
Near-Field Antenna Characterization
Through a Compressive Sensing Based

Approach

M. Salucci, N. Anselmi, and A. Massa

December 22, 2019

page 1/27



Contents

1 Glossary 3

2 Mathematical Formulation and Definitions 5

3 Near-Field Antenna Characterization Through the Orthogonal Matching Pursuit (OMP) Approach 11

page 2/27



1 Glossary

• AUT : Antenna Under Test;

• A
b
, b = 1, ..., B : Pattern matrix of the b− th class of defects;

• A
(k)
b , k = 1, ...,K : Vector of near-field measurements considering all the T interpolation points;

• U
b
, b = 1, ..., B : Unitary matrix whose columns are called left-singular vectors of A

b
;

• Σ
b
, b = 1, ..., B : Diagonal matrix whose entries are the singular values of A

b
;

• V
b
, b = 1, ..., B : Unitary matrix whose columns are called right-singular vectors of A

b
;

• B : Number of considered classes of defects affecting the AUT to build the over-complete basis;

• η : Threshold on the singular values;

• Qb: Number of singular values above threshold for the b-th class of defects;

• Q =
∑B

b=1 Qb : Total number of vectors in the over-complete basis;

• Kb : Total number of simulated AUT configurations for the b-th class of defects;

• K =
∑B

b=1 Kb : Total number of simulated AUT configurations to build the over-complete basis;

• y : Vector of near-field measurements of the AUT ;

• OMP : Orthogonal Matching Pursuit;

• I : Maximum number of iterations performed by the OMP algorithm;

• Z : Subset of indexes of the selected columns of the basis L;

• r : Residual of OMP algorithm;

• Corr : Correlation vector of the OMP algorithm;

• S : Number of subarrays;

• N : Total number of antenna elements;

• Nx : Number of elements in each row of the antenna array;

• Ny : Number of elements in each column of the antenna array;

• N (s) : Number of antenna elements belonging to the s-th subarray (s = 1, ..., S);

• r
(s)
n = (x

(s)
n , y

(s)
n , z

(s)
n ) : Position of the n-th element in the s-th subarray (n = 1, ..., N (s); s = 1, ..., S);

• Lx/y : Total antenna dimension along x/y;

• dx/y : Spacing along x/y between elements in the array;

page 3/27



• M : Number of measurement points;

• rm = (xm, ym, zm) : Position of the m-th measurement points (m = 1, ...,M );

• ∆meas
x/y : Measurement step along x/y;

• T : Number of interpolation points (T ≫ M );

• rt = (xt, yt, zt) : Position of the t-th interpolation point (t = 1, ..., T );

• ∆int
x/y : Interpolation step along x/y;

• H : Height of the near-field measurement/interpolation region;

• w
(s)
n = α

(s)
n exp(jβ

(s)
n ) : Complex excitation of the n-th element belonging to the s-th subarray;

• ν(s) : Magnitude failure factor of the excitations of the elements of the s-th subarray;

• F (s) : Total number of failure factors considered for the elements in the s-th subarray;

• F =
∑S

s=1 F
(s) : Total number of failure factors considered to build the over-complete basis;

• γ(s) : Phase failure of the excitations of the elements of the s-th subarray;

• P (s) : Total number of phase failures considered for the elements in the s-th subarray;

• P =
∑S

s=1 P
(s) : Total number of phase failures considered to build the over-complete basis;

• I : Number of iterations performed by the OMP algorithm (corresponds to the number of selected vectors in the

over-complete basis);

• ldip : Length of the dipoles;

• rdip : Radius of the dipoles;

• hgnd : Height of dipoles above the ground plane;

• L
(s)
x/y : Size of the s-th subarray along x/y, s = 1, ...S;

• ζmeas : Length of the (reduced) measurement plane side;

• ζint : Length of the full measurement plane side;

page 4/27



2 Mathematical Formulation and Definitions

The measurement plane is defined inside the near-field region of the AUT where T (∼ 1000) measurement points are

evenly distributed. However, for the measurement of the AUT near-field just M ≪ T measurement points are employed.

The Measurement-by-Design framework can be described as a 4− steps algorithm:

1. Pattern matrices creation;

2. Truncated-Singular Value Decomposition (T-SVD) of the pattern matrices;

3. Construction of the “Over-Complete basis”;

4. Application of a Compressive Sensing algorithm.

Pattern Matrices Creation

Primarily, by taking into account available a priori information, B classes of uncertainties are identified, where an uncer-

tainty is whatever imperfection that could affect either the AUT, due to manufacturing flaws, or the measurement set-up,

due to improper positioning of the AUT or the measurement plane, causing a deviation of the AUT radiated features from

the nominal ones. For each class of uncertainties b = 1, ..., B, Kb simulations are performed considering different values

of the uncertainty parameter whose variation range is pre-defined according to accessible a priori information.

