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1 Introdution

Phased array antennas have signi�antly improved sine the �rst introdution, nowadays they are ubiquity

in every-day life beause a they are used for a lot of appliations: radar, ommuniations, remote sensing,

navigation, radiostronomy, automotive, biomedial imaging, radiotherapy and a lot of researh ativity. Modern

phased arrays permits to obtain high radiation performane and fast beam sanning, but this array are expensive.

In the near future phased array will need big-sale prodution of eonomi antenna systems, so it will be neessary

to redue the overall osts of the array. In a fully populated solution there are a ontrol point for eah antenna

element. Half of the ost is due to the TX/RX module, so to redue the ost is possible to redue the number

of ontrol points. Unonventional arhiteture suh as sub-arrayed/lustered, thinned, or sparse arrays have

been proposed instead of fully-populated array. Suh sub-optimal solutions gaining more attention beause of

the most reent market requirements on radiation performane in modern radar and ommuniation systems.

In this framework the exat tiling of a �nite area with multiple tiles (or sub-array) of two or more radiating

elements, is of great interest in nowadays phased array design. Eah tile is feeded with a single ontrol point,

so there are less ontrol point (TX/RX modules) than fully-populated arhiteture. It permits to redue the

number of ontrol point by grouping two or more radiating element over a single ontrol point, still yielding

satisfatory radiation features. Unfortunately a new problem arise, beause the periodiity introdued by the

quantization of aperture illumination, permits the undesired high sidelobes. Therefore reduing the arhitetural

omplexity by partitioning the array aperture in sub-array (diamond tiles) of equal shapes and orientations, in

the power pattern arises undesired grating lobes. To redue unwanted lobes it is possible to use aperiodi sub-

array or tiles having irregular shapes and irregular loation or an aperiodi polyomino-based lustering methods.

These possible solutions break the periodiity due to the quantization and redue the level of undesired lobes.

The omplete overing of a bounded region, using translated opies of tiles, without overlapping, it is well known

in mathematial litterature and it is exploited for array design.

A lattie divides the plane (array aperture) in a small region alled fundamental region. Tiling a plane means:

over the entire plane without leaving hole or overlaps by the union of at least two fundamental regions.

Tiling problems are very omplex poblems, they are NP-omplete problems. If simple tiles shapes are onsid-

ered, it is possible to know if the aperture is ompletely tileable. The method presented in provides an algorithm

for the generation of all existing tilings of a simply onneted region using domino and lozenge tiles to over

retangular and hexagonal aperture respetively.

On the atual state-of-art literature a reently solution is to use domino tiles (tiles with at least two square

ells) whih have been used for the optimization of small and large antenna aperture by using Exhaustive Tiling

Method (ETM) and Geneti Algorithm Optimization Tiling Method (OTM-GA).

The �rst method, ETM, develops an enumerative solution by using mathematial tiling theorems and algorithms,

it permits to obtain all the possible tiling on�gurations for a given tile shape and aperture. In partiular it

is possible to obtain the optimal overage, so the optimal solution. By providing as input a fully-populated
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referene solution, the algorithm gives as output a solution very lose to referene one in terms of radiation

performane. This algorithm works only for low/medium aperture, beause when the array size inrease, the

possible tiling on�gurations inrease exponentially; so it is omputationally demanding to generate all the

possible on�gurations.

The seond method, namely OTM-GA (Optimization Tiling Method - Geneti Algorithm), is able to �nd the

sub-optimal/optimal tiling on�guration with an high suess-rate by evaluating only a sub-set of the solution

spae. GA exploits a set of individuals haraterized by a good geneti ontent in terms of radiation performane

de�ned in aording to mathematial tiling theorems and algorithms. This method is robust beause radiation

performane onverge very lose to referene ones.

Compared with the state-of-art, this thesis presents some methodologial advanes:

1. In tiling theorems and algorithms are used also for lozenge shaped tiles to over hexagonal aperture. The

objetive is to apply ETM for low/medium hexagonal aperture array using lozenge tiles.

2. Apply OTM-GA based on binary and integered oding to explore a wide solution spae for large hexago-

nal aperture by de�ning shemata bloks to obtain sub-optimal/optimal solution very lose to referene

solution.

3. Apply a synthesis methodologies on a single element to make a omparison between idel and real antenna

element.

The most important novelty in this thesis is the use of hexagonal aperture arrays and OTM-GA based on integer

oding:

• The hexagonal arrangements is hosen from many others geometries beause it has the best steerable

harateristis hene it permits to redue the presene of grating lobes. Another reason to use hexagon is

that hexagonal shape an be used to tile surfaes without leaving holes between every hexagon, in order

to reate an honeyomb struture. Finally in hexagonal arrays it is possible to obtain nulls more depper

than irular array.

• The use of Geneti Algorithms is justi�ed by perfomane ompared with other optimization method, like

Partile Swarm Optimization (PSO), GAs are also used in di�erent sienti� �eld. For example desribed

some ases: in one example D. E. Golberg has developed algorithms that learns to ontrol a gas pipeline

system modeled on the one that arries natural gas from the Southwest and Northeast. In another example,

L. Dawis has used similar tehniques of Golberg to design ommuniations systems, software's objetive

is to arry the maximum possible amount of data with the minimum number of transmission line and

swithes onneted them.

