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1 Introdu
tion

Phased array antennas have signi�
antly improved sin
e the �rst introdu
tion, nowadays they are ubiquity

in every-day life be
ause a they are used for a lot of appli
ations: radar, 
ommuni
ations, remote sensing,

navigation, radiostronomy, automotive, biomedi
al imaging, radiotherapy and a lot of resear
h a
tivity. Modern

phased arrays permits to obtain high radiation performan
e and fast beam s
anning, but this array are expensive.

In the near future phased array will need big-s
ale produ
tion of e
onomi
 antenna systems, so it will be ne
essary

to redu
e the overall 
osts of the array. In a fully populated solution there are a 
ontrol point for ea
h antenna

element. Half of the 
ost is due to the TX/RX module, so to redu
e the 
ost is possible to redu
e the number

of 
ontrol points. Un
onventional ar
hite
ture su
h as sub-arrayed/
lustered, thinned, or sparse arrays have

been proposed instead of fully-populated array. Su
h sub-optimal solutions gaining more attention be
ause of

the most re
ent market requirements on radiation performan
e in modern radar and 
ommuni
ation systems.

In this framework the exa
t tiling of a �nite area with multiple tiles (or sub-array) of two or more radiating

elements, is of great interest in nowadays phased array design. Ea
h tile is feeded with a single 
ontrol point,

so there are less 
ontrol point (TX/RX modules) than fully-populated ar
hite
ture. It permits to redu
e the

number of 
ontrol point by grouping two or more radiating element over a single 
ontrol point, still yielding

satisfa
tory radiation features. Unfortunately a new problem arise, be
ause the periodi
ity introdu
ed by the

quantization of aperture illumination, permits the undesired high sidelobes. Therefore redu
ing the ar
hite
tural


omplexity by partitioning the array aperture in sub-array (diamond tiles) of equal shapes and orientations, in

the power pattern arises undesired grating lobes. To redu
e unwanted lobes it is possible to use aperiodi
 sub-

array or tiles having irregular shapes and irregular lo
ation or an aperiodi
 polyomino-based 
lustering methods.

These possible solutions break the periodi
ity due to the quantization and redu
e the level of undesired lobes.

The 
omplete 
overing of a bounded region, using translated 
opies of tiles, without overlapping, it is well known

in mathemati
al litterature and it is exploited for array design.

A latti
e divides the plane (array aperture) in a small region 
alled fundamental region. Tiling a plane means:


over the entire plane without leaving hole or overlaps by the union of at least two fundamental regions.

Tiling problems are very 
omplex poblems, they are NP-
omplete problems. If simple tiles shapes are 
onsid-

ered, it is possible to know if the aperture is 
ompletely tileable. The method presented in provides an algorithm

for the generation of all existing tilings of a simply 
onne
ted region using domino and lozenge tiles to 
over

re
tangular and hexagonal aperture respe
tively.

On the a
tual state-of-art literature a re
ently solution is to use domino tiles (tiles with at least two square


ells) whi
h have been used for the optimization of small and large antenna aperture by using Exhaustive Tiling

Method (ETM) and Geneti
 Algorithm Optimization Tiling Method (OTM-GA).

The �rst method, ETM, develops an enumerative solution by using mathemati
al tiling theorems and algorithms,

it permits to obtain all the possible tiling 
on�gurations for a given tile shape and aperture. In parti
ular it

is possible to obtain the optimal 
overage, so the optimal solution. By providing as input a fully-populated
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referen
e solution, the algorithm gives as output a solution very 
lose to referen
e one in terms of radiation

performan
e. This algorithm works only for low/medium aperture, be
ause when the array size in
rease, the

possible tiling 
on�gurations in
rease exponentially; so it is 
omputationally demanding to generate all the

possible 
on�gurations.

The se
ond method, namely OTM-GA (Optimization Tiling Method - Geneti
 Algorithm), is able to �nd the

sub-optimal/optimal tiling 
on�guration with an high su

ess-rate by evaluating only a sub-set of the solution

spa
e. GA exploits a set of individuals 
hara
terized by a good geneti
 
ontent in terms of radiation performan
e

de�ned in a

ording to mathemati
al tiling theorems and algorithms. This method is robust be
ause radiation

performan
e 
onverge very 
lose to referen
e ones.

Compared with the state-of-art, this thesis presents some methodologi
al advan
es:

1. In tiling theorems and algorithms are used also for lozenge shaped tiles to 
over hexagonal aperture. The

obje
tive is to apply ETM for low/medium hexagonal aperture array using lozenge tiles.

2. Apply OTM-GA based on binary and integered 
oding to explore a wide solution spa
e for large hexago-

nal aperture by de�ning s
hemata blo
ks to obtain sub-optimal/optimal solution very 
lose to referen
e

solution.

3. Apply a synthesis methodologies on a single element to make a 
omparison between idel and real antenna

element.

The most important novelty in this thesis is the use of hexagonal aperture arrays and OTM-GA based on integer


oding:

• The hexagonal arrangements is 
hosen from many others geometries be
ause it has the best steerable


hara
teristi
s hen
e it permits to redu
e the presen
e of grating lobes. Another reason to use hexagon is

that hexagonal shape 
an be used to tile surfa
es without leaving holes between every hexagon, in order

to 
reate an honey
omb stru
ture. Finally in hexagonal arrays it is possible to obtain nulls more depper

than 
ir
ular array.

