2003. 14 T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithmapplied to inverse scattering forstrips,” Microw.Opt. Technol. Lett., vol. 16, pp. 337‐341, 1997. 15 H.Holland, Adaptation inNatural and Artificial Systems. Ann Arbor, MI:Univ. Michigan Press, 1975. 16 S. Caorsi, A. Massa, and M. Pastorino, “A crack identification microwave procedure based on a genetic algorithmfor nondestructive testing,” IEEE Trans. Antennas Propag., vol. 49, pp. 1812‐1820, 2001. 17 M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three‐dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Trans. Geosci. Remote Sens., vol. 7, pp. 1467‐1481, 2009. 18 A. F. Morabito, I. Catapano, M.D'Urso, L. Crocco, and T. Isernia, “A stepwise approach for quantitative 3D imaging: Rationale and experimentalresults,” in Proc. 2009 IEEE AP‐S Int. Symp., Charleston, SC, 2009. 19 C. S. Park and B. S. Jeong, “Reconstruction of a high contrast and large object by using the hybrid algorithm combining a Levenberg‐Marquardt algorithm and a genetic algorithm,” IEEE Trans. Mag., vol. 35, pp. 1582‐1585, 1999. 20 W. C. Chew, J.‐M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. ArtechHouse, Boston, 2001. 21 A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA‐based approach for microwave imaging applications,” IEEE Trans. Antennas Propag., vol. 53, pp. 3118‐3127, 2005. 22 M. Brignone, G. Bozza, A. Randazzo, M. Piana, and M. Pastorino, “A hybrid approach to 3D microwave imaging by using linearsampling and ACO,” IEEE Trans. Antennas Propag., vol. 56, pp. 3224‐3232, 2008. citation: Caramanica, Federico and Donelli, Massimo and Oliveri, Giacomo and Rocca, Paolo and Massa, Andrea (2011) Evolutionary Algorithms for Inverse Scattering: Advances and State-of-the-art Comparisons. [Technical Report] document_url: http://www.eledia.org/students-reports/353/1/DISI-11-173.C194.pdf