In literature di�erent sienti� paper that talk about geneti algorithms applied to eletromagneti �eld,

antenna array design, tiling with GA-based strategy and the use of geneti algorithms are motivated by:

� GAs work with disrete parameters
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� In a solution spae with a lot of loal minimas, GAs operator as rossover and mutation permits to

quikly go from a region to another

� The optimization proess is able to deal with a lot of parameters, beause the solution spae has a

lot of loal minimas

� Simple to understand and program

� Useful for a large spae of �nite solutions, beause GAs permit to obtain the optimal solution

In partiular the novelty regard integer oding integer oding ensure that eah hromosome is enoded

with shorter strings than binary ase, therefore less omputational e�ort.
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2 Variable De�nitions

• Side's lenght of the domain Ld:

Side's lenght of the lattie/geometry domain measured in λ

• Lenght of two opposite side of retangular aperture Lx:

Side's lenght of retangular aperture along x axis measured in λ

• Lenght of two opposite side of retangular aperture Ly:

Side's lenght of retangular aperture along y axis measured in λ

• Number of the points N tot
p :

Number of the points of the lattie/geometry

• Points along x Mp:

Number of the points along x axis of the lattie/geometry

• Points along y Np:

Number of the points along y axis of the lattie/geometry of the lattie/geometry

• Total number of ells N tot
c :

total number of ells where to put the elements of the array of the lattie/geometry

• Number of ells along x Mc:

total number of ells along x axis of the lattie/geometry

• Number of ells along y Nc:

total number of ells along y axis of the lattie/geometry

• Number of points of the boundary N
(bound)
p :

number of points of the array lattie/geometry

• Total numbers of elements Ntot:

total number of elements whih ompose the array

• Number of pattern samples along u diretion Nu:

Total number of pattern samples along u diretion for ETM software (must be even)

• Number of pattern samples along v diretion Nv:

Total number of pattern samples along v diretion for ETM software (must be even)

• Weight of SLL wSLL :

weight of SLL for �tness funtion
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• Weight of diretivity wD :

weight of diretivity for �tness funtion

• Weight of HPBW azimuth ut wazm
HPBW :

weight of Half Power Beamwidth for �tness funtion along azimuth diretion

• Weight of diretivityof HPBW elevation ut welv
HPBW :

weight of Half Power Beamwidth for �tness funtion along elevation diretion

• Weight of diretivity wmask :

weight of mask for �tness funtion

• Baryenter along x Bx:

baryenter of array along x diretion

• Baryenter along y By:

baryenter of array along y diretion

• Variane along x σx:

value of array variane along x diretion

• Variane along y σy :

value of array variane along y diretion

• Element spaing along x dx:

value of the spaing between two nearest element along x diretion

• Element spaing along y1 dy1:

value of the spaing between two nearest element along y diretion when two triangles has a ommon side

• Element spaing along y2 dy2:

value of the spaing between two nearest element along y diretion when two triangles has a ommon

vertex

• Number of elements for ell Nel:

number of elements for eah ell of lattie/geometry

• Pointing Diretion of θ angle θ0 :

pointing diretion of main beam along θ

• Pointing Diretion of φ angle φ0 :

pointing diretion of main beam along φ
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• Pointing Diretion of u = senθcosφ oordinate u0 :

pointing diretion of main beam along u

• Pointing Diretion of v = senθsenφ oordinate v0 :

pointing diretion of main beam along v

• Length of A side a :

length of two opposite sides A of hexagon measured as adjaent ells

• Length of B side b :

length of two opposite sides B of hexagon measured as adjaent ells

• Length of C side c :

length of two opposite sides C of hexagon measured as adjaent ells

• Length of A side La :

length of two opposite sides A of hexagon measured in λ

• Length of B side Lb :

length of two opposite sides B of hexagon measured in λ

• Length of C side Lc :

length of two opposite sides C of hexagon measured in λ

• Tiling on�gurations T :

number of possible tiling on�gurations for an exhaustive generation

• Number of unknows Nu:

unknows are the inner points of the array

• Maximum of word max Umax:

upper bound of the word max

• Number of hromosome bits Nch:

lenght of the hromosome

• Number of bits of integer oding Nbit:

number of bits to oding integer values in binary values

• Number of trials (seed) Nseed:

number of trials (seed) launhed for every simulation, useful to generate pseudo-random numbers
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• Number of individuals NI :

population dimension, it is the set of trial solution, equal to the double of the number of array lattie

internal points

• Number of �ips Nflips:

number of �ips (rotation) of 180 [deg] of a group of lozenges with a loal minimum/maximum in their

enter

• Number of shemata Nsch:

number of template that identi�es a subset of strings with similarities at ertain �xed string position

• Cross-Over probability pcx:

probability to obtain the best hild by using the good features of the urrent trial solutions

• Mutation probability pm = 0.01

probability to introdue new features

• Diversity Perentage - d%

perentage of bits that every word must have di�erent between eah word
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3 Mathematial Formulation

3.1 Array Geometry

Consider a planar phased array radar with hexagonal aperture disretized into equilateral triangular elementary

ells where the aperture dimension is the number of adjaent triangle for evey side of the hexagon, the number

adjaent triangle for eah side is indiated as a, b, c, d, e, f , the e�etive lenght (La,b,c,d,e,f) of eah side

is equal to the produt between the lenght of side of triangular ell (L) and the number of adjaent triangles

a, b, c, d, e, f to every side:

