Efficient Near Field Antenna Analysis using Compressive Sensing

M. Salucci, N. Anselmi, and A. Massa

2024/03/29

Contents

1	Test	Case 3 : AUT without failures ($\nu^{(s)} \in [0.0, 0.5]$, $F^{(s)} = 7$ and $\gamma^{(s)} \in [0, \frac{\pi}{4}]$, $P^{(s)} = 5$)	3
	1.1	Comparison between original (<i>OMP</i>) and alternative (<i>BCS</i>) MbD	7
		1.1.1 OMP vs best BCS	10
	1.2 Incremented failure ranges to build the over-complete basis ($\nu^{(s)} \in [0.0, 1.0]$, $F^{(s)} = 7$ and $\gamma^{(s)} \in [0.0, 1.0]$		
		$[-\pi, \pi], P^{(s)} = 5) \dots $	15
		1.2.1 Comparison between original (<i>OMP</i>) and alternative (<i>BCS</i>) MbD	16
		1.2.2 OMP vs best BCS	20

1 Test Case 3 : AUT without failures ($\nu^{(s)} \in [0.0, 0.5], F^{(s)} = 7$ and $\gamma^{(s)} \in$

 $[0, \frac{\pi}{4}], P^{(s)} = 5)$

Parameters

Gold Antenna (Without Defects)

- Geometry : Planar array of microstrip patches on the (x, y) plane;
- Working Frequency : $f = 3.6 [GHz] (\lambda = 83.27 \times 10^{-3} [m] \text{ in free space});$
- Substrate (PEC-backed) :
 - Dimensions : infinite;
 - Relative Permittivity : $\varepsilon_{r,sub} = 4.7$;
 - Loss Tangent : $tan \, \delta_{sub} = 0.014;$
 - Thickness : $h_{sub} = 0.019 [\lambda] (1.6 [mm]);$
- Microstrip patches :
 - Dimensions : $l_x \approx 0.22 \, [\lambda] \, (18.16 \, [mm]), \ l_y \approx 0.33 \, [\lambda] \, (27.25 \, [mm]);$
 - Feeding : pin-fed;
- Spacing between elements : $d_x = d_y = \frac{\lambda}{2}$;
- Number of elements in each row : $N_x = 6$;
- Number of elements in each column : $N_y = 10$;
- Total number of elements : $N = (N_x \times N_y) = 60;$
- Total size of the antenna : $L_x = 5 [\lambda], L_y = 9 [\lambda];$
- Element excitations : $w_n^{(s)} = 1.0 + j0.0, \ n = 1, ..., N^{(s)}, \ s = 1, ..., S;$

Antenna Under Test (AUT - With Defects)

In this test case the AUT is set equal to the gold antenna, meaning that the antenna under measurement have no defects.

Figure 1: (a) Magnitude of the element excitations in the AUT, (b) phase of the element excitations in the AUT.

Measurement Set-Up

Figure 2: Disposition of the interpolation points (T = 1681) and of the measurement points (M = 25) in the near-field region of the AUT

- Type of measurements : near-field;
- Height of the measurement region : $H = 7 [\lambda];$
- Interpolation points :
 - Number of points : $T = 41 \times 41 = 1681$;
 - Coordinates : $x_t \in [-10, 10] [\lambda], y_t \in [-10, 10] [\lambda], z_t = H [\lambda], t = 1, ..., T;$
 - Interpolation step : $\Delta_{x/y}^{int} = 0.5 [\lambda];$
- Measurement points :
 - Coordinates : $x_m^{meas} \in [-10, 10] [\lambda], \ y_m^{meas} \in [-10, 10] [\lambda], \ z_m^{meas} = H [\lambda], \ m = 1, ..., M;$
 - Number of points : $M_{x/y} = 5 \rightarrow M = 25;$

- Measurement step : $\Delta_{x/y}^{meas} = 5 \left[\lambda\right]$
- Ratio between number of measurements and total number of elements : (M/N) = 0.42;