• The use of Geneti
 Algorithms is justi�ed by perfoman
e 
ompared with other optimization method, like

Parti
le Swarm Optimization (PSO), GAs are also used in di�erent s
ienti�
 �eld. For example des
ribed

some 
ases: in one example D. E. Golberg has developed algorithms that learns to 
ontrol a gas pipeline

system modeled on the one that 
arries natural gas from the Southwest and Northeast. In another example,

L. Dawis has used similar te
hniques of Golberg to design 
ommuni
ations systems, software's obje
tive

is to 
arry the maximum possible amount of data with the minimum number of transmission line and

swit
hes 
onne
ted them.

In literature di�erent s
ienti�
 paper that talk about geneti
 algorithms applied to ele
tromagneti
 �eld,

antenna array design, tiling with GA-based strategy and the use of geneti
 algorithms are motivated by:

� GAs work with dis
rete parameters

4



� In a solution spa
e with a lot of lo
al minimas, GAs operator as 
rossover and mutation permits to

qui
kly go from a region to another

� The optimization pro
ess is able to deal with a lot of parameters, be
ause the solution spa
e has a

lot of lo
al minimas

� Simple to understand and program

� Useful for a large spa
e of �nite solutions, be
ause GAs permit to obtain the optimal solution

In parti
ular the novelty regard integer 
oding integer 
oding ensure that ea
h 
hromosome is en
oded

with shorter strings than binary 
ase, therefore less 
omputational e�ort.
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2 Variable De�nitions

• Side's lenght of the domain Ld:

Side's lenght of the latti
e/geometry domain measured in λ

• Lenght of two opposite side of re
tangular aperture Lx:

Side's lenght of re
tangular aperture along x axis measured in λ

• Lenght of two opposite side of re
tangular aperture Ly:

Side's lenght of re
tangular aperture along y axis measured in λ

• Number of the points N tot
p :

Number of the points of the latti
e/geometry

• Points along x Mp:

Number of the points along x axis of the latti
e/geometry

• Points along y Np:

Number of the points along y axis of the latti
e/geometry of the latti
e/geometry

• Total number of 
ells N tot
c :

total number of 
ells where to put the elements of the array of the latti
e/geometry

• Number of 
ells along x Mc:

total number of 
ells along x axis of the latti
e/geometry

• Number of 
ells along y Nc:

total number of 
ells along y axis of the latti
e/geometry

• Number of points of the boundary N
(bound)
p :

number of points of the array latti
e/geometry

• Total numbers of elements Ntot:

total number of elements whi
h 
ompose the array

• Number of pattern samples along u dire
tion Nu:

Total number of pattern samples along u dire
tion for ETM software (must be even)

• Number of pattern samples along v dire
tion Nv:

Total number of pattern samples along v dire
tion for ETM software (must be even)

• Weight of SLL wSLL :

weight of SLL for �tness fun
tion
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• Weight of dire
tivity wD :

weight of dire
tivity for �tness fun
tion

• Weight of HPBW azimuth 
ut wazm
HPBW :

weight of Half Power Beamwidth for �tness fun
tion along azimuth dire
tion

• Weight of dire
tivityof HPBW elevation 
ut welv
HPBW :

weight of Half Power Beamwidth for �tness fun
tion along elevation dire
tion

• Weight of dire
tivity wmask :

weight of mask for �tness fun
tion

• Bary
enter along x Bx:

bary
enter of array along x dire
tion

• Bary
enter along y By:

bary
enter of array along y dire
tion

• Varian
e along x σx:

value of array varian
e along x dire
tion

• Varian
e along y σy :

value of array varian
e along y dire
tion

• Element spa
ing along x dx:

value of the spa
ing between two nearest element along x dire
tion

• Element spa
ing along y1 dy1:

value of the spa
ing between two nearest element along y dire
tion when two triangles has a 
ommon side

• Element spa
ing along y2 dy2:

value of the spa
ing between two nearest element along y dire
tion when two triangles has a 
ommon

vertex

• Number of elements for 
ell Nel:

number of elements for ea
h 
ell of latti
e/geometry

• Pointing Dire
tion of θ angle θ0 :

pointing dire
tion of main beam along θ

• Pointing Dire
tion of φ angle φ0 :

pointing dire
tion of main beam along φ
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• Pointing Dire
tion of u = senθcosφ 
oordinate u0 :

pointing dire
tion of main beam along u

• Pointing Dire
tion of v = senθsenφ 
oordinate v0 :

pointing dire
tion of main beam along v

• Length of A side a :

length of two opposite sides A of hexagon measured as adja
ent 
ells

• Length of B side b :

length of two opposite sides B of hexagon measured as adja
ent 
ells

• Length of C side c :

length of two opposite sides C of hexagon measured as adja
ent 
ells

• Length of A side La :

length of two opposite sides A of hexagon measured in λ

• Length of B side Lb :

length of two opposite sides B of hexagon measured in λ

• Length of C side Lc :

length of two opposite sides C of hexagon measured in λ

• Tiling 
on�gurations T :

number of possible tiling 
on�gurations for an exhaustive generation

• Number of unknows Nu:

unknows are the inner points of the array

• Maximum of word max Umax:

upper bound of the word max

• Number of 
hromosome bits Nch:

lenght of the 
hromosome

• Number of bits of integer 
oding Nbit:

number of bits to 
oding integer values in binary values

• Number of trials (seed) Nseed:

number of trials (seed) laun
hed for every simulation, useful to generate pseudo-random numbers
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• Number of individuals NI :

population dimension, it is the set of trial solution, equal to the double of the number of array latti
e

internal points

• Number of �ips Nflips:

number of �ips (rotation) of 180 [deg] of a group of lozenges with a lo
al minimum/maximum in their


enter

• Number of s
hemata Nsch:

number of template that identi�es a subset of strings with similarities at 
ertain �xed string position

