Reconfigurable Linear Antenna Arrays: Tolerance Analysis Using Interval Arithmetic

N. Anselmi, P. Rocca, and A. Massa

2024/12/13

Contents

- 1 Fair Comparison: Tolerances over the $\boldsymbol{\Sigma}$ beam feeding network
- 2 Fair Comparison: Tolerances over the Δ beam feeding network
- 3 Fair Comparison: Tolerances over the Σ and Δ beam feeding networks

3

7

11

1 Fair Comparison: Tolerances over the Σ beam feeding network

In this paragraph a similar analysis to the one of Section 5 is reported. In this case we are considering:

- interval widths equal to 100% of the full normalized amplitude range (symmetric w.r.t. nominal value);
- two different scenarios (see Fig. 1 and 2) to be compared :
 - 1. in the first case we consider amplitude errors on all P common elements;
 - 2. in the second case we consider errors on the Σ beam feeding network's independent elements, considering all the possible combinations of P among Q.
- In the latter case the number of faulty elements F and the total amount of tolerance T are kept fixed (see Tab. 1).

P	2	4	6	8
F	2	4	6	8
T	1.7617	3.6347	5.5724	7.4232

Table 1. Number of faulty Σ network's elements (*F*) and total tolerance (*T*).

Figure 3. Sum Pattern SLL vs P

Figure 4. Difference Pattern SLL vs P

P	$\inf{\{\mathbf{SLL}\}^C}$	$\sup\{\mathbf{SLL}\}^C$	$\inf \{ \mathbf{SLL} \}_{min}^{NC}$	$\inf \{ \mathbf{SLL} \}_{max}^{NC}$	$\sup\{\mathbf{SLL}\}_{min}^{NC}$	$\sup\{\mathbf{SLL}\}_{max}^{NC}$
2	-26.17	-15.51	-36.24	-26.63	-16.21	-14.42
4	-31.53	-14.1	$-\infty$	-25.72	-13.65	-8.67
6	$-\infty$	-10.74	$-\infty$	-26.36	-8.81	-5.14
8	$-\infty$	-10.8	$-\infty$	-29.89	-4.96	-2.18

Table 2. Sum Pattern SLL values

P	$\inf{\{\mathbf{SLL}\}^C}$	$\sup\{\mathbf{SLL}\}^C$	$\inf \{ \mathbf{SLL} \}_{min}^{NC}$	$\inf \{ \mathbf{SLL} \}_{max}^{NC}$	$\sup\{\mathbf{SLL}\}_{min}^{NC}$	$\sup\{\mathbf{SLL}\}_{max}^{NC}$
2	-26.56	-16.65	-25.7	-25.7	-25.7	-25.7
4	$-\infty$	-7.93	-19.74	-19.74	-19.74	-19.74
6	$-\infty$	-4.55	-19.88	-19.88	-19.88	-19.88
8	$-\infty$	-1.32	-20.01	-20.01	-20.01	-20.01

Table 3. Difference Pattern SLL values

BW:

Figure 5. Sum Pattern \mathbf{BW} vs P

Figure 6. Difference Pattern BW vs P

P	$\inf \{\mathbf{BW}\}^C$	$\sup\{\mathbf{BW}\}^C$	$\inf \{\mathbf{BW}\}_{min}^{NC}$	$\inf \{\mathbf{BW}\}_{max}^{NC}$	$\sup\{\mathbf{BW}\}_{min}^{NC}$	$\sup\{\mathbf{BW}\}_{max}^{NC}$
2	0.076	0.122	0.068	0.078	0.118	0.132
4	0.06	0.138	0.038	0.058	0.136	0.146
6	0.0	0.158	0.0	0.0	0.156	0.170
8	0.0	0.178	0.0	0.0	0.174	0.188

Table 4. Sum Pattern BW values

Р	$\inf \{\mathbf{BW}\}^C$	$\sup\{\mathbf{BW}\}^C$	$\inf \{\mathbf{BW}\}_{min}^{NC}$	$\inf \{\mathbf{BW}\}_{max}^{NC}$	$\sup\{\mathbf{BW}\}_{min}^{NC}$	$\sup\{\mathbf{BW}\}_{max}^{NC}$
2	0.069	0.103	0.087	0.087	0.087	0.087
4	0.0	0.144	0.082	0.082	0.082	0.082
6	0.0	0.17	0.083	0.083	0.083	0.083
8	0.0	4.0	0.083	0.083	0.083	0.083

Table 5. Difference Pattern \mathbf{BW} values

Remembering that:

.

$$\chi_{\{\cdot\}} = \left(\sup\left\{\cdot\right\}_{max}^{\Sigma} - \inf\left\{\cdot\right\}_{min}^{\Sigma}\right) + \left(\sup\left\{\cdot\right\}_{max}^{\Delta} - \inf\left\{\cdot\right\}_{min}^{\Delta}\right)$$
(1)

where $\sup / \inf \{\cdot\}_{max}$ is the maximum \sup / \inf among all the considered combination of faulty elements; $\sup / \inf \{\cdot\}_{min}$ is the respective minimum value.

