On the Multiscale Design of Task-Oriented Reflectarrays

G. Oliveri, A. Gelmini, A. Polo, N. Anselmi, and A. Massa

Contents

1	tch Reflectarray: 30x30 SLL=-25dB	4				
	1.1	Optim	ization target	4		
	1.2 Optimization results			4		
		1.2.1	Cost Function	4		
		1.2.2	Geometrical Design	5		
		1.2.3	Reflection Coefficient	6		
		1.2.4	Superficial Currents	7		
		1.2.5	Fields	7		
		1.2.6	Fields Cut	8		
2	Pho	enix Pat	tch Reflectarray: 35x35 SLL=-25dB	9		
2.1 Ontimization target				9		
	2.2	Optimi	ization results	9		
		2.2.1	Cost Function	9		
		2.2.2	Geometrical Design	10		
		2.2.3	Reflection Coefficient	11		
		2.2.4	Superficial Currents	12		
		2.2.5	Fields	12		
		2.2.6	Fields Cut	13		
3	Dou	ble Lav	er Square Patch Reflectarray: 29x29	14		
3.1 Unit cell geometry			ell geometry	14		
	3.2 Optimization target		ization target	14		
			ization results	15		
3.3.1 Cost Function .		3.3.1	Cost Function	15		
		3.3.2	Geometrical Design	15		
		3.3.3	Reflection Coefficient	16		
		3.3.4	Superficial Currents	17		
		3.3.5	Fields	17		
		3.3.6	Fields Cut	18		
4	Dou	Double Layer Square Patch Reflectarray: 29x29, Similarity Weight=10				
	4.1	4.1 Optimization target				

4.2	Optimi	zation results	19
	4.2.1	Cost Function	19
	4.2.2	Geometrical Design	20
	4.2.3	Reflection Coefficient	21
	4.2.4	Superficial Currents	22
	4.2.5	Fields	22
	4.2.6	Fields Cut	23

1 Phoenix Patch Reflectarray: 30x30 SLL=-25dB

1.1 Optimization target

Figure 1: Phoenix Patch Reflectarray 30×30 SLL=-25 dB - Optimization target: SLL on the wanted polarization(a), mask on the unwanted polarization (b).

1.2 Optimization results

1.2.1 Cost Function

Figure 2: Phoenix Patch Reflectarray 30×30 SLL=-25 dB - Optimization: Cost function behavior.

1.2.2 Geometrical Design

Figure 3: Phoenix Patch Reflectarray 30×30 SLL=-25 dB - Optimization: Starting reflectarray configuration(a) and optimized reflectarray configuration (b).

Figure 4: Phoenix Patch Reflectarray 30 × 30 SLL=-25 dB - Optimization - Reflection Coefficients: predicted(a)(b)(e)(f)(i)(j)(m)(n) vs. full-wave simulation (c)(d)(g)(h)(k)(l)(o)(p) of the magnitude(a)(c)(e)(g)(i)(k)(m)(o) and phase (b)(d)(f)(h)(j)(l)(n)(p) of $S_{\theta\theta}(a)(b)(c)(d), S_{\theta\phi}(e)(f)(g)(h), S_{\phi\theta}(i)(j)(k)(l) and S_{\phi\phi}(m)(n)(o)(p).$

1.2.4 Superficial Currents

Figure 5: Phoenix Patch Reflectarray 30×30 SLL=-25 dB - Optimization - Superficial Currents: predicted(a)(b)(e)(f) vs. full-wave simulation (c)(d)(g)(h) of the magnitude(a)(c)(e)(g) and phase (b)(d)(f)(h) of $J_x(a)(b)(c)(d)$ and $J_y(e)(f)(g)(h)$.

1.2.5 Fields

Figure 6: Phoenix Patch Reflectarray 30×30 SLL=-25 dB - Optimization - Radiated Fields: predicted(a)(b)(e)(f) vs. full-wave simulation of R (c)(g) vs. full-wave simulation of the entire structure (d)(h) of the magnitude of $E_{\chi}(a)(b)(c)(d)$ and $E_{\psi}(e)(f)(g)(h)$.

1.2.6 Fields Cut

Figure 7: Phoenix Patch Reflectarray 30×30 SLL=-25 dB - Optimization - Radiated Field Cut with the comparison.