Measurement-by-Design Technique

- Number of generated bases : B = 20;
- Bases b = 1, ..., 10: magnitude failures in each row (s = 1, ..., 10)
 - Failure factor of the elements : $\nu^{(s)} \in [0.0, 0.5], s = 1, ..., 10;$
 - Number of simulated failure factors : $F^{(s)} = 7, s = 1, ..., 10;$
- Bases b = 11, ..., 20: phase failures in each row (s = 1, ..., 10)
 - Phase shift of the elements : $\gamma^{(s)} \in [0, \frac{\pi}{4}]$ [rad], s = 1, ..., 10;
 - Number of simulated phase shifts: $P^{(s)} = 5$, s = 1, .., 10;
- Threshold on the singular values magnitude (normalized): $\eta = -40 [dB]$;
- Total number of simulated AUT configurations : $K = S \times (F^{(s)} + P^{(s)}) = 10 \times (7+5) = 120;$

Dimension of the Over-Complete Basis

The dimension of the over-complete basis is

$$Q = 40$$

This number is given by the sum of the vectors belonging to the two considered bases:

- 1. Magnitude failures : $Q_1, ..., Q_{10} = 2;$
- 2. Phase failures : $Q_{11}, ..., Q_{20} = 2$.

Alternative (BCS) MbD parameters

- Toleration factor for *BCS* solver: $Tolerance = 1 \times 10^{-8}$;
- Initial noise variance for *BCS* solver: $\eta_0^{opt_1} = 10^{-2}$ and $\eta_0^{opt_2} = 5 \times 10^{-4}$. This values have been obtained as a result of a calibration procedure;

Original (OMP) MbD parameters

- Max. number of iterations of the OMP algorithm : $I = \{1; 2; 3; ...; 10\};$
- Selected iteration to report the results: I = 2; this choice is justified by the fact that at this iteration the *OMP* algorithm reaches the best near field error as shown in the following Fig. 3.

Figure 3: Behaviour of the near-field matching error versus the number of OMP iterations, I.

Noise

- SNR on the measured data : $SNR = \{50; 40; 30; 20; 10\} [dB];$
- Noise seed : $Noise_Seed = 11$.

1.1 Comparison between original (OMP) and alternative (BCS) MbD

Near-Field Error

The comparison, in terms of near field error, between the original (*OMP*) and the alternative (*BCS*) MbD is reported in the following Fig. 4.

Figure 4: Near Field Error comparison between original (OMP) and alternative (BCS) MbD for different SNR values.

Near F	$\Xi [dB]$		
BCS		OMP	
$\eta_0^{opt_1}$ $\eta_0^{opt_2}$			
-37.32	-57.48	-56.03	
-36.39	-50.69	-46.03	
-33.88	-36.48	-36.03	
-23.62	0.24	-26.03	
-12.19	19.12	-14.08	
	$\begin{array}{r} Near F \\ B0 \\ \hline \eta_0^{opt_1} \\ -37.32 \\ -36.39 \\ -33.88 \\ -23.62 \\ -12.19 \end{array}$	$\begin{tabular}{ c c c c c } \hline Near Field Error, \\ \hline BCS \\ \hline \eta_0^{opt_1} & \eta_0^{opt_2} \\ \hline -37.32 & -57.48 \\ \hline -36.39 & -50.69 \\ \hline -33.88 & -36.48 \\ \hline -23.62 & 0.24 \\ \hline -12.19 & 19.12 \\ \hline \end{tabular}$	

Table I: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Observations

- In this test case, the *OMP* algorithm performs well being able to achieve an error $\Xi < -20 [dB]$ already for SNR = 20 [dB]. If compared to the *BCS* solver, the *OMP* results are very close to those of the *BCS* with $\eta_0^{opt_1}$ for $SNR \leq 30 [dB]$ and of the BCS with $\eta_0^{opt_2}$ for $SNR \geq 30 [dB]$;
- About the *BCS* algorithm:
 - using $\eta_0^{opt_1}$, the *BCS* solver obtains an error that comparable to that of the *OMP* algorithm for $SNR \le 30 [dB]$ but then its error remains stable while the *OMP* error decreases;
 - using $\eta_0^{opt_2}$, the *BCS* algorithm obtains results which are the worst for $SNR \le 30 \ [dB]$ but the best, and close to those of the *OMP* algorithm, for $SNR \ge 30 \ [dB]$.

Estimated Near-Field

Figure 5: Magnitude difference between the actual and estimated 2 - D near-field pattern when processing noisy measurements at different SNRs.