Each simulation gives as output a field pattern A
(k)
b ; all the A

(k)
b , k = 1, ...,Kb patterns related to a certain uncertainty

class b = 1, ..., B are then put together in order to build the related pattern matrix A
b
∈ CT×Kb :

A
b
= [A

(1)
b , A

(2)
b , ..., A

(Kb)
b ], b = 1, ..., B (1)

where

• A
(k)
b ∈ CT×1, k = 1, ...,K is the vector of near-field measurements related to the k − th uncertainty parameter

value of the b− th uncertainty class, which is built considering all the T points of the measurement plane.

Truncated-Singular Value Decomposition (T-SVD) of the pattern matrices

At this point all A
b
, b = 1, ..., B pattern matrices are created. To each A

b
, b = 1, ..., B the T-SVD is applied considering

a certain threshold η on the singular values. Mathematically:

• Singular Value Decomposition :

A
b
= U

b
Σ

b
V T

b
, b = 1, ..., B (2)

where

– U
b
∈ CT×T is a unitary matrix whose columns are called left-singular vectors of A

b
;

– Σ
b
∈ R

T×K is a diagonal matrix whose entries are the singular values of A
b
;

– V
b
∈ CK×K is a unitary matrix whose columns are called right-singular vectors of A

b
;
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– V T

b
is the conjugate transpose of V

b
.

By applying the truncation at the considered threshold η:

Â
b
= Û

b
Σ̂

b
V̂

T

b
, b = 1, ..., B (3)

where

• Û
b
∈ CT×Qb ;

• Σ̂
b
∈ RQb×Qb ;

• V̂
T

b
∈ CQb×K ;

• Qb is the number of singular values above threshold for the b-th class of defects;

Construction of the Dictionary

The “Over-Complete basis” (also called Dictionary, D) is then constructed by putting together the Û
b
, b = 1, ..., B

matrices :

D = [Û
1
, Û

2
, ..., Û

B
] ∈ C

T×(Q1+..+QB) (4)

From the over-complete basis D just the M rows related to the M ≪ T used measurements points are considered,

obtaining : L ∈ CM×(Q1+..+QB). Thus, the problem can be formulated as follows: starting from the knowledge of the

measured near-field of the AUT (y ∈ CM×1), the objective is to find the vector of coefficients x such that :

Lx ≃ y (5)

where

• x is the problem solution, which indicates what combination of the vectors of L (i.e. what combination of defects)

allows to better approximate the data y.

Compressive Sensing algorithm application

Being x sparse (meaning that just few of its elements are non-zero), it is possible to find a solution for the problem

described in (5) applying Compressive Sensing (CS) approaches such as :

• Orthogonal Matching Pursuit (OMP);

• Bayesian Compressive Sensing (BCS).
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Orthogonal Matching Pursuit (OMP)

The OMP is a sparse approximation algorithm which involves finding the “best matching ” projections of data onto the

span of an over-complete dictionary. The main features that makes this method advantageous in signal recovery problems

are its speed and its ease of implementation. More in detail, remembering the problem at hand (5), the OMP is an iterative

greedy algorithm that selects at each iteration the basis function (i.e. the column) of the basis of L which presents the

highest correlation with the current residual. This column is then joined into the set of selected columns. After the update

of the residuals by means of the projection of the observation y onto the linear subspace spanned by the columns that have

already been selected, the algorithm iterates. It is worth to note that, since in the OMP algorithm the same column cannot

be selected twice, at each iteration the residuals are orthogonal to all the selected columns of L and whose set grows at

each iteration.

The OMP algorithm can be enunciated as follows:

Let’s assume that the columns of L are normalized so that
∥

∥Lj

∥

∥

2
= 1 for j = 1, ...,J , with J = (Q1 + .. + QB). For

any subset Z ⊆ {1, 2, ...,J}, indicate with L(Z) a submatrix of L consisting of the columns Lj with j ∈ Z .

• Step 0: Fix the maximum number of iterations I;

• Step 1: Initialize the residual r0 equal to the data y, r0 = y , and initialize the set of selected columns L(z0) = ∅.