• Cross-Over probability pcx:

probability to obtain the best 
hild by using the good features of the 
urrent trial solutions

• Mutation probability pm = 0.01

probability to introdu
e new features

• Diversity Per
entage - d%

per
entage of bits that every word must have di�erent between ea
h word
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3 Mathemati
al Formulation

3.1 Array Geometry

Consider a planar phased array radar with hexagonal aperture dis
retized into equilateral triangular elementary


ells where the aperture dimension is the number of adja
ent triangle for evey side of the hexagon, the number

adja
ent triangle for ea
h side is indi
ated as a, b, c, d, e, f , the e�e
tive lenght (La,b,c,d,e,f) of ea
h side

is equal to the produ
t between the lenght of side of triangular 
ell (L) and the number of adja
ent triangles

a, b, c, d, e, f to every side:

Lγ = L× γ, γ ∈ (a, b, c, d, e, f) (1)

Every 
ell 
ontains in its bary
enter (xn, yn) a radiating element. The arrangement of radianting elements is

due to the shape of elementary 
ells in whi
h the aperture is dis
retized. In parti
ular, triangles are disposed

upward and downward, so there are three di�erent inter-element spa
ing to 
onsider: dx, dy1, dy2[Fig.1℄. To


al
ulate spa
ing we have to 
onsider that the spa
ing along x-axis (dx) is 
onstant between ea
h element,

but along y-axis is di�erent between elements that belongs to a 
ouple of triangles with 
ommon side (dy1) or

with one 
ommon vertex (dy2)[Fig.1℄, then 
ell bary
enter 
oordinates are: xn = L
2 , yn = L

3 ·
√
3
2 , after this


onsiderations the inter-element spa
ing value are:

dx =
L

2
(2)

dy1 =
L√
3

(3)

dy2 = L× 2√
3

(4)

To 
al
ulate the aperture dimension, given the inter-element spa
ing and the number of triangle for ea
h side,

let start from the highest spa
ing dy2. From dy2 4 
al
ulate L with the inverse formula:

L = dy2 ×
√
3

2
(5)

then 
al
ulate the side leght of the hexagon using 1.

As example, if we 
onsider dy2 ≤ 0.5λ, the side lenght obtained is L ≤ 0.43λ, then the number of adja
ent

triangles are: a = b = c = d = e = f = 10, so the side lenght is: Lγ = 0.43λ× 10 = 4.3λ, γ ∈ (a, b, c, d, e, f) .
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Figure 1: Array Latti
e - Intra Element Distan
es

Pile of 
ubes: Hexagon as a 3D box

An hexagon 
an be seen as a big 3-dimensional 
ube with small 3D 
ubes inside, where ea
h lozenge 
orrespond

to a small part inside the entire 3D box, therefore the lozenges are pile of 
ubes inside the hexagon [Fig.2℄.

The hexagon with side lenght (a, b, c, a, b, c) 
an be seen as a 3D box with dimension a × b × c 
omposed

by verti
al and horizontal lozenges. So states that if the hexagon is regular (a = b = c = n) the number of

diamond for ea
h one of the three possible orientation is n2
so the total number of diamond is 3n2

. If hexagon

is irregular (a 6= b 6= c) the 3D stru
ture 
an be seen as a parallelepiped. For every fa
e the number of lozenge

of a �xed orientation is:

• number of array elements:

Nel = 2× (a× c+ b× c+ a× b) (6)

• number of verti
al diamond:

NσV = a× c (7)

• number of horizontal left diamond:

NσHleft = b× c (8)

• number of horizontal right diamond:

NσHright = a× b (9)

• total number of diamond is:

Ndiamond = NσV +NσHleft +NσHright =
Nel

2
(10)
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Figure 2: Pile of 
ubes example
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3.2 Tile-Based Sub-Array Ar
hite
ture

Starting from a fully populated 
ase �lls by N radiating elements Fig.3, where every element is positioned in

the bary
enter of elementary 
ells (Se
.3.1), the amplitude and phase of ea
h element is 
ontrolled by a single

T/R module (N 
ontrol points), but in the ar
hite
ture des
ribed in this se
tion the obje
tive is to redu
e the

number of 
ontrol points, by 
lustering two elements that belong to adja
ent 
ells.

The elementary 
ells of this type of tiling are equilateral triangles, the 
ombination of a 
ouple of elementary


ells those share a side and they permit to obtain a diamond shaped tile, this shape has internal angles of 120

degrees and 60 degrees. There are three di�erent types of orientations: verti
al

(
σV

)
, horizontal-left

(
σHleft

)

and horizontal-right

(
σHright

)
[Fig.4-5℄. Therefore the sub-array ar
hite
ture is 
omposed by

N
2 
ontrol points


omposed by amplitude attenuator (αq) and phase shifter (βq)[Fig.6℄.

xn

Σ

β1

α1

β2

α2

βn

αn

βN−1

αN

βn+1 βN

αn+1 αN−1

yn

y

x

Figure 3: Sket
h of hexagonal aperture of fully populated ar
hite
ture

yn

yq

yn−1

xq = xn x

y
σV

yn
yq

yn−1

x

y

xn−1 xq xn

σVleft σVright

yn
yq

yn−1

x

y

xn−1 xq xn

(a) (b) (
)