Lγ = L× γ, γ ∈ (a, b, c, d, e, f) (1)

Every ell ontains in its baryenter (xn, yn) a radiating element. The arrangement of radianting elements is

due to the shape of elementary ells in whih the aperture is disretized. In partiular, triangles are disposed

upward and downward, so there are three di�erent inter-element spaing to onsider: dx, dy1, dy2[Fig.1℄. To

alulate spaing we have to onsider that the spaing along x-axis (dx) is onstant between eah element,

but along y-axis is di�erent between elements that belongs to a ouple of triangles with ommon side (dy1) or

with one ommon vertex (dy2)[Fig.1℄, then ell baryenter oordinates are: xn = L
2 , yn = L

3 ·
√
3
2 , after this

onsiderations the inter-element spaing value are:

dx =
L

2
(2)

dy1 =
L√
3

(3)

dy2 = L× 2√
3

(4)

To alulate the aperture dimension, given the inter-element spaing and the number of triangle for eah side,

let start from the highest spaing dy2. From dy2 4 alulate L with the inverse formula:

L = dy2 ×
√
3

2
(5)

then alulate the side leght of the hexagon using 1.

As example, if we onsider dy2 ≤ 0.5λ, the side lenght obtained is L ≤ 0.43λ, then the number of adjaent

triangles are: a = b = c = d = e = f = 10, so the side lenght is: Lγ = 0.43λ× 10 = 4.3λ, γ ∈ (a, b, c, d, e, f) .
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Figure 1: Array Lattie - Intra Element Distanes

Pile of ubes: Hexagon as a 3D box

An hexagon an be seen as a big 3-dimensional ube with small 3D ubes inside, where eah lozenge orrespond

to a small part inside the entire 3D box, therefore the lozenges are pile of ubes inside the hexagon [Fig.2℄.

The hexagon with side lenght (a, b, c, a, b, c) an be seen as a 3D box with dimension a × b × c omposed

by vertial and horizontal lozenges. So states that if the hexagon is regular (a = b = c = n) the number of

diamond for eah one of the three possible orientation is n2
so the total number of diamond is 3n2

. If hexagon

is irregular (a 6= b 6= c) the 3D struture an be seen as a parallelepiped. For every fae the number of lozenge

of a �xed orientation is:

• number of array elements:

Nel = 2× (a× c+ b× c+ a× b) (6)

• number of vertial diamond:

NσV = a× c (7)

• number of horizontal left diamond:

NσHleft = b× c (8)

• number of horizontal right diamond:

NσHright = a× b (9)

• total number of diamond is:

Ndiamond = NσV +NσHleft +NσHright =
Nel

2
(10)
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Figure 2: Pile of ubes example
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3.2 Tile-Based Sub-Array Arhiteture

Starting from a fully populated ase �lls by N radiating elements Fig.3, where every element is positioned in

the baryenter of elementary ells (Se.3.1), the amplitude and phase of eah element is ontrolled by a single

T/R module (N ontrol points), but in the arhiteture desribed in this setion the objetive is to redue the

number of ontrol points, by lustering two elements that belong to adjaent ells.

The elementary ells of this type of tiling are equilateral triangles, the ombination of a ouple of elementary

ells those share a side and they permit to obtain a diamond shaped tile, this shape has internal angles of 120

degrees and 60 degrees. There are three di�erent types of orientations: vertial

(
σV

)
, horizontal-left

(
σHleft

)

and horizontal-right

(
σHright

)
[Fig.4-5℄. Therefore the sub-array arhiteture is omposed by

N
2 ontrol points

omposed by amplitude attenuator (αq) and phase shifter (βq)[Fig.6℄.

xn

Σ

β1

α1

β2

α2

βn

αn

βN−1

αN

βn+1 βN

αn+1 αN−1

yn

y

x

Figure 3: Sketh of hexagonal aperture of fully populated arhiteture

yn

yq

yn−1

xq = xn x

y
σV

yn
yq

yn−1

x

y

xn−1 xq xn

σVleft σVright

yn
yq

yn−1

x

y

xn−1 xq xn

(a) (b) ()

Figure 4: Diamond-like tile: (a) Vertial, (b) Horizontal left, () Horizontal right
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σ4 = σH

σ5 = σVright

σ8 = σVleft

σ6 = σVleft

σ3 = σVright

σ12 = σVleftσ11 = σVright
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Figure 5: Array Aperture Tiling with c = {1, 1, 2, 3, 3, 4, 5, 5, 2, 6, 6, 7, 4, 8, 8, 9, 10, 10, 7, 11, 11, 9, 12, 12}
and σ ={σVleft , σH , σVright , σH , σVright , σVleft , σH , σVleft , σH , σVright , σVright , σVleft}, being

a = 2, b = 2, c = 2 and Q = 12

Σ

αn

βn βQ

αQ

xcnxn

yn

α1

β1

ycn

x

y

Figure 6: Sketh of hexagonal aperture of sub-array arhiteture with feeding network

The loations and orientations of the elementary diamond-shaped tile must be properly optimized to yield the

maximum (total) onverage of the array aperture without leaving hole and to obtain an irregular sub-array

arrangement for minimazing the level of �quantization lobes�.