Figure 6: Coefficient comparison between original (*OMP*) and alternative (*BCS*) MbD : (*a*) SNR = 50 [dB], (*b*) SNR = 40 [dB], (*c*) SNR = 30 [dB], (*d*) SNR = 20 [dB], (*e*) SNR = 10 [dB]

Observations

- The *OMP* solver selects always the same vectors (vector indexes q = 39, 40) for $SNR \ge 20 [dB]$, which are related to phase failures and different from those selected by the *BCS* algorithm;
- The BCS algorithm presents solutions that are not sparse for low SNR values, SNR = 20 [dB] and SNR = 10 [dB], when $\eta_0^{opt_2}$ is used. Both the two BCS versions select two same vectors (vector index q = 37, 38) obtaining the same solution for $SNR \ge 40 [dB]$, solution that is always different from that of the OMP solver.

1.1.1 OMP vs best BCS

The main idea of this section is to compare the performance of the OMP algorithm and the best BCS configuration.

Near-Field Error

Figure 7: Near Field Error comparison between original (OMP) and alternative (BCS) MbD for different SNR values.

$SNR\left[dB ight]$	<i>Near Field Error</i> , Ξ [<i>dB</i>]		
	BCS	OMP	
50	-37.32	-56.03	
40	-36.39	-46.03	
30	-33.88	-36.03	
20	-23.62	-26.03	
10	-12.19	-14.08	

Table II: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Figure 8: Difference between the actual and estimated 2 - D far-field pattern when processing noisy measurements at different SNRs.

Figure 9: 1 - D cuts of the estimated far-field pattern (obtained through near-to-far-field transformation from the estimated near-field patterns) under several noisy conditions

Figure 10: 1 - D cuts of the estimated far-field pattern (obtained through near-to-far-field transformation from the estimated near-field patterns) under several noisy conditions

$SNR\left[dB ight]$	$Far - Field Error, \chi [dB]$		
	BCS	OMP	
50	-38.87	-57.17	
40	-38.09	-47.16	
30	-35.98	-37.13	
20	-25.07	-27.03	
10	-13.54	-15.23	

Table III: Far-field matching error between the actual and estimated AUT patterns (both obtained through near-to-far-field transformation from the corresponding near-field patterns) under several noisy conditions.

Figure 11: Coefficient comparison between original (*OMP*) and alternative (*BCS*) MbD: (*a*) SNR = 50 [dB], (*b*) SNR = 40 [dB], (*c*) SNR = 30 [dB], (*d*) SNR = 20 [dB], (*e*) SNR = 10 [dB]

1.2 Incremented failure ranges to build the over-complete basis ($\nu^{(s)} \in [0.0, 1.0], F^{(s)} = 7$ and $\gamma^{(s)} \in [-\pi, \pi], P^{(s)} = 5$)

Note: All the simulation parameters are the same of those listed in Sez. 1, except the following ones:

Measurement-by-Design Technique

- Number of generated bases : B = 20;
- Bases b = 1, ..., 10: magnitude failures in each row (s = 1, ..., 10)
 - Failure factor of the elements : $\nu^{(s)} \in [0.0, 1.0], \ s = 1, ..., 10;$
 - Number of simulated failure factors : $F^{(s)} = 7, s = 1, ..., 10;$
- Bases b = 11, ..., 20: phase failures in each row (s = 1, ..., 10)
 - Phase shift of the elements : $\gamma^{(s)} \in [-\pi, \pi]$ [rad], s = 1, ..., 10;
 - Number of simulated phase shifts: $P^{(s)} = 5$, s = 1, ..., 10;
- Threshold on the singular values magnitude (normalized) : $\eta = -40 [dB]$;
- Total number of simulated AUT configurations : $K = S \times (F^{(s)} + P^{(s)}) = 10 \times (7+5) = 120;$

Original (*OMP*) MbD parameters

- Max. number of iterations of the OMP algorithm : $I = \{1; 2; 3; ...; 10\};$
- Selected iteration to report the results: I = 2; this choice is justified by the fact that at this iteration the *OMP* algorithm reaches the best near field error as shown in the following Fig. 12.

Figure 12: Behaviour of the near-field matching error versus the number of OMP iterations, I.

1.2.1 Comparison between original (OMP) and alternative (BCS) MbD

Near-Field Error

The comparison, in terms of near field error, between the original (*OMP*) and the alternative (*BCS*) MbD is reported in the following Fig. 13.