2 Phoenix Patch Reflectarray: 35x35 SLL=-25dB

2.1 Optimization target

Figure 8: Phoenix Patch Reflectarray 35×35 SLL=-25 dB - Optimization target: SLL on the wanted polarization(a), mask on the unwanted polarization (b).

2.2 Optimization results

2.2.1 Cost Function

Figure 9: Phoenix Patch Reflectarray 35×35 SLL=-25 dB - Optimization: Cost function behavior.

2.2.2 Geometrical Design

Figure 10: Phoenix Patch Reflectarray 35×35 SLL=-25 dB - Optimization: Starting reflectarray configuration(a) and optimized reflectarray configuration (b).

Figure 11: Phoenix Patch Reflectarray 35 × 35 SLL=-25 dB - Optimization - Reflection Coefficients: predicted(a)(b)(e)(f)(i)(j)(m)(n) vs. full-wave simulation (c)(d)(g)(h)(k)(l)(o)(p) of the magnitude(a)(c)(e)(g)(i)(k)(m)(o) and phase (b)(d)(f)(h)(j)(l)(n)(p) of $S_{\theta\theta}(a)(b)(c)(d)$, $S_{\theta\phi}(e)(f)(g)(h)$, $S_{\phi\theta}(i)(j)(k)(l)$ and $S_{\phi\phi}(m)(n)(o)(p)$.

2.2.4 Superficial Currents

Figure 12: Phoenix Patch Reflectarray 35×35 SLL=-25 dB - Optimization - Superficial Currents: predicted(a)(b)(e)(f) vs. full-wave simulation (c)(d)(g)(h) of the magnitude(a)(c)(e)(g) and phase (b)(d)(f)(h) of $J_x(a)(b)(c)(d)$ and $J_y(e)(f)(g)(h)$.

2.2.5 Fields

Figure 13: Phoenix Patch Reflectarray 35×35 SLL=-25 dB - Optimization - Radiated Fields: predicted(a)(b)(e)(f) vs. full-wave simulation of R (c)(g) vs. full-wave simulation of the entire structure (d)(h) of the magnitude of $E_{\chi}(a)(b)(c)(d)$ and $E_{\psi}(e)(f)(g)(h)$.

2.2.6 Fields Cut

Figure 14: Phoenix Patch Reflectarray 35×35 SLL=-25 dB - Optimization - Radiated Field Cut with the comparison.

3 Double Layer Square Patch Reflectarray: 29x29

3.1 Unit cell geometry

Figure 15: Square Patch Dual Layer unit cell, front (a) and side (b) view.

3.2 Optimization target

Figure 16: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = \alpha_{\Gamma} = 1.0$ - Optimization target: SLL on the wanted polarization(a), mask on the unwanted polarization (b).

3.3 Optimization results

3.3.1 Cost Function

Figure 17: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = \alpha_{\Gamma} = 1.0$ - Optimization: Cost function behavior.

3.3.2 Geometrical Design

Figure 18: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = \alpha_{\Gamma} = 1.0$ - Optimization: Starting reflectarray configuration(a)(c), optimized reflectarray configuration (b)(d) for layer one (a)(b) and layer two (c)(d).

Figure 19: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = \alpha_{\Gamma} = 1.0$ - Optimization - Reflection Coefficients: predicted(a)(b)(e)(f)(i)(j)(m)(n) vs. full-wave simulation (c)(d)(g)(h)(k)(l)(o)(p) of the magnitude(a)(c)(e)(g)(i)(k)(m)(o) and phase (b)(d)(f)(h)(j)(l)(n)(p) of $S_{\theta\theta}(a)(b)(c)(d), S_{\theta\phi}(e)(f)(g)(h), S_{\phi\theta}(i)(j)(k)(l) and S_{\phi\phi}(m)(n)(o)(p).$

3.3.4 Superficial Currents

Figure 20: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = \alpha_{\Gamma} = 1.0$ - Optimization - Superficial Currents: predicted(a)(b)(e)(f) vs. full-wave simulation (c)(d)(g)(h) of the magnitude(a)(c)(e)(g) and phase (b)(d)(f)(h) of $J_x(a)(b)(c)(d)$ and $J_y(e)(f)(g)(h)$.

3.3.5 Fields

Figure 21: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = \alpha_{\Gamma} = 1.0$ - Optimization - Radiated Fields: predicted(a)(b)(e)(f) vs. full-wave simulation of R (c)(g) vs. full-wave simulation of the entire structure (d)(h) of the magnitude of $E_{\chi}(a)(b)(c)(d)$ and $E_{\psi}(e)(f)(g)(h)$.