Figure 4: Diamond-like tile: (a) Verti
al, (b) Horizontal left, (
) Horizontal right
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yq

xq

σ1 = σVleft

σ9 = σH

σ7 = σH

σ2 = σH

σ4 = σH

σ5 = σVright

σ8 = σVleft

σ6 = σVleft

σ3 = σVright

σ12 = σVleftσ11 = σVright

σ10 = σVright

Figure 5: Array Aperture Tiling with c = {1, 1, 2, 3, 3, 4, 5, 5, 2, 6, 6, 7, 4, 8, 8, 9, 10, 10, 7, 11, 11, 9, 12, 12}
and σ ={σVleft , σH , σVright , σH , σVright , σVleft , σH , σVleft , σH , σVright , σVright , σVleft}, being

a = 2, b = 2, c = 2 and Q = 12

Σ

αn

βn βQ

αQ

xcnxn

yn

α1

β1

ycn

x

y

Figure 6: Sket
h of hexagonal aperture of sub-array ar
hite
ture with feeding network

The lo
ations and orientations of the elementary diamond-shaped tile must be properly optimized to yield the

maximum (total) 
onverage of the array aperture without leaving hole and to obtain an irregular sub-array

arrangement for minimazing the level of �quantization lobes�.

Hen
e we have move from a fully populated ar
hite
ture to a 
lustered ar
hite
ture. This solution has the

advantage to redu
e the 
ost, due to de
reasing number of 
ontrol points, but there is a drawba
k due to

deterioration of radiation properties, be
ause less 
ontrol points mean less degree of freedom to synthesize the

array.

The array fa
tor of 
lustered array with element spa
ing dx, dy1 and dy2 is:

AF (θ, φ) =

N∑

n=1

Ine
jk(xnsinθcosφ+ynsinθsinφ)

(11)

with (xn, yn) n = 1, ..., N are the bary
enter of a single array element.
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where k = 2π
λ is the wave number, λ is the wavelenght, In is the 
luster ex
itations:

In =

Q∑

q=1

αqe
jβqδcnq, n = 1, ..., N (12)

where Q is the number of subarray that 
overing totally or partially the array surfa
e, αq and βq are the q− th

sub-array amplitude and phase 
oe�
ients, cn ∈ [1, Q] , n = 1, ..., N is the membership of ea
h n− th element

of the array to one of the Q subarrays, δcnq is the Krone
ker delta fun
tion equal to δcnq = 1 when the n− th

element belong to the q− th sub-array σq (cn = q), while δcnq = 0 otherwise (cn 6= q). The 
lustered amplitudes

αq is the average of amplitudes α
(REF )
n , n = 1, ..., N of the referen
e/ideal fully-populated array that belongs

to the same 
luster:

αq =

∑N
n=1 α

ref
n δcnq

Dq
, q = 1, ..., Q (13)

where

Dq =

N∑

n=1

δcnq, q = 1, ..., Q (14)

The 
orresponding phases are:

βq = −k(xqsenθ0cosφ0 + yqsenθ0senφ0), q = 1, ..., Q (15)

where θ0 and φ0 are the pointing dire
tion angles and the diamonds bary
enter positions inside the aperture

are 
al
ulated based on bary
enter 
oordinates along x (xn)and along y (yn) of elementary 
ells that belong to

the tile [Fig.6℄:

xq =
1

Dq

N∑

n=1

xnδcnq and yq =
1

Dq

N∑

n=1

xnδcnq, q = 1, ..., Q (16)

From (11) the power pattern with isotropi
 radiating elements is:

P (θ, φ) = |AF (θ, φ)|2 (17)

If we 
onsider real radiating elements, in order to have a 
lose approximation of the real antenna array pattern,

we have to 
onsider the average embedded/a
tive element pattern |EP (θ, φ)| for all radiating element, so the

power pattern be
ome:

Preal(θ, φ) = |EP (θ, φ)×AFn(θ, φ)|2 (18)
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3.3 Tiling Theory and Theorems

In this se
tion, the tiling theorems and theory regarding the exa
t 
overage of hexagonal regions with diamond

tiles, are reported.

Tilability Condition: Is the region tileable?

First of all is important to de�ne when it is possible to tile an hexagonal region. Saldanha in states that the

ne
essary 
ondition for tileability is: �the bla
k and white triangles that 
ompose the hexagonal region (like

Fig.9) must be equal in number �, therefore the strong 
ondition is:

�Theorem 1: Let R be a triangulated simply 
onne
ted bounded region and Σ a �nite set of tile shapes. Let G

be the group with generators 
orresponding to edges and relations given by boundaries of elements of Σ. Then a

ne
essary 
ondition for the tileability of R by translates of elements of Σ is that the word indu
ed by the boundary

of R is trivial in G�.