Figure 13: (*a*) Near Field Error comparison between original (*OMP*) and alternative (*BCS*) MbD for different *SNR* values and (*b*) comparison between the results

$SNR\left[dB ight]$	Near Field Error,		$\Xi [dB]$
	BCS		OMP
	$\eta_0^{opt_1}$	$\eta_0^{opt_2}$	
50	-38.79	-46.28	-63.37
40	-37.23	-43.47	-53.37
30	-33.47	-34.04	-43.37
$\overline{20}$	-21.38	0.51	-33.37
10	-13.53	19.36	-23.37

Table IV: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Observations

Considering Fig. 13 (a):

- In this test case, the *OMP* algorithm outperforms the *BCS* solver whatever the *SNR* value, achieving an error $\Xi < -20 [dB]$ even for the lower considered *SNR* value, SNR = 10 [dB];
- About the *BCS* algorithm:
 - using $\eta_0^{opt_1}$, the *BCS* solver obtains an error that is more or less 10 [*dB*] higher than that of the *OMP* algorithm for $SNR \leq 30 [dB]$ and 20 - 30 [dB] higher for SNR > 30 [dB]. However, this *BCS* version performs highly better than the other one until SNR = 30 [dB] and then the results are comparable;
 - using $\eta_0^{opt_2}$, the *BCS* algorithm obtains results which are the worst for $SNR \leq 30 \ [dB]$ and a little bit better than the other *BCS* version, but always worse than those of the *OMP* algorithm.

Considering Fig. 13 (b):

- The increase of the failure ranges to build the over-complete basis does not have a great impact on the results; in particular:
 - the *OMP* presents a performance improvement of about 7 [dB] with respect to the same test case without enlarged ranges;
 - The BCS achieves the same result when $\eta_0^{opt_1}$ is used and slightly (~ 8[dB]) worse results for $SNR \ge 40 [dB]$ when $\eta_0^{opt_2}$ is used.

Estimated Near-Field

Figure 14: Magnitude difference between the actual and estimated 2 - D near-field pattern when processing noisy measurements at different SNRs.

Figure 15: Coefficient comparison between original (*OMP*) and alternative (*BCS*) MbD : (*a*) SNR = 50 [dB], (*b*) SNR = 40 [dB], (*c*) SNR = 30 [dB], (*d*) SNR = 20 [dB], (*e*) SNR = 10 [dB]

Observations

- The *OMP* solver selects always the same vectors (vector indexes q = 21, 22), independently from the *SNR* value, which are related to phase failures and different from those selected by the *BCS* algorithm;
- The *BCS* algorithm presents solutions that are not sparse for low *SNR* values, SNR = 20 [dB] and SNR = 10 [dB], when $\eta_0^{opt_2}$ is used. Both the two *BCS* versions select always a same vector (vector index q = 17), but the overall vector selection is different.

1.2.2 OMP vs best BCS

The main idea of this section is to compare the performance of the OMP algorithm and the best BCS configuration.

Near-Field Error

Figure 16: Near Field Error comparison between original (OMP) and alternative (BCS) MbD for different SNR values.

$SNR\left[dB ight]$	<i>Near Field Error</i> , Ξ [<i>dB</i>]		
	BCS	OMP	
50	-38.79	-63.37	
40	-37.23	-53.37	
30	-33.47	-43.37	
20	-21.38	-33.37	
10	-13.53	-23.37	

Table V: Near Field Errors obtained by the original (OMP) and alternative (BCS) MbD

Figure 17: Difference between the actual and estimated 2 - D far-field pattern when processing noisy measurements at different SNRs.

Figure 18: 1 - D cuts of the estimated far-field pattern (obtained through near-to-far-field transformation from the estimated near-field patterns) under several noisy conditions

Figure 19: 1 - D cuts of the estimated far-field pattern (obtained through near-to-far-field transformation from the estimated near-field patterns) under several noisy conditions

$SNR\left[dB ight]$	$Far - Field Error, \chi [dB]$		
	BCS	OMP	
50	-39.86	-64.36	
40	-38.35	-54.36	
30	-34.70	-44.34	
20	-22.90	-34.30	
10	-14.86	-24.18	

Table VI: Far-field matching error between the actual and estimated AUT patterns (both obtained through near-to-far-field transformation from the corresponding near-field patterns) under several noisy conditions.