Figure 7. The χ_{SLL} relative to the SLL descriptor is plotted, for the common and not-common cases

Figure 8. The χ_{BW} relative to the BW descriptor is plotted, for the common and not-common cases

Observations:

• For both the SLL and BW parameters the tolerance is higher in case of faulty common elements.

2 Fair Comparison: Tolerances over the Δ beam feeding network

In this paragraph a similar analysis to the one of Section 5 is reported. In this case we are considering:

- interval widths equal to 100% of the full normalized amplitude range (symmetric w.r.t. nominal value);
- two different scenarios (see Fig. 1 and 2) to be compared :
 - 1. in the first case we consider amplitude errors on all P common elements;
 - 2. in the second case we consider errors on the Δ beam feeding network's independent elements, considering all the possible combinations of P among Q.
- In the latter case the number of faulty elements F and the total amount of tolerance T are kept fixed (see Tab. 1).

Р	2	4	6	8
F	2	4	6	8
Т	1.7617	3.6347	5.5724	7.4232

Table 1. Number of faulty Δ network's elements (F) and total tolerance (T).

Figure 3. Sum Pattern SLL vs P

Figure 4. Difference Pattern SLL vs P

P	$\inf{\{\mathbf{SLL}\}^C}$	$\sup\{\mathbf{SLL}\}^C$	$\inf \{ \mathbf{SLL} \}_{min}^{NC}$	$\inf \{ \mathbf{SLL} \}_{max}^{NC}$	$\sup\{\mathbf{SLL}\}_{min}^{NC}$	$\sup\{\mathbf{SLL}\}_{max}^{NC}$
2	-26.17	-15.51	-25.28	-25.28	-25.28	-25.28
4	-31.53	-14.1	-25.28	-25.28	-25.28	-25.28
6	$-\infty$	-10.74	-25.28	-25.28	-25.28	-25.28
8	$-\infty$	-10.8	-25.28	-25.28	-25.28	-25.28

Table 2. Sum Pattern SLL values

P	$\inf{\{\mathbf{SLL}\}^C}$	$\sup\{\mathbf{SLL}\}^C$	$\inf \{ \mathbf{SLL} \}_{min}^{NC}$	$\inf \{ \mathbf{SLL} \}_{max}^{NC}$	$\sup\{\mathbf{SLL}\}_{min}^{NC}$	$\sup\{\mathbf{SLL}\}_{max}^{NC}$
2	-26.56	-16.65	-34.94	-25.7	-16.81	-11.94
4	$-\infty$	-7.93	$-\infty$	-24.56	-7.65	-5.52
6	$-\infty$	-4.55	$-\infty$	-25.97	-4.29	-1.69
8	$-\infty$	-1.32	$-\infty$	-53.78	-1.77	-0.75

Table 3. Difference Pattern SLL values

BW:

Figure 5. Sum Pattern \mathbf{BW} vs P

Figure 6. Difference Pattern \mathbf{BW} vs P

P	$\inf \{\mathbf{BW}\}^C$	$\sup\{\mathbf{BW}\}^C$	$\inf \{\mathbf{BW}\}_{min}^{NC}$	$\inf \{\mathbf{BW}\}_{max}^{NC}$	$\sup\{\mathbf{BW}\}_{min}^{NC}$	$\sup\{\mathbf{BW}\}_{max}^{NC}$
2	0.076	0.122	0.104	0.104	0.104	0.104
4	0.06	0.138	0.104	0.104	0.104	0.104
6	0.0	0.158	0.104	0.104	0.104	0.104
8	0.0	0.178	0.104	0.104	0.104	0.104