Helfgott in states the followind theorem:

�The ne
essary and su�
ient 
ondition for the existen
e of hexagon with side length (a, b, c, d, e, f) is that

the parameters be nonnegative integers satisfying a a − d = c − f = e − b. The number of upward pointing

triangles minus the number of downward pointing triangles in an (a, b, c, d, e, f) hexagon is a a − d, sin
e

every lozenge 
overs one upward pointing triangle and one downward pointing triangle, an (a, b, c, d, e, f)

hexagon 
an be tiled by lozenges only if a = d and this implies that that the hexagon is an (a, b, c) hexagon.

a, b, c is the length of opposite side of hexagon.�

Cardinality of the solutions spa
e

It is important to understand how many 
on�guration is possible to generate. From a semiregular hexagon with

side-lengths a, b, c, a, b, c 
an be tiled by lozenges a

ording with the formula:

a∏

i=1

b∏

j=1

c∏

k=1

i+ j + k − 1

i+ j + k − 2
(19)

I have 
al
ulate the number of 
on�gurations assuming a = b = c from (a, b, c) = (1, 1, 1) to (a, b, c) =

(10, 10, 10) as shown in Tab. 2 and Fig. 7.
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(a, b, 
) T

1 2
2 20
3 980
4 232848
5 267227532
6 1.47861942× 1012

7 3.94059963× 1016

8 5.05516068× 1021

9 3.12034478× 1027

10 9.26503772× 1033

Table 2: (a, b, c) vs. T, number of tiling configurations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  2  3  4  5  6  7  8  9  10

lo
g(

T
)

a, b, c

Tiling Configurations

Figure 7: (a, b, c) vs. T, number of tiling configurations

Fig. 7 shows that when a, b, 
 in
rease, the number of tiling 
on�gurations in
reases exponentially.

17



3.4 Array Tiling Synthesis Problem

Given an array of N elements positioned at the bary
enter of equilateral triangular unit 
ells 
ombined into

diamond-like tiles, within an hexagonal shaped aperture, �nd the optimal tiling 
on�guration c and the 
orre-

sponding sub-array weights α , β su
h that the radiated pattern �ts user-de�ned requirements Φ
(
c, α, β

)
with

the main lobe steered at θ0, φ0.

The starting array to 
luster is a fully populated ar
hite
ture with referen
e ex
itation amplitudes have been

synthesized through an optimal Convex Programming (CP)-based method, with array weights α , β that �ts

the referen
e mask M (θ, φ; c), while the 
lustered ar
hite
ture is a sub-optimal solution 
ompared to referen
e

one. The goal is to obtain 
lustered power patter very 
lose to referen
e one, to do this the only DoFs is tiling


on�guration. Therefore the obje
tive is to �nd the tile lo
ations and orientations that minimize the power

pattern area of 
lustered array outside the power pattern mask M(θ, φ). The mismat
h between the referen
e

and tiled amplitude and phase weights is 
alled mask mat
hing (green area of Fig.8) and it is represented

with the following 
ost fun
tion (eq. 20):

Φ(c, α, β) =

∫ 1

−1

∫ 1

−1

|P (θ, φ; c)−M(θ, φ)| ·H [P (θ, φ; c)−M(θ, φ)]dθdφ (20)

where P (θ, φ; c) is the 
lustered power pattern de�ned in (17) or (18), M (θ, φ; c) is the referen
e mask, α =

{αq; q = 1, . . . , Q} is the amplitude 
oe�
ient ve
tor, β = {βq; q = 1, . . . , Q}is the weight 
oe�
ient ve
tor,

c = {cn; n = 1, . . . , N} is the 
lustered ve
tor and H(·) is the Heaviside fun
tion (step fun
tion):

H(x) =

{
1 if x > 0

0 otherwise

The obje
tive is mask mat
hing minimization, it means minimize the 
ost fun
tion Φ(c, α, β) and the only

degree of freedom to �t the design 
onstraints de�ned by the power pattern mask is the tile positions within

the antenna aperture, de�ned by the tiling ve
tor C; this implies that the optimal solution depends on tiling


on�guration, in parti
ular the best tiling solution is that minimize the 
ost fun
tion:

C
opt = arg(mint=1,...,T {Φ(c, α, β)}) (21)
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3.5 Tiling Methodologies

3.5.1 Enumerative Tiling Method (ETM)

If the aperture 
onsidered is 
ompletely tileable and it has small size, it is possible to generate an exhaustive

analysis of the solution spa
e. So it is possible to use ETM to generate all the 
ombinations to �nd the optimal

solution for �nding the optimal tiling. A key-issue is the generation of all tiling 
on�gurations, to do this,

the approa
h des
ribed in solves this problem. It uses the height fun
tion to univo
ally identify a generi
 t-th

solution c
(t) (t = 1, ..., T ) and it des
ribes diamond tiles organization (σV , σHleft , σHright ) within the array

aperture A.

Height Fun
tion Computation

To de�ne the heigh fun
tion h(·), it is uselful to des
ribe before the array aperture A. It is 
omposed by N

elements. Every elements is inside a pixel de�ned as vertexs {vn; n = 0, ..., N} and

edges {en→n±1, en→n±nlattice
x

, en→n±nlattice
x +1, n = 0, ..., N}. Every pixel is 
olored in bla
k or white like a


he
kerboard pattern. Bla
k means that the edges for that pixel are oriented 
ounter
lo
kwise, white means


lo
kwise (Fig. 9). The height fun
tion is de�ned on the pixel vertexes {hn = h(vn), n = 0, ..., N}, while the

h-values are 
al
ulated on the edge orientations.