Hene we have move from a fully populated arhiteture to a lustered arhiteture. This solution has the

advantage to redue the ost, due to dereasing number of ontrol points, but there is a drawbak due to

deterioration of radiation properties, beause less ontrol points mean less degree of freedom to synthesize the

array.

The array fator of lustered array with element spaing dx, dy1 and dy2 is:

AF (θ, φ) =

N∑

n=1

Ine
jk(xnsinθcosφ+ynsinθsinφ)

(11)

with (xn, yn) n = 1, ..., N are the baryenter of a single array element.
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where k = 2π
λ is the wave number, λ is the wavelenght, In is the luster exitations:

In =

Q∑

q=1

αqe
jβqδcnq, n = 1, ..., N (12)

where Q is the number of subarray that overing totally or partially the array surfae, αq and βq are the q− th

sub-array amplitude and phase oe�ients, cn ∈ [1, Q] , n = 1, ..., N is the membership of eah n− th element

of the array to one of the Q subarrays, δcnq is the Kroneker delta funtion equal to δcnq = 1 when the n− th

element belong to the q− th sub-array σq (cn = q), while δcnq = 0 otherwise (cn 6= q). The lustered amplitudes

αq is the average of amplitudes α
(REF )
n , n = 1, ..., N of the referene/ideal fully-populated array that belongs

to the same luster:

αq =

∑N
n=1 α

ref
n δcnq

Dq
, q = 1, ..., Q (13)

where

Dq =

N∑

n=1

δcnq, q = 1, ..., Q (14)

The orresponding phases are:

βq = −k(xqsenθ0cosφ0 + yqsenθ0senφ0), q = 1, ..., Q (15)

where θ0 and φ0 are the pointing diretion angles and the diamonds baryenter positions inside the aperture

are alulated based on baryenter oordinates along x (xn)and along y (yn) of elementary ells that belong to

the tile [Fig.6℄:

xq =
1

Dq

N∑

n=1

xnδcnq and yq =
1

Dq

N∑

n=1

xnδcnq, q = 1, ..., Q (16)

From (11) the power pattern with isotropi radiating elements is:

P (θ, φ) = |AF (θ, φ)|2 (17)

If we onsider real radiating elements, in order to have a lose approximation of the real antenna array pattern,

we have to onsider the average embedded/ative element pattern |EP (θ, φ)| for all radiating element, so the

power pattern beome:

Preal(θ, φ) = |EP (θ, φ)×AFn(θ, φ)|2 (18)

15



3.3 Tiling Theory and Theorems

In this setion, the tiling theorems and theory regarding the exat overage of hexagonal regions with diamond

tiles, are reported.

Tilability Condition: Is the region tileable?

First of all is important to de�ne when it is possible to tile an hexagonal region. Saldanha in states that the

neessary ondition for tileability is: �the blak and white triangles that ompose the hexagonal region (like

Fig.9) must be equal in number �, therefore the strong ondition is:

�Theorem 1: Let R be a triangulated simply onneted bounded region and Σ a �nite set of tile shapes. Let G

be the group with generators orresponding to edges and relations given by boundaries of elements of Σ. Then a

neessary ondition for the tileability of R by translates of elements of Σ is that the word indued by the boundary

of R is trivial in G�.

Helfgott in states the followind theorem:

�The neessary and su�ient ondition for the existene of hexagon with side length (a, b, c, d, e, f) is that

the parameters be nonnegative integers satisfying a a − d = c − f = e − b. The number of upward pointing

triangles minus the number of downward pointing triangles in an (a, b, c, d, e, f) hexagon is a a − d, sine

every lozenge overs one upward pointing triangle and one downward pointing triangle, an (a, b, c, d, e, f)

hexagon an be tiled by lozenges only if a = d and this implies that that the hexagon is an (a, b, c) hexagon.

a, b, c is the length of opposite side of hexagon.�

Cardinality of the solutions spae

It is important to understand how many on�guration is possible to generate. From a semiregular hexagon with

side-lengths a, b, c, a, b, c an be tiled by lozenges aording with the formula:

a∏

i=1

b∏

j=1

c∏

k=1

i+ j + k − 1

i+ j + k − 2
(19)

I have alulate the number of on�gurations assuming a = b = c from (a, b, c) = (1, 1, 1) to (a, b, c) =

(10, 10, 10) as shown in Tab. 2 and Fig. 7.
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(a, b, ) T

1 2
2 20
3 980
4 232848
5 267227532
6 1.47861942× 1012

7 3.94059963× 1016

8 5.05516068× 1021

9 3.12034478× 1027

10 9.26503772× 1033

Table 2: (a, b, c) vs. T, number of tiling configurations

 0
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 30

 40

 50

 60
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 80

 1  2  3  4  5  6  7  8  9  10

lo
g(

T
)

a, b, c

Tiling Configurations

Figure 7: (a, b, c) vs. T, number of tiling configurations

Fig. 7 shows that when a, b,  inrease, the number of tiling on�gurations inreases exponentially.
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3.4 Array Tiling Synthesis Problem

Given an array of N elements positioned at the baryenter of equilateral triangular unit ells ombined into

diamond-like tiles, within an hexagonal shaped aperture, �nd the optimal tiling on�guration c and the orre-

sponding sub-array weights α , β suh that the radiated pattern �ts user-de�ned requirements Φ
(
c, α, β

)
with

the main lobe steered at θ0, φ0.