Table 4. Sum Pattern BW values

Р	$\inf \{\mathbf{BW}\}^C$	$\sup\{\mathbf{BW}\}^C$	$\inf \{\mathbf{BW}\}_{min}^{NC}$	$\inf \{\mathbf{BW}\}_{max}^{NC}$	$\sup\{\mathbf{BW}\}_{min}^{NC}$	$\sup\{\mathbf{BW}\}_{max}^{NC}$
2	0.069	0.103	0.06	0.072	0.105	0.112
4	0.0	0.144	0.0	0.061	0.128	0.143
6	0.0	0.17	0.0	0.0	0.15	0.384
8	0.0	4.0	0.0	0.0	0.38	4.0

Table 5. Difference Pattern \mathbf{BW} values

Remembering that:

.

$$\chi_{\{\cdot\}} = \left(\sup\left\{\cdot\right\}_{max}^{\Sigma} - \inf\left\{\cdot\right\}_{min}^{\Sigma}\right) + \left(\sup\left\{\cdot\right\}_{max}^{\Delta} - \inf\left\{\cdot\right\}_{min}^{\Delta}\right)$$
(2)

where $\sup / \inf \{\cdot\}_{max}$ is the maximum \sup / \inf among all the considered combination of faulty elements; $\sup / \inf \{\cdot\}_{min}$ is the respective minimum value.

Figure 7. The χ_{SLL} relative to the SLL descriptor is plotted, for the common and not-common cases

Figure 8. The χ_{BW} relative to the BW descriptor is plotted, for the common and not-common cases

Observations:

- In this case the tolerance is higher when faulty elements belong to the Δ beam forming network.
- I recall here that the Δ beam is a compromise.

3 Fair Comparison: Tolerances over the Σ and Δ beam feeding networks

In this paragraph a similar analysis to the one of Section 5 is reported. In this case we are considering:

- interval widths equal to 100% of the full normalized amplitude range (symmetric w.r.t. nominal value);
- two different scenarios (see Fig. 1 and 2) to be compared :
 - 1. in the first case we consider amplitude errors on all P common elements;
 - 2. in the second case we consider errors on the Σ and Δ beam feeding networks independent elements, considering all the possible combinations of P/2 among Q.
- In the latter case the number of faulty elements F and the total amount of tolerance T are kept fixed (see Tab. 1).

Р	2	4	6	8
F^{Σ}	1	2	3	4
F^{Δ}	1	2	3	4
Т	1.7617	3.6347	5.5724	7.4232

Table 1. Number of faulty networks elements (F^{Σ}/F^{Δ}) and total tolerance (T).

Figure 3. Sum Pattern SLL vs P

Figure 4. Difference Pattern SLL vs P

P	$\inf{\{\mathbf{SLL}\}^C}$	$\sup\{\mathbf{SLL}\}^C$	$\inf \{ \mathbf{SLL} \}_{min}^{NC}$	$\inf \{ \mathbf{SLL} \}_{max}^{NC}$	$\sup\{\mathbf{SLL}\}_{min}^{NC}$	$\sup\{\mathbf{SLL}\}_{max}^{NC}$
2	-26.17	-15.51	-29.74	-25.58	-19.75	-18.40
4	-31.53	-14.1	-32.33	-25.28	-18.01	-13.80
6	$-\infty$	-10.74	-38.87	-25.49	-15.16	-10.77
8	$-\infty$	-10.8	-60.41	-25.72	-11.81	-8.45

Table 2. Sum Pattern SLL values

Р	$\inf{\{\mathbf{SLL}\}^C}$	$\sup\{\mathbf{SLL}\}^C$	$\inf \{ \mathbf{SLL} \}_{min}^{NC}$	$\inf \{ \mathbf{SLL} \}_{max}^{NC}$	$\sup\{\mathbf{SLL}\}_{min}^{NC}$	$\sup\{\mathbf{SLL}\}_{max}^{NC}$
2	-26.56	-16.65	-28.03	-25.7	-20.26	-16.74
4	$-\infty$	-7.93	-25.7	-20.64	-12.65	-9.39
6	$-\infty$	-4.55	-37.24	-22.45	-9.99	-7.41
8	$-\infty$	-1.32	$-\infty$	-24.64	-7.96	-5.4

Table 3. Difference Pattern SLL values

BW:

Figure 5. Sum Pattern \mathbf{BW} vs P

Figure 6. Difference Pattern BW vs P

P	$\inf \{\mathbf{BW}\}^C$	$\sup\{\mathbf{BW}\}^C$	$\inf \{\mathbf{BW}\}_{min}^{NC}$	$\inf \{\mathbf{BW}\}_{max}^{NC}$	$\sup\{\mathbf{BW}\}_{min}^{NC}$	$\sup\{\mathbf{BW}\}_{max}^{NC}$
2	0.076	0.122	0.088	0.092	0.11	0.118
4	0.06	0.138	0.076	0.086	0.116	0.124
6	0.0	0.158	0.058	0.07	0.128	0.136
8	0.0	0.178	0.034	0.048	0.138	0.146

Table 4. Sum Pattern BW values

Р	$\inf \{\mathbf{BW}\}^C$	$\sup\{\mathbf{BW}\}^C$	$\inf \{\mathbf{BW}\}_{min}^{NC}$	$\inf \{\mathbf{BW}\}_{max}^{NC}$	$\sup\{\mathbf{BW}\}_{min}^{NC}$	$\sup\{\mathbf{BW}\}_{max}^{NC}$
2	0.069	0.103	0.074	0.079	0.096	0.099
4	0.0	0.144	0.046	0.068	0.107	0.12
6	0.0	0.17	0.0	0.064	0.119	0.133
8	0.0	4.0	0.0	0.061	0.13	0.146

Table 5. Difference Pattern \mathbf{BW} values

Remembering that:

.

$$\chi_{\{\cdot\}} = \left(\sup\left\{\cdot\right\}_{max}^{\Sigma} - \inf\left\{\cdot\right\}_{min}^{\Sigma}\right) + \left(\sup\left\{\cdot\right\}_{max}^{\Delta} - \inf\left\{\cdot\right\}_{min}^{\Delta}\right)$$
(3)

where $\sup / \inf \{\cdot\}_{max}$ is the maximum \sup / \inf among all the considered combination of faulty elements; $\sup / \inf \{\cdot\}_{min}$ is the respective minimum value.

Figure 7. The χ_{SLL} relative to the SLL descriptor is plotted, for the common and not-common cases

Figure 8. The χ_{BW} relative to the BW descriptor is plotted, for the common and not-common cases

Observations:

• ...

Pareto Front

Remembering that:

$$\zeta_{\{\cdot\}} = \sup\left\{\cdot\right\}_{max} - \inf\left\{\cdot\right\}_{min} \tag{4}$$

where $\sup / \inf \{\cdot\}_{max}$ is the maximum $\sup / \inf \{ a \text{mong all the considered combination of faulty elements; } \sup / \inf \{\cdot\}_{min}$ is the respective minimum value.

Figure 9. ζ values of the SLL, plotted in the Σ/Δ plane, when faulty elements occours on common (SQUARE) and independent (CIRCLE) elements

Observations:

• The result are very close to the "full width" intervals case.

More information on the topics of this document can be found in the following list of references.

References

- G. Ding, N. Anselmi, W. Xu, P. Li, and P. Rocca, "Interval-bounded optimal power pattern synthesis of array antenna excitations robust to mutual coupling," *IEEE Antennas Wireless Propag. Lett.*, vol. 22, no. 11, pp. 2725-2729, Nov. 2023 (DOI: 10.1109/LAWP.2023.3291428).
- [2] N. Anselmi, P. Rocca, and A. Massa, "Tolerance analysis of reconfigurable monopulse linear antenna arrays through interval arithmetic," *J. Electromagn. Waves Appl. J*, pp. 1066-1081, 2023 (DOI: 10.1080/09205071.2023.2224080).
- [3] P. Rocca, N. Anselmi, A. Benoni, and A. Massa, "Probabilistic interval analysis for the analytic prediction of the pattern tolerance distribution in linear phased arrays with random excitation errors," *IEEE Trans. Antennas Propag.*, vol. 68, no. 2, pp. 7866-7878, Dec. 2020 (DOI: 10.1109/TAP.2020.2998924).
- [4] L. Tenuti, N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Minkowski sum method for planar arrays sensitivity analysis with uncertain-but-bounded excitation tolerances" *IEEE Trans. Antennas Propag.*, vol. 65, no. 1, pp. 167-177, Jan. 2017 (DOI: 10.1109/TAP.2016.2627548).
- [5] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Optimization of excitation tolerances for robust beamforming in linear arrays," *IET Microwaves, Antennas & Propagation*, vol. 10, no. 2, pp. 208-214, 2016 (DOI: 10.1049/ietmap.2015.0508).
- [6] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Power pattern sensitivity to calibration errors and mutual coupling in linear arrays through circular interval arithmetics," *Sensors*, vol. 16, no. 6 (791), pp. 1-14, 2016 (DOI: 10.3390/s16060791).
- [7] L. Poli, P. Rocca, N. Anselmi, and A. Massa, "Dealing with uncertainties on phase weighting of linear antenna arrays by means of interval-based tolerance analysis," *IEEE Trans. Antennas Propag.*, vol. 63, no. 7, pp. 3299-3234, Jul. 2015 (DOI: 10.1109/TAP.2015.2421952).
- [8] P. Rocca, N. Anselmi, and A. Massa, "Optimal synthesis of robust array configurations exploiting interval analysis and convex optimization," *IEEE Trans. Antennas Propag.*, vol. 62, no. 7, pp. 3603-3612, July 2014 (DOI: 10.1109/TAP.2014.2318071).
- [9] T. Moriyama, L. Poli, N. Anselmi, M. Salucci, and P. Rocca, "Real array pattern tolerances from amplitude excitation errors," *IEICE Electronics Express*, vol. 11, no. 17, pp. 1-8, Sep. 2014 (DOI: 10.1587/elex.11.20140571).
- [10] N. Anselmi, L. Manica, P. Rocca, and A. Massa, "Tolerance analysis of antenna arrays through interval arithmetic," *IEEE Trans. Antennas Propag.*, vol. 61, no. 11, pp. 5496-5507, Nov. 2013 (DOI: 10.1109/TAP.2013.2276927).
- [11] L. Manica, N. Anselmi, P. Rocca, and A. Massa, "Robust mask-constrained linear array synthesis through an intervalbased particle swarm optimisation," *IET Microwaves, Antennas and Propagation*, vol. 7, no. 12, pp. 976-984, Sep. 2013 (DOI: 10.1049/iet-map.2013.0203).