3.3.6 Fields Cut

4 Double Layer Square Patch Reflectarray: 29x29, Similarity Weight=10

P×Q=29×29, "Square" Patch Dual Layer, SLL_y=-30 dB, M_{ψ} =-40 dB P×Q=29×29, "Square" Patch Dual Layer, SLL_y=-30 dB, M_w =-40 dB 0 0 1 1 normalized -10 -100.5 0.5 -20 -20 0 0 M_v(u,v) [dB] "(u,v) [dB] .30 -30 -0.5 -0.5 40 40 -50 -1 -1 -50 -0.5 0 0.5 -0.5 0 0.5 _1 1 -1 1 u u *(a) (b)*

4.1 Optimization target

Figure 23: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = 1.0$, $\alpha_{\Gamma} = 10.0$ - Optimization target: SLL on the wanted polarization(a), mask on the unwanted polarization (b).

4.2 **Optimization results**

4.2.1 Cost Function

Figure 24: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = 1.0, \alpha_{\Gamma} = 10.0$ - Optimization: Cost function behavior.

4.2.2 Geometrical Design

Figure 25: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = 1.0$, $\alpha_{\Gamma} = 10.0$ - Optimization: Starting reflectarray configuration(a)(c), optimized reflectarray configuration (b)(d) for layer one (a)(b) and layer two (c)(d).

Figure 26: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = 1.0$, $\alpha_{\Gamma} = 10.0$ - Optimization - Reflection Coefficients: predicted(a)(b)(e)(f)(i)(j)(m)(n) vs. full-wave simulation (c)(d)(g)(h)(k)(l)(o)(p) of the magnitude(a)(c)(e)(g)(i)(k)(m)(o) and phase (b)(d)(f)(h)(j)(l)(n)(p) of $S_{\theta\theta}(a)(b)(c)(d)$, $S_{\theta\phi}(e)(f)(g)(h)$, $S_{\phi\phi}(i)(j)(k)(l)$ and $S_{\phi\phi}(m)(n)(o)(p)$.

4.2.4 Superficial Currents

Figure 27: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = 1.0$, $\alpha_{\Gamma} = 10.0$ - Optimization - Superficial Currents: predicted(a)(b)(e)(f) vs. full-wave simulation (c)(d)(g)(h)of the magnitude(a)(c)(e)(g) and phase (b)(d)(f)(h) of $J_x(a)(b)(c)(d)$ and $J_y(e)(f)(g)(h)$.

4.2.5 Fields

Figure 28: Double Layer Square Patch Reflectarray $29 \times 29\alpha_{\beta} = 1.0$, $\alpha_{\Gamma} = 10.0$ - Optimization - Radiated Fields: predicted(a)(b)(e)(f) vs. full-wave simulation of R (c)(g) vs. full-wave simulation of the entire structure (d)(h) of the magnitude of $E_{\chi}(a)(b)(c)(d)$ and $E_{\psi}(e)(f)(g)(h)$.

4.2.6 Fields Cut

Figure 29: Double Layer Square Patch Reflectarray $29 \times 29 \alpha_{\beta} = 1.0$, $\alpha_{\Gamma} = 10.0$ - Optimization - Radiated Field Cut with the comparison .

More information on the topics of this document can be found in the following list of references.