The starting array to luster is a fully populated arhiteture with referene exitation amplitudes have been

synthesized through an optimal Convex Programming (CP)-based method, with array weights α , β that �ts

the referene mask M (θ, φ; c), while the lustered arhiteture is a sub-optimal solution ompared to referene

one. The goal is to obtain lustered power patter very lose to referene one, to do this the only DoFs is tiling

on�guration. Therefore the objetive is to �nd the tile loations and orientations that minimize the power

pattern area of lustered array outside the power pattern mask M(θ, φ). The mismath between the referene

and tiled amplitude and phase weights is alled mask mathing (green area of Fig.8) and it is represented

with the following ost funtion (eq. 20):

Φ(c, α, β) =

∫ 1

−1

∫ 1

−1

|P (θ, φ; c)−M(θ, φ)| ·H [P (θ, φ; c)−M(θ, φ)]dθdφ (20)

where P (θ, φ; c) is the lustered power pattern de�ned in (17) or (18), M (θ, φ; c) is the referene mask, α =

{αq; q = 1, . . . , Q} is the amplitude oe�ient vetor, β = {βq; q = 1, . . . , Q}is the weight oe�ient vetor,

c = {cn; n = 1, . . . , N} is the lustered vetor and H(·) is the Heaviside funtion (step funtion):

H(x) =

{
1 if x > 0

0 otherwise

The objetive is mask mathing minimization, it means minimize the ost funtion Φ(c, α, β) and the only

degree of freedom to �t the design onstraints de�ned by the power pattern mask is the tile positions within

the antenna aperture, de�ned by the tiling vetor C; this implies that the optimal solution depends on tiling

on�guration, in partiular the best tiling solution is that minimize the ost funtion:

C
opt = arg(mint=1,...,T {Φ(c, α, β)}) (21)
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3.5 Tiling Methodologies

3.5.1 Enumerative Tiling Method (ETM)

If the aperture onsidered is ompletely tileable and it has small size, it is possible to generate an exhaustive

analysis of the solution spae. So it is possible to use ETM to generate all the ombinations to �nd the optimal

solution for �nding the optimal tiling. A key-issue is the generation of all tiling on�gurations, to do this,

the approah desribed in solves this problem. It uses the height funtion to univoally identify a generi t-th

solution c
(t) (t = 1, ..., T ) and it desribes diamond tiles organization (σV , σHleft , σHright ) within the array

aperture A.

Height Funtion Computation

To de�ne the heigh funtion h(·), it is uselful to desribe before the array aperture A. It is omposed by N

elements. Every elements is inside a pixel de�ned as vertexs {vn; n = 0, ..., N} and

edges {en→n±1, en→n±nlattice
x

, en→n±nlattice
x +1, n = 0, ..., N}. Every pixel is olored in blak or white like a

hekerboard pattern. Blak means that the edges for that pixel are oriented ounterlokwise, white means

lokwise (Fig. 9). The height funtion is de�ned on the pixel vertexes {hn = h(vn), n = 0, ..., N}, while the

h-values are alulated on the edge orientations.

The algorithm used to alulate h-values is divided in two step:

• Step 1: Computation of the h-value of the boundary verties of A

Lozenge ase desribed in is equal to domino ase, so onsider only the vertexes on the boudary aperture

(v
(t)
ext ∈ ∂A, v

(t)
ext = {v

(t)
n , n = 1, ..., Next}), starting from an origin vertex v0 ∈ v

(t)
ext whih height funtion

is set to h(v0) = 0 and moving along ∂A lokwise, two ases have to be onsidered:

� If edge belongs to a white ell the height funtion value of the next vertex vn+1 is h(t)(vn+1) =

h(t)(vn) + 1

� If edge belongs to a blak ell the height funtion value of the next vertex vn+1 is h(t)(vn+1) =

h(t)(vn)− 1

The height funtion value on the boundary is independently on the tiling on�guration (∀t ∈ [1, T ]). At

the end of omputation the last vertex is the starting vertex, v0, its height funtion value is equal to the

starting value h(v0) = 0.

• Step 2: Computation of the h-value of the internal verties of A

Selet a vertex that belongs to the set of internal vertexes v
(t)
n ∈ v

(t)
int, v

(t)
int = {v

(t)
n , n = 1, ..., N −Next},

with a neighbor vertex v
(t)
p ∈ [v

(t)

n+nlattice
x

, v
(t)

n+nlattice
x −1

, v
(t)

n−nlattice
x −1

] whih has height funtion already

set h
(t)
p = h(t)(vp). Every tile is omposed by two pixels, blak and white respetively, so the value of all

internal vertexes depend on pixel olour. Starting from vertex vp with know height funtion h(t)(vp) = h
(t)
p ,

the height funtion of neighbor vertexes are determined with the following rule:
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� if ell is white turns around it in a lokwise diretion and there are two di�erent ase:

∗ if ell edge belongs to tile edge, the height funtion of next vertex vp+1 is equal to domino ase:

h
(t)
p+1 = h

(t)
p + 1.