The algorithm used to 
al
ulate h-values is divided in two step:

• Step 1: Computation of the h-value of the boundary verti
es of A

Lozenge 
ase des
ribed in is equal to domino 
ase, so 
onsider only the vertexes on the boudary aperture

(v
(t)
ext ∈ ∂A, v

(t)
ext = {v

(t)
n , n = 1, ..., Next}), starting from an origin vertex v0 ∈ v

(t)
ext whi
h height fun
tion

is set to h(v0) = 0 and moving along ∂A 
lo
kwise, two 
ases have to be 
onsidered:

� If edge belongs to a white 
ell the height fun
tion value of the next vertex vn+1 is h(t)(vn+1) =

h(t)(vn) + 1

� If edge belongs to a bla
k 
ell the height fun
tion value of the next vertex vn+1 is h(t)(vn+1) =

h(t)(vn)− 1

The height fun
tion value on the boundary is independently on the tiling 
on�guration (∀t ∈ [1, T ]). At

the end of 
omputation the last vertex is the starting vertex, v0, its height fun
tion value is equal to the

starting value h(v0) = 0.

• Step 2: Computation of the h-value of the internal verti
es of A

Sele
t a vertex that belongs to the set of internal vertexes v
(t)
n ∈ v

(t)
int, v

(t)
int = {v

(t)
n , n = 1, ..., N −Next},

with a neighbor vertex v
(t)
p ∈ [v

(t)

n+nlattice
x

, v
(t)

n+nlattice
x −1

, v
(t)

n−nlattice
x −1

] whi
h has height fun
tion already

set h
(t)
p = h(t)(vp). Every tile is 
omposed by two pixels, bla
k and white respe
tively, so the value of all

internal vertexes depend on pixel 
olour. Starting from vertex vp with know height fun
tion h(t)(vp) = h
(t)
p ,

the height fun
tion of neighbor vertexes are determined with the following rule:
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� if 
ell is white turns around it in a 
lo
kwise dire
tion and there are two di�erent 
ase:

∗ if 
ell edge belongs to tile edge, the height fun
tion of next vertex vp+1 is equal to domino 
ase:

h
(t)
p+1 = h

(t)
p + 1.

∗ if 
ell edge doesn't belong to tile edge (it means that 
ell edge is the tile 
entral axis) the height

fun
tion of vp+1 is di�erent to domino 
ase, for lozenge states: h
(t)
p+1 = h

(t)
p − 2.

� if 
ell is bla
k turns around it in a 
ounter
lo
kwise dire
tion and there are two di�erent 
ase:

∗ if 
ell edge belongs to tile edge, the height fun
tion of next vertex vp+1 is equal to domino 
ase:

h
(t)
p+1 = h

(t)
p − 1.

∗ if 
ell edge doesn't belong to tile edge (it means that 
ell edge is the tile 
entral axis) the height

fun
tion of vp+1 is di�erent to domino 
ase, for lozenge states: h
(t)
p+1 = h

(t)
p + 2.

Iterate the algorithm for all internal vertexes v
(t)
n ∈ v

(t)
int, v

(t)
int = {v

(t)
n , n = 1, ..., N}.

�
�
�
�

y

x

yn

xn

vn−nlattice
x

ep→n−nlattice
x

en−nlattice
x →n−nlattice

x −1

vp

vn−nlattice
x −1

en−nlattice
x →p

Figure 9: Bla
k and white 
he
kerboard representation of the array aperture A with pixel verti
es vn, n =
1, ..., N and edges en→n±1, en→n±nlattice

x
, en→n±nlattice

x +1, n = 0, ..., N

Enumerative Tiling Method (ETM)

This method is used when the aperture dimension is small.

Starting from the height funtion, the pro
edure to generate the 
omplete set of tiling 
on�gurations is based on

the de�nition of tiling words: w
(t) = {w(t)

l : l = 1, ..., L} (t = 1, ..., T ). Ea
h one 
orrespond to a 
on�guration,

c
(t)
, and the lenght of the word is equal to the number of internal vertex (Nint = N −Next) of the aperture A.

Every letter of the word is an integer value 
al
ulate from the height fun
tion, it is di�erent to domino 
ase, for

lozenge is stated is:

wl =
h
(t)
n − hmin

n

3
,l = 1, ..., L; t = 1, ..., T (22)
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where h
(t)
n is the height fun
tion of the t-th 
on�guration (c(t)) for n-th vertex (vn) and hmin

n is the height

fun
tion of the minimal tiling (cmin) for n-th vertex (vn).

The minimal tiling c
min = c

(1)
is the �rst 
on�guration; it is obtained when the height fun
tion has no

maximum value, ex
ept on the aperture boundary ∂A. The algorithm is des
ribed by Thurston in, it is the

same des
ribed in used for domino:

• Step 1: Vertex Sele
tion

Find the boundary vertex, v
(1)
n ∈ v

(1)
ext, n = 1, ..., Next, with the maximum height fun
tion value: v

(1)
n =

arg
{
maxn=1,...,Next

[
h(1) (vn) ; vn ∈ v

(1)
ext

]}
.

• Step 2: Diamond Tile Pla
ement

Pla
e a diamond tile, σV , σHleft
or σHright

, in order to 
over the maximum height fun
tion value of the

boundary and without add lo
al maxima inside the aperture A. There is only a way to do this: the

adja
ent vertex of v
(1)
n have to 
orrespond with those of the newly pla
ed tile.

• Step 3: Update boundary, aperture and h-value

When tile is pla
ed, 
ompute the height fun
tion of internal vertex 
overed, in a

ording with algorithm

des
ribed in Se
.3.5.1. Then update the aperture boundary ∂A← ∂
(
A− σV/Hleft/Hright

)
and the aperture

A←
(
A− σV/Hleft/Hright

)
.