References

- P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," *Inverse Problems - 25 th Year Special Issue of Inverse Problems, Invited Topical Review*, vol. 25, pp. 1-41, Dec. 2009.
- [2] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," *IEEE Antennas Propag. Mag.*, vol. 53, no. 1, pp. 38-49, Feb. 2011.
- [3] P. Rocca, N. Anselmi, A. Polo, and A. Massa, "An irregular two-sizes square tiling method for the design of isophoric phased arrays," *IEEE Trans. Antennas Propag.*, vol. 68, no. 6, pp. 4437-4449, Jun. 2020.
- [4] P. Rocca, N. Anselmi, A. Polo, and A. Massa, "Modular design of hexagonal phased arrays through diamond tiles," *IEEE Trans. Antennas Propag.*, vol.68, no. 5, pp. 3598-3612, May 2020.
- [5] N. Anselmi, L. Poli, P. Rocca, and A. Massa, "Design of simplified array layouts for preliminary experimental testing and validation of large AESAs," *IEEE Trans. Antennas Propag.*, vol. 66, no. 12, pp. 6906-6920, Dec. 2018.
- [6] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Contiguous phase-clustering in multibeam-on-receive scanning arrays." *IEEE Trans. Antennas Propag.*, vol. 66, no. 11, pp. 5879-5891, Nov. 2018.
- [7] G. Oliveri, G. Gottardi, F. Robol, A. Polo, L. Poli, M. Salucci, M. Chuan, C. Massagrande, P. Vinetti, M. Mattivi, R. Lombardi, and A. Massa, "Co-design of unconventional array architectures and antenna elements for 5G base station," *IEEE Trans. Antennas Propag.*, vol. 65, no. 12, pp. 6752-6767, Dec. 2017.
- [8] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Irregular phased array tiling by means of analytic schemata-driven optimization," *IEEE Trans. Antennas Propag.*, vol. 65, no. 9, pp. 4495-4510, September 2017.
- [9] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Optimization of excitation tolerances for robust beamforming in linear arrays," *IET Microwaves, Antennas & Propagation*, vol. 10, no. 2, pp. 208-214, 2016.
- [10] P. Rocca, R. J. Mailloux, and G. Toso, "GA-Based optimization of irregular sub-array layouts for wideband phased arrays desig," *IEEE Antennas and Wireless Propag. Lett.*, vol. 14, pp. 131-134, 2015.
- [11] P. Rocca, M. Donelli, G. Oliveri, F. Viani, and A. Massa, "Reconfigurable sum-difference pattern by means of parasitic elements for forward-looking monopulse radar," *IET Radar, Sonar & Navigation*, vol 7, no. 7, pp. 747-754, 2013.
- [12] P. Rocca, L. Manica, and A. Massa, "Ant colony based hybrid approach for optimal compromise sum-difference patterns synthesis," *Microwave Opt. Technol. Lett.*, vol. 52, no. 1, pp. 128-132, Jan. 2010.
- [13] P. Rocca, L. Manica, and A. Massa, "An improved excitation matching method based on an ant colony optimization for suboptimal-free clustering in sum-difference compromise synthesis," *IEEE Trans. Antennas Propag.*, vol. 57, no. 8, pp. 2297-2306, Aug. 2009.

- [14] P. Rocca, L. Manica, and A. Massa, "Hybrid approach for sub-arrayed monopulse antenna synthesis," *Electronics Letters*, vol. 44, no. 2, pp. 75-76, Jan. 2008.
- [15] P. Rocca, L. Manica, F. Stringari, and A. Massa, "Ant colony optimization for tree-searching based synthesis of monopulse array antenna," *Electronics Letters*, vol. 44, no. 13, pp. 783-785, Jun. 19, 2008.
- [16] G. Oliveri, A. Gelmini, A. Polo, N. Anselmi, and A. Massa, "System-by-design multi-scale synthesis of task-oriented reflectarrays," *IEEE Trans. Antennas Propag.*, vol. 68, no. 4, pp. 2867-2882, Apr. 2020.
- [17] M. Salucci, F. Robol, N. Anselmi, M. A. Hannan, P. Rocca, G. Oliveri, M. Donelli, and A. Massa, "S-Band splineshaped aperture-stacked patch antenna for air traffic control applications," *IEEE Tran. Antennas Propag.*, vol. 66, no. 8, pp. 4292-4297, Aug. 2018.
- [18] M. Salucci, L. Poli, A. F. Morabito, and P. Rocca, "Adaptive nulling through subarray switching in planar antenna arrays," *Journal of Electromagnetic Waves and Applications*, vol. 30, no. 3, pp. 404-414, February 2016
- [19] T. Moriyama, L. Poli, and P. Rocca, "Adaptive nulling in thinned planar arrays through genetic algorithms," *IEICE Electronics Express*, vol. 11, no. 21, pp. 1-9, Sep. 2014.
- [20] L. Poli, P. Rocca, M. Salucci, and A. Massa, "Reconfigurable thinning for the adaptive control of linear arrays," *IEEE Trans. Antennas Propag.*, vol. 61, no. 10, pp. 5068-5077, Oct. 2013.
- [21] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Adaptive nulling in time-varying scenarios through time-modulated linear arrays," *IEEE Antennas Wireless Propag. Lett.*, vol. 11, pp. 101-104, 2012.
- [22] M. Benedetti, G. Oliveri, P. Rocca, and A. Massa, "A fully-adaptive smart antenna prototype: ideal model and experimental validation in complex interference scenarios," *Progress in Electromagnetic Research*, PIER 96, pp. 173-191, 2009.
- [23] M. Benedetti, R. Azaro, and A. Massa, "Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios," *IEEE Trans. Antennas Propag.*, vol. 56, no. 7, pp. 1939-1947, Jul. 2008.
- [24] M. Benedetti, R. Azaro, and A. Massa, "Experimental validation of a fully-adaptive smart antenna prototype," *Electronics Letters*, vol. 44, no. 11, pp. 661-662, May 2008.
- [25] R. Azaro, L. Ioriatti, M. Martinelli, M. Benedetti, and A. Massa, "An experimental realization of a fully-adaptive smart antenna," *Microwave Opt. Technol. Lett.*, vol. 50, no. 6, pp. 1715-1716, Jun. 2008.
- [26] M. Donelli, R. Azaro, L. Fimognari, and A. Massa, "A planar electronically reconfigurable Wi-Fi band antenna based on a parasitic microstrip structure," *IEEE Antennas Wireless Propag. Lett.*, vol. 6, pp. 623-626, 2007.
- [27] M. Benedetti, R. Azaro, D. Franceschini, and A. Massa, "PSO-based real-time control of planar uniform circular arrays," *IEEE Antennas Wireless Propag. Lett.*, vol. 5, pp. 545-548, 2006.
- [28] G. Oliveri, P. Rocca, M. Salucci, and A. Massa, "Holographic smart EM skins for advanced beam power shaping in next generation wireless environments," *IEEE J. Multiscale Multiphysics Comput. Tech.*, vol. 6, pp. 171-182, Oct. 2021.