∗ if ell edge doesn't belong to tile edge (it means that ell edge is the tile entral axis) the height

funtion of vp+1 is di�erent to domino ase, for lozenge states: h
(t)
p+1 = h

(t)
p − 2.

� if ell is blak turns around it in a ounterlokwise diretion and there are two di�erent ase:

∗ if ell edge belongs to tile edge, the height funtion of next vertex vp+1 is equal to domino ase:

h
(t)
p+1 = h

(t)
p − 1.

∗ if ell edge doesn't belong to tile edge (it means that ell edge is the tile entral axis) the height

funtion of vp+1 is di�erent to domino ase, for lozenge states: h
(t)
p+1 = h

(t)
p + 2.

Iterate the algorithm for all internal vertexes v
(t)
n ∈ v

(t)
int, v

(t)
int = {v

(t)
n , n = 1, ..., N}.

�
�
�
�

y

x

yn

xn

vn−nlattice
x

ep→n−nlattice
x

en−nlattice
x →n−nlattice

x −1

vp

vn−nlattice
x −1

en−nlattice
x →p

Figure 9: Blak and white hekerboard representation of the array aperture A with pixel verties vn, n =
1, ..., N and edges en→n±1, en→n±nlattice

x
, en→n±nlattice

x +1, n = 0, ..., N

Enumerative Tiling Method (ETM)

This method is used when the aperture dimension is small.

Starting from the height funtion, the proedure to generate the omplete set of tiling on�gurations is based on

the de�nition of tiling words: w
(t) = {w(t)

l : l = 1, ..., L} (t = 1, ..., T ). Eah one orrespond to a on�guration,

c
(t)
, and the lenght of the word is equal to the number of internal vertex (Nint = N −Next) of the aperture A.

Every letter of the word is an integer value alulate from the height funtion, it is di�erent to domino ase, for

lozenge is stated is:

wl =
h
(t)
n − hmin

n

3
,l = 1, ..., L; t = 1, ..., T (22)
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where h
(t)
n is the height funtion of the t-th on�guration (c(t)) for n-th vertex (vn) and hmin

n is the height

funtion of the minimal tiling (cmin) for n-th vertex (vn).

The minimal tiling c
min = c

(1)
is the �rst on�guration; it is obtained when the height funtion has no

maximum value, exept on the aperture boundary ∂A. The algorithm is desribed by Thurston in, it is the

same desribed in used for domino:

• Step 1: Vertex Seletion

Find the boundary vertex, v
(1)
n ∈ v

(1)
ext, n = 1, ..., Next, with the maximum height funtion value: v

(1)
n =

arg
{
maxn=1,...,Next

[
h(1) (vn) ; vn ∈ v

(1)
ext

]}
.

• Step 2: Diamond Tile Plaement

Plae a diamond tile, σV , σHleft
or σHright

, in order to over the maximum height funtion value of the

boundary and without add loal maxima inside the aperture A. There is only a way to do this: the

adjaent vertex of v
(1)
n have to orrespond with those of the newly plaed tile.

• Step 3: Update boundary, aperture and h-value

When tile is plaed, ompute the height funtion of internal vertex overed, in aording with algorithm

desribed in Se.3.5.1. Then update the aperture boundary ∂A← ∂
(
A− σV/Hleft/Hright

)
and the aperture

A←
(
A− σV/Hleft/Hright

)
.

• Step 4: Stop Criterion

Continue to iterate the algorithm from step 1 to 3 until all the aperture is overed and the height funtions

of all internal vertexes are alulated.

The oding of minimal tiling word is always w
(1) = 0 beause h

(t)
n = hmin

n , n = 1, ..., Nint.

The same algorithm is applied for alulating themaximal tiling on�guration as for domino tile. It is obtained

when the height funtion has no minimum value, exept on the aperture boundary ∂A. Therefore the di�erene

is in Step 1 - Vertex Seletion. Beause to obtain in the maximal on�guration the starting vertex is v
(1)
n ∈

v
(1)
ext, n = 1, ..., Next with the minimum height funtion value: v

(1)
n = arg

{
maxn=1,...,Next

[
h(1) (vn) ; vn ∈ v

(1)
ext

]}
.

Thurston algorithm permits to onstrut tiling on�guration only when there are loal maximum on ∂A. To

generate all the aperture tiling, Thurston algorithm have to be reinterpret in order to generate tiling starting

from loal maxima on the interior of A. To solution used exploits Birkho�'s representation theorem for �nite

distributive latties.

Consider a set of vertexes v
(t)
s ∈ v

(t)
int, v

(t)
s = {v(t)s , s = 1, ...,M ; M ≤ Nint} inside the aperture A on whih the

height funtion of v
(t)
s reahs a loal maximum. The set v

(t)
s have to ontains at least one vertex, in this set by

applying a downward/upward �ip permits to obtain a new tiling on�guration. If v
(t)
s ontains more than one

vertex, it is viewes as a olletion of meet-irreduible elements.
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This ideas is formalized withBirkho�'s representation theorem: Any �nite lattie distributive is isomorphi

to the lattie of the ideals of the order of its meet-irreduible elements.

This theorem permits to haraterize the tiling as a olletion of meet-irreduible elements if and only if its

height funtion admits exatly one loal maximum in the interior of A. So the minimal tiling obtained with

Thurston algorithm is the empty ase.