• Step 4: Stop Criterion

Continue to iterate the algorithm from step 1 to 3 until all the aperture is 
overed and the height fun
tions

of all internal vertexes are 
al
ulated.

The 
oding of minimal tiling word is always w
(1) = 0 be
ause h

(t)
n = hmin

n , n = 1, ..., Nint.

The same algorithm is applied for 
al
ulating themaximal tiling 
on�guration as for domino tile. It is obtained

when the height fun
tion has no minimum value, ex
ept on the aperture boundary ∂A. Therefore the di�eren
e

is in Step 1 - Vertex Sele
tion. Be
ause to obtain in the maximal 
on�guration the starting vertex is v
(1)
n ∈

v
(1)
ext, n = 1, ..., Next with the minimum height fun
tion value: v

(1)
n = arg

{
maxn=1,...,Next

[
h(1) (vn) ; vn ∈ v

(1)
ext

]}
.

Thurston algorithm permits to 
onstru
t tiling 
on�guration only when there are lo
al maximum on ∂A. To

generate all the aperture tiling, Thurston algorithm have to be reinterpret in order to generate tiling starting

from lo
al maxima on the interior of A. To solution used exploits Birkho�'s representation theorem for �nite

distributive latti
es.

Consider a set of vertexes v
(t)
s ∈ v

(t)
int, v

(t)
s = {v(t)s , s = 1, ...,M ; M ≤ Nint} inside the aperture A on whi
h the

height fun
tion of v
(t)
s rea
hs a lo
al maximum. The set v

(t)
s have to 
ontains at least one vertex, in this set by

applying a downward/upward �ip permits to obtain a new tiling 
on�guration. If v
(t)
s 
ontains more than one

vertex, it is viewes as a 
olle
tion of meet-irredu
ible elements.
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This ideas is formalized withBirkho�'s representation theorem: Any �nite latti
e distributive is isomorphi


to the latti
e of the ideals of the order of its meet-irredu
ible elements.

This theorem permits to 
hara
terize the tiling as a 
olle
tion of meet-irredu
ible elements if and only if its

height fun
tion admits exa
tly one lo
al maximum in the interior of A. So the minimal tiling obtained with

Thurston algorithm is the empty 
ase.

Now the idea is to used a generalized version of Thurston Algorithm to generate all the tiling 
on�gurations.

The obje
tive is to 
over the internal vertexes of A su
h that doesn't appear lo
al maximum in the height

fun
tion. The solution proposed in uses the meet-irredu
ible elements with only a vertex with a lo
al maximum

on height fun
tion value. This solution undertake that for ea
h meet-irredu
ible element exist at least a tiling

with a lo
al maximum outside the region of meet-irredu
ible element.

The exhaustive generation algorithm for diamond and it is very similar with domino 
ase des
ribed in is divided

in. The algorithm is the following:

• Step 1: Sele
t height fun
tion minimum and update tiling word

Determine the lo
al minimum of height fun
tion by s
anning the asso
iated tiling word w
(t)

in ba
kward

dire
tion starting from the last letter to the �rst one: h
(t)
i−1 > h

(t)
i , i ∈ [2, ..., Nint − 1], so the lo
al

minimum is in i-th position. Then update the word by appling an upward �ip in i-th position to obtain

a new word w
(t)
as follows:

w(t+1)
n =

{
w

(t)
n

w
(t)
n + 1

n = 1, ..., i− 1

n = i
(23)

If no vertex is found, it means that w
(t)

en
odes the maximal tiling word.

• Step 2: Update height fun
tion

Compute the new height fun
tion value from the updated tiling wordw
(t+1)

for the �rst i-th inner vertexes,

it is di�erent from that des
ribed in for domino tile. In this 
ase for lozenge is des
ribe in: h
(t+1)
n =

3 · w(t+1)
n + h

(1)
n , n = 1, ..., i

• Step 3: Feasibility 
he
k

Che
k the height fun
tion di�eren
e between the n-th vertex its neighbor, it is di�erent from that des
ribed

in for domino tile. In this 
ase for lozenge is des
ribe in: if the 
ondition

∣∣∣h(t)
n − h

(t)
p

∣∣∣ = {1; 2} is true


ontinue with the next step, otherwise go to Step 1 - Sele
t height fun
tion minimum and update tiling

word

• Step 4: New tiling generation

Pla
e a tile inside the aperture A in a

ording with rule Step 2 - Computation of the h-value of the

internal verti
es of A of height fun
tion 
omputation algorithm, then 
over all the aperture following
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the algorithm used to generate minimal tiling, 
ompute height fun
tion value h
(t)
n , n = 1, ..., Nint then


ompute the remaining letters of w
(t)
n , n = i+ 1, ..., Nint using the rule 22.