Figure 20: Coefficient comparison between original (*OMP*) and alternative (*BCS*) MbD: (*a*) SNR = 50 [dB], (*b*) SNR = 40 [dB], (*c*) SNR = 30 [dB], (*d*) SNR = 20 [dB], (*e*) SNR = 10 [dB]

More information on the topics of this document can be found in the following list of references.

References

- M. Salucci, N. Anselmi, M. D. Migliore and A. Massa, "A bayesian compressive sensing approach to robust nearfield antenna characterization," *IEEE Trans. Antennas Propag.*, vol. 70, no. 9, pp. 8671-8676, Sep. 2022 (DOI: 10.1109/TAP.2022.3177528).
- [2] B. Li, M. Salucci, W. Tang, and P. Rocca, "Reliable field strength prediction through an adaptive total-variation CS technique," *IEEE Antennas Wirel. Propag. Lett.*, vol. 19, no. 9, pp. 1566-1570, Sep. 2020.
- [3] M. Salucci, M. D. Migliore, P. Rocca, A. Polo, and A. Massa, "Reliable antenna measurements in a near-field cylindrical setup with a sparsity promoting approach," *IEEE Trans. Antennas Propag.*, vol. 68, no. 5, pp. 4143-4148, May 2020.
- [4] G. Oliveri, M. Salucci, N. Anselmi, and A. Massa, "Compressive sensing as applied to inverse problems for imaging: theory, applications, current trends, and open challenges," *IEEE Antennas Propag. Mag. - Special Issue on* "Electromagnetic Inverse Problems for Sensing and Imaging," vol. 59, no. 5, pp. 34-46, Oct. 2017.
- [5] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics A review," *IEEE Antennas Propag. Mag.*, pp. 224-238, vol. 57, no. 1, Feb. 2015.
- [6] A. Massa and F. Texeira, "Guest-Editorial: Special Cluster on Compressive Sensing as Applied to Electromagnetics," *IEEE Antennas Wirel. Propag. Lett.*, vol. 14, pp. 1022-1026, 2015.
- [7] G. Oliveri, N. Anselmi, M. Salucci, L. Poli, and A. Massa, "Compressive sampling-based scattering data acquisition in microwave imaging," *J. Electromagn. Waves Appl*, vol. 37, no. 5, 693-729, March 2023 (DOI: 10.1080/09205071.2023.2188263).
- [8] G. Oliveri, L. Poli, N. Anselmi, M. Salucci, and A. Massa, "Compressive sensing-based Born iterative method for tomographic imaging," *IEEE Trans. Microw. Theory Techn.*, vol. 67, no. 5, pp. 1753-1765, May 2019.
- [9] M. Salucci, L. Poli, and G. Oliveri, "Full-vectorial 3D microwave imaging of sparse scatterers through a multi-task Bayesian compressive sensing approach," *J. Imaging*, vol. 5, no. 1, pp. 1-24, Jan. 2019.
- [10] M. Salucci, A. Gelmini, L. Poli, G. Oliveri, and A. Massa, "Progressive compressive sensing for exploiting frequency-diversity in GPR imaging," *J. Electromagn. Waves Appl.*, vol. 32, no. 9, pp. 1164-1193, 2018.
- [11] N. Anselmi, L. Poli, G. Oliveri, and A. Massa, "Iterative multi-resolution bayesian CS for microwave imaging," *IEEE Trans. Antennas Propag.*, vol. 66, no. 7, pp. 3665-3677, Jul. 2018.
- [12] N. Anselmi, G. Oliveri, M. A. Hannan, M. Salucci, and A. Massa, "Color compressive sensing imaging of arbitraryshaped scatterers," *IEEE Trans. Microw. Theory Techn.*, vol. 65, no. 6, pp. 1986-1999, Jun. 2017.