Now the idea is to used a generalized version of Thurston Algorithm to generate all the tiling on�gurations.

The objetive is to over the internal vertexes of A suh that doesn't appear loal maximum in the height

funtion. The solution proposed in uses the meet-irreduible elements with only a vertex with a loal maximum

on height funtion value. This solution undertake that for eah meet-irreduible element exist at least a tiling

with a loal maximum outside the region of meet-irreduible element.

The exhaustive generation algorithm for diamond and it is very similar with domino ase desribed in is divided

in. The algorithm is the following:

• Step 1: Selet height funtion minimum and update tiling word

Determine the loal minimum of height funtion by sanning the assoiated tiling word w
(t)

in bakward

diretion starting from the last letter to the �rst one: h
(t)
i−1 > h

(t)
i , i ∈ [2, ..., Nint − 1], so the loal

minimum is in i-th position. Then update the word by appling an upward �ip in i-th position to obtain

a new word w
(t)
as follows:

w(t+1)
n =

{
w

(t)
n

w
(t)
n + 1

n = 1, ..., i− 1

n = i
(23)

If no vertex is found, it means that w
(t)

enodes the maximal tiling word.

• Step 2: Update height funtion

Compute the new height funtion value from the updated tiling wordw
(t+1)

for the �rst i-th inner vertexes,

it is di�erent from that desribed in for domino tile. In this ase for lozenge is desribe in: h
(t+1)
n =

3 · w(t+1)
n + h

(1)
n , n = 1, ..., i

• Step 3: Feasibility hek

Chek the height funtion di�erene between the n-th vertex its neighbor, it is di�erent from that desribed

in for domino tile. In this ase for lozenge is desribe in: if the ondition

∣∣∣h(t)
n − h

(t)
p

∣∣∣ = {1; 2} is true

ontinue with the next step, otherwise go to Step 1 - Selet height funtion minimum and update tiling

word

• Step 4: New tiling generation

Plae a tile inside the aperture A in aording with rule Step 2 - Computation of the h-value of the

internal verties of A of height funtion omputation algorithm, then over all the aperture following

23



the algorithm used to generate minimal tiling, ompute height funtion value h
(t)
n , n = 1, ..., Nint then

ompute the remaining letters of w
(t)
n , n = i+ 1, ..., Nint using the rule 22.

• Step 5: Stopping riterion

If t = T−1 stop the tiling generation, beause all the possible tiling on�gurations are generated; otherwise

go to Step 1 - Selet height funtion minimum and update tiling word

Finally the optimal solution is found by seleting the on�guration that �ts the requirements (i.e.: minimum

SLL, minimum mask mathing, ...). More details state in Se.3.4.
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3.5.2 Binary-GA Optimization Tiling Method (OTM-BGA)

When the aperture is large, the aperture tiling is obtained through an innovative binary GA. This solution

exploits �shemata� to explore the solution spae for enabling the array syntesis. The key-points of GAs those

justi�ed its e�etive/pro�table are: GA-Shemata, GA-Impliit Parallelism and GA-oding. These three key-

points are here desribed:

• GA-Shemata:

Shemata is a template that desribes hromosome subset with similarities at ertain positions and

shemata assoiated to �good� individuals reprodue faster during the optimization proess. To gen-

erate the shemata, in an important theorem is stated:

�The Shemata Theorem: the expeted number of shemata H at generation t + 1 when using a

anonial GA with serial operator (rossover and mutation) is:

E [m (H, t+ 1)] ≥ m (H, t)

Φ (t)

{
1− pc

δ (H)

1 − l
pdiff (H, t)− o (H) pm

}
” (24)

where:

� E [·] = expetation of number of individuals for shemata H at iteration t+ 1

� m (H, t) = number of instanes for shemata H at iteration t

� Φ (t) = mean �tness of individuals in the population

� pc = rossover probability

� pm = mutation probability

� δ (H) = shemata lenght

� l = shemata string lenght

� pdiff = probability that a parent doesn't math with shemata H

� o (H) = shema order

• GA-Impliit Parallelism:

impliit parallelism refers to the fat that every generation of geneti algorithm not just deals with n

individuals, but the Geneti Algorithm atually manages about O
(
n3

)
models. A single population

member simultaneously belongs to a plethora of shemata.

From the de�nition of shemata and impliit parallelism it is possible to yield the population of geneti

algorithm, but it is di�ult to obtain good shemata from a random generation of initial population for a
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large array. Beause shemata depend on population and to obtain a good population and a good shemata

they have to be hosen from the omplete set of tiling word, but if the array is large it is omputationally

infeasible to generate all the set. So the solution used is a random generation of the population as for

domino tile. To generate the words (population), the rules used for lozenge tile, are the same used for

domino tile:

� Rule 1:

the di�erene between two onseutive letters in the same word is: w
(t)
l − w

(t)
l+1 = {0, ±1} , l =

1, ..., Nint and the di�erene between the same letters of two onseutive tiling word is: w
(t)
l −w