Set the iteration index i = 1;

• Step 2: Find the column Lj of the basis L that obtains the maximum correlation with the residual

max
j

∣

∣LT
j ri−1

∣

∣ (6)

being T the transpose operator, putting the correlation to zero for those indexes that have been already selected,

in order to avoid that they are selected again. Add the suitable column Lj to the set of selected columns. Update

zi = zi−1 ∪ {j}.

• Step 3: Compute the projection matrix

P
i
= L(zi)[L(zi)

TL(zi)]
−1L(zi)

T (7)

and calculate the projection of the data onto the linear space spanned by the elements of L(zi); then, update the

residual

ri = (I − P
i
)y (8)

where I denotes the identity matrix.

• Step 4: if the termination criteria is reached, stop the algorithm. Otherwise, augment the iteration index i = i + 1

and repeat from Step 2.

One of the fundamental elements of an iterative scheme like OMP is the stopping rule. In the noiseless case the under-

standable termination criteria is ri = 0. That is, the algorithm stops whenever ri = 0 is achieved. However, usually
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measurements are noisy preventing the adoption of the aforementioned stopping criteria. Therefore in this work, where

measurements are supposed to be affected by zero-mean Gaussian noise, the chosen termination rule is the achievement

of a prefixed maximum number of iterations. Even if the considered stopping rule is very simple, the selection of a suit-

able maximum number of iterations is not straightforward because it cannot be made a priori and requires an empirical

approach in order to avoid a surplus of iterations which results only in a waste of time and resources.
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Near-Field Matching Error

The following integral error is defined to compute the mismatch between the actual and the retrieved field distribution

radiated by the AUT evaluated over a grid of T = 41× 41 = 1681 λ
2 equi-spaced points on the measurement plane

ΞAUT =

∑T
t=1 |EAUT (rt)− ẼAUT (rt)|2

∑T
t=1 |EAUT (rt)|2

(9)

where

• EAUT (rt) : actual field radiated by the AUT ;

• ẼAUT (rt) : estimated field radiated by the AUT ;

Moreover, the difference between the field generated by the gold antenna (without defects) and by the AUT (with defects)

is quantified by means of the following integral error

ΞGOLD =

∑T
t=1 |EGOLD(rt)− EAUT (rt)|2

∑T
t=1 |EGOLD(rt)|2

(10)

where

• EGOLD(rt) : actual field radiated by the gold antenna.

Far-Field Matching Error

The following integral error is defined to compute the mismatch between the actual and the estimated far-field pattern of

the AUT

χAUT =

∑

u

∑

v |EAUT (u, v)− ẼAUT (u, v)|2
∑

u

∑

v |EAUT (u, v)|2
(11)

where

• EAUT (u, v) : actual far-field pattern radiated by the AUT ;

• ẼAUT (u, v) : estimated far-field pattern radiated by the AUT ;

• u = sinθ cosϕ;

• v = sinθ sinϕ;

Unless differently specified, the error is computed for all (u, v) points falling in the visible range

(u2 + v2) ≤ 1 (12)
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Signal-to-Noise Ratio

Near-field measurements are corrupted by an additive white Gaussian noise with a signal-to-noise ratio equal to

SNR = 10 log10

{

∑M
m=1 |EAUT (rm)|2
∑M

m=1 |ι(rm)|2

}

(13)

where

• EAUT (rm) : field radiated by the AUT ;

• ι(rm) : noise sample at position rm = (xm, ym, zm).
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3 Near-Field Antenna Characterization Through the Orthogonal Matching

Pursuit (OMP) Approach

Parameters

Gold Antenna (Without Defects)

• Geometry : Planar array of microstrip patches on the (x, y) plane;

• Working Frequency : f = 3.6 [GHz] (λ = 83.27× 10−3 [m] in free space);

• Substrate (PEC-backed) :

– Dimensions : infinite;

– Relative Permittivity : εr,sub = 4.7;

– Loss Tangent : tan δsub = 0.014;

– Thickness : hsub = 0.019 [λ] (1.6 [mm]);

• Microstrip patches :

– Dimensions : lx ≈ 0.22 [λ] (18.16 [mm]), ly ≈ 0.33 [λ] (27.25 [mm]);

– Feeding : pin-fed;

• Spacing between elements : dx = dy = λ
2 ;

• Number of elements in each row : Nx = 6;

• Number of elements in each column : Ny = 10;

• Total number of elements : N = (Nx ×Ny) = 60;

• Total size of the antenna : Lx = 5 [λ], Ly = 9 [λ];

• Element excitations : w
(s)
n = 1.0 + j0.0, n = 1, ..., N (s), s = 1, ..., S;

Antenna Under Test (AUT - With Defects)

1. Failures of the excitation magnitude of the 3rd row;

• Failure factor of the elements in the 3rd row (s = 3) : ν(3) = 0.45;

2. Failures of the excitation phase of the 3rd row;

• Phase shift of the elements in the 3rd row (s = 3) : γ(3) = π
3 [rad];
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Figure 1: (a) Magnitude of the element excitations in the AUT (ν(3) = 0.45), (b) phase of the element excitations in the

AUT (γ(3) = π
3 [rad]).