- [12] P. Rocca, L. Manica, N. Anselmi, and A. Massa, "Analysis of the pattern tolerances in linear arrays with arbitrary amplitude errors," *IEEE Antennas Wireless Propag. Lett.*, vol. 12, pp. 639-642, 2013 (DOI: 10.1109/LAWP.2013.2261912).
- [13] L. Manica, P. Rocca, N. Anselmi, and A. Massa, "On the synthesis of reliable linear arrays through interval arithmetic," *IEEE International Symposium on Antennas Propag. (APS/URSI 2013), Orlando, Florida, USA*, Jul. 7-12, 2013 (DOI: 10.1109/APS.2013.6710809).
- [14] L. Manica, P. Rocca, G. Oliveri, and A. Massa, "Designing radiating systems through interval analysis tools," *IEEE International Symposium on Antennas Propag. (APS/URSI 2013), Orlando, Florida, USA*, Jul. 7-12, 2013 (DOI: 10.1109/APS.2013.6711391).
- [15] M. Carlin, N. Anselmi, L. Manica, P. Rocca, and A. Massa, "Exploiting interval arithmetic for predicting real arrays performances - The linear case," *IEEE International Symposium on Antennas Propag. (APS/URSI 2013), Orlando, Florida, USA*, Jul. 7-12, 2013 (DOI: 10.1109/APS.2013.6710810).
- [16] N. Anselmi, M. Salucci, P. Rocca, and A. Massa, "Generalised interval-based analysis tool for pattern distortions in reflector antennas with bump-like surface deformations," *IET Microwaves, Antennas & Propagation*, vol. 10, no. 9, p. 909-916, June 2016 (DOI: 10.1049/iet-map.2015.0583).
- [17] P. Rocca, L. Poli, N. Anselmi, M. Salucci, and A. Massa, "Predicting antenna pattern degradations in microstrip reflectarrays through interval arithmetic," *IET Microwaves, Antennas & Propagation*, vol. 10, no. 8, pp. 817-826, May 2016 (DOI: 10.1049/iet-map.2015.0837).
- [18] P. Rocca, L. Manica, and A. Massa, "Interval-based analysis of pattern distortions in reflector antennas with bump-like surface deformations," *IET Microwaves, Antennas and Propagation*, vol. 8, no. 15, pp. 1277-1285, Dec. 2014 (DOI: 10.1049/iet-map.2014.0162).
- [19] P. Rocca, N. Anselmi, and A. Massa, "Interval Arithmetic for pattern tolerance analysis of parabolic reflectors," *IEEE Trans. Antennas Propag.*, vol. 62, no. 10, pp. 4952-4960, Oct. 2014 (DOI: 10.1109/TAP.2014.2342758).