(t+1)
l =

{0, ±1} , l = 1, ..., Nint

� Rule 2:

prove that the letters of the maximal tiling word w
(T )

with the same value belongs to onneted

regions over A

� Rule 3:

the minimal tiling word orrespond to word w
(1) = 0 and the maximal tiling word has all letters

grater/equal than zero: w
(T ) =

{
w

(T )
l , l = 1, ..., Nint

}
, w

(T )
l ≥ 0; therefore all the tiling word

between word mininimum word and maximum word are positive: w
(1)
l ≤ w

(t)
l ≤ w

(T )
l , w

(t)
l ≥ 0, l =

1, ..., Nint

• GA-Coding:

the omputational burden and the ardinality of the solution spae is the same desribed for domino tile:

� omputational burden:

△τΦ × I × U where △τΦ is the CPU-time for a single ost funtion evaluation, I is the number of

iteration and U is the population dimension

� ardinality of the solution spae:

it depends on the number of unknows. To redue the number of unknowns it is preferable to use the

tiling word w
(t)
l , l = 1, ..., Nint rather than the tiling on�guration c

(t)
n , n = 1, ..., N , beause the

number of array elements are less than number of internal lattie point of array: Nint ≤ N .

By exploiting suh guidelines, equal to the ase desribed in, the following innovative optimization strategy has

been implemented based on GA with binary string:

• Step 1: Population Initialization

The �rst individual u(1)
is the minimal tiling word w

(u)
1 = w

(1)
and the last individual is the maximal tiling

word w
(u)
T = w

(T )
. For the individuals from u = 2 to u = U−1 use �Rule 1� and �Rule 3� to inrease by one

the letters that belong to vertex of internal region of the aperture (vn ∈ Aint): w
(u)
l |u=2= w

(u)
l |u=1 +1.

Then exploit �Rule 2� and �Rule 3� to generate all the others individuals. If the individuals generated
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Ũ are less the number of individuals required U
(
Ũ < U

)
. The remaining words are generated using

algorithm for minimal tiling. Otherwise if Ũ > U selet randomly U solutions from Ũ .

• Step 2: Binary Coding

The strings assoiated with population individuals and height funtion have integer value. To enode

integer into binary, the �rst step is to �nd the maximum value of maximal tiling word then ompute the

number of bits to enode that value: nbit = log2
⌈
max

{
w

(T )
}⌉
; �nally the number of bits that enode an

individual is Nbit = Nint × log2
⌈
max

{
w

(T )
}⌉
.

• Step 3: Reprodution Cyle:

� Apply the roulette-wheel seletion, rossover with probability pc and mutation with probability pm

to geneate new individual (tiling word). Generally pc = 90% and pm = 0.1%

� Compute the new height funtion: h
(t)
n = 3 · w(t)

n + h
(1)
n , n = 1, ..., Nint

� Chek the admissibility of the individual using the relation

∣∣∣h(t)
n − h

(t)
p

∣∣∣ = {1; 2}, if it is true the word

(individual) is admissible, otherwise disrad the individual and generate a new one

� Iterate the yle until the population isn't omplete

• Step 4: Fitness Evaluation

� Determine the GA-Population orresponding to word set

� Compute the �tness assoiated to eah individual

� Apply elitism operator to keep the best individual

• Step 5: Convergene Chek

� The optimization stop when the number of iterations (i) are equal to the number of iteration �xed

(I): i = I

� If the ondition is true the onvergene is reahed and c
opt = c

opt
I , otherwise inrease iteration index

i = i+ 1 and go to Step 3 - Reprodution Cyle
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3.5.3 Integer-GA Optimization Tiling Method (OTM-IGA)

One problem of Binary-GA is due to the lenght of string when there are a lot of unknows. For example if the

maximum letter of maximal tiling word is equal to ten, it need four bits to enode every letter, if word lenght

is 37 the total lenght of binary string is 37 × 3 = 111. It is neessary to manage 111 binary value during the

optimization proess, so a lot of time omputational e�ort is needed. One way to redue the string lenght is

to represent letter with integer rather than binary (Tab. 4). This solution is justi�ed from the height funtion

and tiling word value, beause they have integer value.

The main advantages are:

• Avoid onversion of height funtion value from integer to binary,

• Integer oding permits to redue omputational e�ort, as result the simulation period desreases,

• GA operators have more probability to generate the admissible word due to string more shorter than

binary ase.

Word type
Word value

Word lenght Nbit to oding

Binary

001001001001001010010010001001010011011010

001001010011100011010001001010011011010

001001010010010001001001001001

111 bit 3 bit

Integer
1111122211233211234321123321122211111

37 integer value /

Table 4: Integer String vs. Binary String. Group of 3 bits orresponds to one integer letter

The integer based method is similar to binary ase [Se.3.5.2℄; also for the key-points: GA-Shemata and GA-

Impliit Parallelism, the only di�erene is the oding type that permits to simplify the implementation, beause

is similar to binary ase desribed in [Se.3.5.2℄ but without Step 2 - Binary Coding:

• Step 1: Population Initialization

• Step 2: Reprodution Cyle

there are di�erenes between integer and binary ase for rossover and mutation operator due to di�erent

oding type:

� Integer Crossover: this operator ut two strings assoiated with two individuals and merge them

to generate a best individual than the two before, with integer value we have more possibility to

generate a feasible individual than binary ase

� Integer Mutation: this operator hange a value to another in the string of individual, in a partially

random way, this permits to add a new individual to the population, with integer value we have more

possibility to generate a feasible individual than binary ase

• Step 3: Fitness Evaluation

• Step 4: Convergene Chek
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