- [29] M. Salucci, L. Tenuti, G. Gottardi, A. Hannan, and A. Massa, "System-by-design method for efficient linear array miniaturisation through low-complexity isotropic lenses," *Electronic Letters*, vol. 55, no. 8, pp. 433-434, May 2019.
- [30] M. Salucci, N. Anselmi, S. Goudos, and A. Massa, "Fast design of multiband fractal antennas through a systemby-design approach for NB-IoT applications," *EURASIP J. Wirel. Commun. Netw.*, vol. 2019, no. 1, pp. 68-83, Mar. 2019.
- [31] M. Salucci, G. Oliveri, N. Anselmi, and A. Massa, "Material-by-design synthesis of conformal miniaturized linear phased arrays," *IEEE Access*, vol. 6, pp. 26367-26382, 2018.
- [32] M. Salucci, G. Oliveri, N. Anselmi, G. Gottardi, and A. Massa, "Performance enhancement of linear active electronically-scanned arrays by means of MbD-synthesized metalenses," *Journal of Electromagnetic Waves and Applications*, vol. 32, no. 8, pp. 927-955, 2018.
- [33] G. Oliveri, M. Salucci, N. Anselmi and A. Massa, "Multiscale System-by-Design synthesis of printed WAIMs for waveguide array enhancement," *IEEE J. Multiscale Multiphysics Computat. Techn.*, vol. 2, pp. 84-96, 2017.
- [34] A. Massa and G. Oliveri, "Metamaterial-by-Design: Theory, methods, and applications to communications and sensing Editorial," *EPJ Applied Metamaterials*, vol. 3, no. E1, pp. 1-3, 2016.
- [35] G. Oliveri, F. Viani, N. Anselmi, and A. Massa, "Synthesis of multi-layer WAIM coatings for planar phased arrays within the system-by-design framework," *IEEE Trans. Antennas Propag.*, vol. 63, no. 6, pp. 2482-2496, June 2015.
- [36] G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, "An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses," *IEEE Antennas Wireless Propag. Lett.*, vol. 13, pp. 1783-1786, 2014.
- [37] A. Massa, G. Oliveri, P. Rocca, and F. Viani, "System-by-Design: a new paradigm for handling design complexity," *8th European Conference on Antennas Propag. (EuCAP 2014)*, The Hague, The Netherlands, pp. 1180-1183, Apr. 6-11, 2014.
- [38] P. Rocca, G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design Methodologies - A review," *Proceedings of the IEEE*, vol. 104, no. 3, pp. 544-560, March 2016.