Measurement Set-Up
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Figure 2: Disposition of the interpolation points (T = 1681) and of the measurement points (M = 25) in the near-field

region of the AUT

• Type of measurements : near-field;

• Height of the measurement region : H = 7 [λ];

• Interpolation points :

– Number of points : T = 41× 41 = 1681;

– Coordinates : xt ∈ [−10, 10] [λ], yt ∈ [−10, 10] [λ], zt = H [λ], t = 1, ..., T ;

– Interpolation step : ∆int
x/y = 0.5 [λ];

• Measurement points :

– Coordinates : xmeas
m ∈ [−10, 10] [λ], ymeas

m ∈ [−10, 10] [λ], zmeas
m = H [λ], m = 1, ...,M ;
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– Number of points : Mx/y = 5 → M = 25;

– Measurement step : ∆meas
x/y = 5 [λ]

– Ratio between number of measurements and total number of elements : (M/N) = 0.42;

Measurement-by-Design Technique

• Number of generated bases : B = 20;

• Bases b = 1, ..., 10 : magnitude failures in each row (s = 1, ..., 10)

– Failure factor of the elements : ν(s) ∈ [0.0, 0.5], s = 1, ..., 10;

– Number of simulated failure factors : F (s) = 7, s = 1, ..., 10;

• Bases b = 11, ..., 20 : phase failures in each row (s = 1, ..., 10)

– Phase shift of the elements : γ(s) ∈ [0, π
4 ] [rad], s = 1, ..., 10;

– Number of simulated phase shifts: P (s) = 5, s = 1, .., 10;

• Threshold on the singular values magnitude (normalized) : η = −40 [dB];

• Total number of simulated AUT configurations : K = S × (F (s) + P (s)) = 10× (7 + 5) = 120;

Noise

• SNR on the measured data : SNR = {50; 40; 30; 20; 10} [dB];

• Noise seed : Noise_Seed = 11.
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Near-Field Pattern of the Gold Antenna and of the AUT
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Figure 3: (a)(b) Magnitude and (c)(d) phase of the 2−D near-field pattern radiated by (a)(c) the gold antenna and (b)(d)

the AUT (ν(3) = 0.45, γ(3) = π
3 [rad])
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Figure 4: Magnitude of the difference between the 2 − D near-field pattern radiated by the gold antenna and the AUT

(ν(3) = 0.45, γ(3) = π
3 [rad]).
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Figure 5: 1 −D cuts for (a) x = 0 [λ] and (b) y = 0 [λ] of the near-field magnitude radiated by the gold antenna and by

the AUT (ν(3) = 0.45, γ(3) = π
3 [rad]).

The near-field matching error between the gold antenna and the AUT is equal to

ΞGOLD = 6.04× 10−2.

Dimension of the Over-Complete Basis

The dimension of the over-complete basis is

Q = 40

This number is given by the sum of the vectors belonging to the two considered bases:

1. Magnitude failures : Q1, ..., Q10 = 2;

2. Phase failures : Q11, ..., Q20 = 2.
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OMP Algorithm

Parameters

• Max. number of iterations of the OMP algorithm : I = {1; 2; 3; ...; 10};

• Selected iteration to report the results: I = 5; this choice is justified by the fact that at this iteration the OMP

algorithm reaches the best near field error as shown in the following Fig. 6.
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Figure 6: Behaviour of the near-field matching error versus the number of OMP iterations, I .
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Results

Behaviour of the Near-Field Error
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Figure 7: Near-Field Error behaviour versus SNR values

SNR [dB] Ξ [dB]
50 −48.86
40 −38.86
30 −28.86
20 −15.11
10 −2.08

Table I: Near-field error obtained at different SNR values

Observations

• For SNR ≤ 20 [dB] the near field error is quite high, but starting from SNR ≥ 30 [dB] the OMP algorithm obtains

good results and seems to follow a linear trend since its error decreases linearly as the SNR value increases.
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Which vectors in the over-complete basis have been selected?