- [13] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets" *IEEE Trans. Antennas Propag.*, vol. 63, no. 11, pp. 4889-4900, Nov. 2015.
- [14] G. Oliveri, P.-P. Ding, and L. Poli, "3D crack detection in anisotropic layered media through a sparseness-regularized solver," *IEEE Antennas Wirel. Propag. Lett.*, vol. 14, pp. 1031-1034, 2015.
- [15] L. Poli, G. Oliveri, P.-P. Ding, T. Moriyama, and A. Massa, "Multifrequency Bayesian compressive sensing methods for microwave imaging," J. Opt. Soc. Am. A, vol. 31, no. 11, pp. 2415-2428, 2014.
- [16] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," *IEEE Trans. Antennas Propag.*, vol. 62, no. 10, pp. 5157-5170, Oct. 2014.
- [17] L. Poli, G. Oliveri, F. Viani, and A. Massa, "MT-BCS-based microwave imaging approach through minimum-norm current expansion," *IEEE Trans. Antennas Propag.*, vol. 61, no. 9, pp. 4722-4732, Sep. 2013.
- [18] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, "Sparse scatterers imaging through approximated multitask compressive sensing strategies," *Microwave Opt. Technol. Lett.*, vol. 55, no. 7, pp. 1553-1558, Jul. 2013.
- [19] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," *IEEE Trans. Geosci. Remote Sensing*, vol. 51, no. 5, pp. 2920-2936, May 2013.
- [20] P. Rocca, N. Anselmi, M. A. Hannan, and A. Massa, "Conical frustum multi-beam phased arrays for air traffic control radars," *Sensors*, vol. 22, no. 19, 7309, pp. 1-18, 2022 (DOI: 10.3390/s22197309)
- [21] F. Zardi, G. Oliveri, M. Salucci, and A. Massa, "Minimum-complexity failure correction in linear arrays via compressive processing," *IEEE Trans. Antennas Propag.*, vol. 69, no. 8, pp. 4504-4516, Aug. 2021.
- [22] N. Anselmi, G. Gottardi, G. Oliveri, and A. Massa, "A total-variation sparseness-promoting method for the synthesis of contiguously clustered linear architectures," *IEEE Trans. Antennas Propag.*, vol. 67, no. 7, pp. 4589-4601, Jul. 2019.
- [23] M. Salucci, A. Gelmini, G. Oliveri, and A. Massa, "Planar arrays diagnosis by means of an advanced Bayesian compressive processing," *IEEE Trans. Antennas Propag.*, vol. 66, no. 11, pp. 5892-5906, Nov. 2018.
- [24] L. Poli, G. Oliveri, P. Rocca, M. Salucci, and A. Massa, "Long-Distance WPT Unconventional Arrays Synthesis," J. Electromagn. Waves Appl., vol. 31, no. 14, pp. 1399-1420, Jul. 2017.
- [25] G. Oliveri, M. Salucci, and A. Massa, "Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver," *IEEE Trans. Antennas Propag.*, vol. 64, no. 10, pp. 4277-4287, Oct. 2016.
- [26] M. Carlin, G. Oliveri, and A. Massa, "Hybrid BCS-deterministic approach for sparse concentric ring isophoric arrays," *IEEE Trans. Antennas Propag.*, vol. 63, no. 1, pp. 378-383, Jan. 2015.
- [27] G. Oliveri, E. T. Bekele, F. Robol, and A. Massa, "Sparsening conformal arrays through a versatile BCS-based method," *IEEE Trans. Antennas Propag.*, vol. 62, no. 4, pp. 1681-1689, Apr. 2014.

- [28] F. Viani, G. Oliveri, and A. Massa, "Compressive sensing pattern matching techniques for synthesizing planar sparse arrays," *IEEE Trans. Antennas Propag.*, vol. 61, no. 9, pp. 4577-4587, Sept. 2013.
- [29] P. Rocca, M. A. Hannan, M. Salucci, and A. Massa, "Single-snapshot DoA estimation in array antennas with mutual coupling through a multi-scaling BCS strategy," *IEEE Trans. Antennas Propag.*, vol. 65, no. 6, pp. 3203-3213, Jun. 2017.
- [30] M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. Massa, "Directions-of-arrival estimation through Bayesian Compressive Sensing strategies," *IEEE Trans. Antennas Propag.*, vol. 61, no. 7, pp. 3828-3838, Jul. 2013.
- [31] M. Carlin, P. Rocca, G. Oliveri, and A. Massa, "Bayesian compressive sensing as applied to directions-of-arrival estimation in planar arrays," *J. Electromagn. Waves Appl.*, vol.2013, pp.1-12, 2013 (DOI :10.1155/2013/245867).

page 27/27