The following Fig. 8 shows which vectors of the over-complete basis (consisting of a total of Q = 40 vectors) have been

selected in the first 5 OMP iterations (i = 1, .., 5). The goal is to understand if the OMP algorithm selects (and when)

the vectors that are associated to a failure of the 3rd row.
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Figure 8: Selected coefficients by the OMP solver until the iteration I = 5

Observations

• Even if the measured AUT has a failure of the excitation magnitude of the 3rd row, none of the vectors belonging

to the magnitude failures has been selected in the first OMP iterations;

• The OMP solver is able to detect the phase failure affecting the AUT for SNR ≥ 20 [dB];
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• In the case of SNR = 30 [dB], SNR = 40 [dB] and SNR = 50 [dB] the same vectors have been selected in the

same order.
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Figure 9: I = 5 - Magnitude and phase of the actual and estimated 2 − D near-field pattern when processing noisy

measurements at different SNRs.
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Figure 10: I = 5 - 1−D cuts of the estimated near-field pattern under several noisy conditions

page 21/27



Estimated Far-Field

Pattern Pattern Difference

A
ct

u
al

A
U

T

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75 -0.5 -0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

-50

-40

-30

-20

-10

 0

P
(u

,v
) 

(N
or

m
al

iz
ed

) 
[d

B
]

(a)
S
N
R

=
5
0
[d
B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=50 [dB]

-50

-40

-30

-20

-10

 0

P~
(u

,v
) 

(N
or

m
al

iz
ed

) 
[d

B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=50 [dB]

-50

-40

-30

-20

-10

 0

∆P
~

(u
,v

) 
[d

B
]

(b) (c)

S
N
R

=
4
0
[d
B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=40 [dB]

-50

-40

-30

-20

-10

 0
P~

(u
,v

) 
(N

or
m

al
iz

ed
) 

[d
B

]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=40 [dB]

-50

-40

-30

-20

-10

 0

∆P
~

(u
,v

) 
[d

B
]

(d) (e)

S
N
R

=
3
0
[d
B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=30 [dB]

-50

-40

-30

-20

-10

 0

P~
(u

,v
) 

(N
or

m
al

iz
ed

) 
[d

B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=30 [dB]

-50

-40

-30

-20

-10

 0

∆P
~

(u
,v

) 
[d

B
]

(f ) (g)

S
N
R

=
2
0
[d
B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=20 [dB]

-50

-40

-30

-20

-10

 0

P~
(u

,v
) 

(N
or

m
al

iz
ed

) 
[d

B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=20 [dB]

-50

-40

-30

-20

-10

 0

∆P
~

(u
,v

) 
[d

B
]

(h) (i)

S
N
R

=
1
0
[d
B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=10 [dB]

-50

-40

-30

-20

-10

 0

P~
(u

,v
) 

(N
or

m
al

iz
ed

) 
[d

B
]

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

-1 -0.75-0.5-0.25  0  0.25  0.5  0.75  1

v 
=

 s
in

(θ
)s

in
(φ

)

u = sin(θ)cos(φ)

SNR=10 [dB]

-50

-40

-30

-20

-10

 0

∆P
~

(u
,v

) 
[d

B
]

(j) (k)

Figure 11: I = 5 - Actual and estimated 2 − D far-field patterns at different SNRs. All patterns are obtained through

near-to-far-field transformation
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Figure 12: I = 5 - 1 − D cuts of the estimated far-field pattern (obtained through near-to-far-field transformation from

the estimated near-field patterns) under several noisy conditions

SNR [dB] Far − FieldError, χ [dB]
50 −49.95
40 −39.92
30 −29.86
20 −15.89
10 −1.20

Table II: I = 5 - Far-field matching error between the actual and estimated AUT patterns (both obtained through near-to-

far-field transformation from the corresponding near-field patterns) under several noisy conditions.
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Computational times

• ∆tSim: Time required to simulate the K AUT configurations used to build the (T ×K) ”pattern matrix”;

• ∆tSV D: Time required to perform the SVD of the (T ×K) ”pattern matrix”;

• ∆tOMP
MbE : Time required by the Measurement-by-Example tool to read the SVD output and perform the estimation

of the AUT radiated field.

∆tSim [sec] 2.26× 104

∆tSVD [sec] 1.29× 102

∆tOMP
MbE [sec] 8.00× 10−3

Table III: I = 5 - Computational times

Remarks

• Given that the number of simulated AUTs is K = S × (F (3) + P (3)) = 120, the average per-AUT simulation time

is

∆tFEKO ≃
∆tSim

K
=

2.26× 104

120
[sec] = 1.88× 102 [sec]
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More information on the topics of this document can be found in the following list of references.
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