• Step 5: Stopping 
riterion

If t = T−1 stop the tiling generation, be
ause all the possible tiling 
on�gurations are generated; otherwise

go to Step 1 - Sele
t height fun
tion minimum and update tiling word

Finally the optimal solution is found by sele
ting the 
on�guration that �ts the requirements (i.e.: minimum

SLL, minimum mask mat
hing, ...). More details state in Se
.3.4.
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3.5.2 Binary-GA Optimization Tiling Method (OTM-BGA)

When the aperture is large, the aperture tiling is obtained through an innovative binary GA. This solution

exploits �s
hemata� to explore the solution spa
e for enabling the array syntesis. The key-points of GAs those

justi�ed its e�e
tive/pro�table are: GA-S
hemata, GA-Impli
it Parallelism and GA-
oding. These three key-

points are here des
ribed:

• GA-S
hemata:

S
hemata is a template that des
ribes 
hromosome subset with similarities at 
ertain positions and

s
hemata asso
iated to �good� individuals reprodu
e faster during the optimization pro
ess. To gen-

erate the s
hemata, in an important theorem is stated:

�The S
hemata Theorem: the expe
ted number of s
hemata H at generation t + 1 when using a


anoni
al GA with serial operator (
rossover and mutation) is:

E [m (H, t+ 1)] ≥ m (H, t)

Φ (t)

{
1− pc

δ (H)

1 − l
pdiff (H, t)− o (H) pm

}
” (24)

where:

� E [·] = expe
tation of number of individuals for s
hemata H at iteration t+ 1

� m (H, t) = number of instan
es for s
hemata H at iteration t

� Φ (t) = mean �tness of individuals in the population

� pc = 
rossover probability

� pm = mutation probability

� δ (H) = s
hemata lenght

� l = s
hemata string lenght

� pdiff = probability that a parent doesn't mat
h with s
hemata H

� o (H) = s
hema order

• GA-Impli
it Parallelism:

impli
it parallelism refers to the fa
t that every generation of geneti
 algorithm not just deals with n

individuals, but the Geneti
 Algorithm a
tually manages about O
(
n3

)
models. A single population

member simultaneously belongs to a plethora of s
hemata.

From the de�nition of s
hemata and impli
it parallelism it is possible to yield the population of geneti


algorithm, but it is di�
ult to obtain good s
hemata from a random generation of initial population for a
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large array. Be
ause s
hemata depend on population and to obtain a good population and a good s
hemata

they have to be 
hosen from the 
omplete set of tiling word, but if the array is large it is 
omputationally

infeasible to generate all the set. So the solution used is a random generation of the population as for

domino tile. To generate the words (population), the rules used for lozenge tile, are the same used for

domino tile:

� Rule 1:

the di�eren
e between two 
onse
utive letters in the same word is: w
(t)
l − w

(t)
l+1 = {0, ±1} , l =

1, ..., Nint and the di�eren
e between the same letters of two 
onse
utive tiling word is: w
(t)
l −w

(t+1)
l =

{0, ±1} , l = 1, ..., Nint

� Rule 2:

prove that the letters of the maximal tiling word w
(T )

with the same value belongs to 
onne
ted

regions over A

� Rule 3:

the minimal tiling word 
orrespond to word w
(1) = 0 and the maximal tiling word has all letters

grater/equal than zero: w
(T ) =

{
w

(T )
l , l = 1, ..., Nint

}
, w

(T )
l ≥ 0; therefore all the tiling word

between word mininimum word and maximum word are positive: w
(1)
l ≤ w

(t)
l ≤ w

(T )
l , w

(t)
l ≥ 0, l =

1, ..., Nint

• GA-Coding:

the 
omputational burden and the 
ardinality of the solution spa
e is the same des
ribed for domino tile:

� 
omputational burden:

△τΦ × I × U where △τΦ is the CPU-time for a single 
ost fun
tion evaluation, I is the number of

iteration and U is the population dimension

� 
ardinality of the solution spa
e:

it depends on the number of unknows. To redu
e the number of unknowns it is preferable to use the

tiling word w
(t)
l , l = 1, ..., Nint rather than the tiling 
on�guration c

(t)
n , n = 1, ..., N , be
ause the

number of array elements are less than number of internal latti
e point of array: Nint ≤ N .

By exploiting su
h guidelines, equal to the 
ase des
ribed in, the following innovative optimization strategy has

been implemented based on GA with binary string:

• Step 1: Population Initialization

The �rst individual u(1)
is the minimal tiling word w

(u)
1 = w

(1)
and the last individual is the maximal tiling

word w
(u)
T = w

(T )
. For the individuals from u = 2 to u = U−1 use �Rule 1� and �Rule 3� to in
rease by one

the letters that belong to vertex of internal region of the aperture (vn ∈ Aint): w
(u)
l |u=2= w

(u)
l |u=1 +1.

Then exploit �Rule 2� and �Rule 3� to generate all the others individuals. If the individuals generated
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Ũ are less the number of individuals required U
(
Ũ < U

)
. The remaining words are generated using

algorithm for minimal tiling. Otherwise if Ũ > U sele
t randomly U solutions from Ũ .

• Step 2: Binary Coding

The strings asso
iated with population individuals and height fun
tion have integer value. To en
ode

integer into binary, the �rst step is to �nd the maximum value of maximal tiling word then 
ompute the

number of bits to en
ode that value: nbit = log2
⌈
max

{
w

(T )
}⌉
; �nally the number of bits that en
ode an

individual is Nbit = Nint × log2
⌈
max

{
w

(T )
}⌉
.

• Step 3: Reprodu
tion Cy
le:

� Apply the roulette-wheel sele
tion, 
rossover with probability pc and mutation with probability pm

to geneate new individual (tiling word). Generally pc = 90% and pm = 0.1%

� Compute the new height fun
tion: h
(t)
n = 3 · w(t)

n + h
(1)
n , n = 1, ..., Nint

� Che
k the admissibility of the individual using the relation

∣∣∣h(t)
n − h

(t)
p

∣∣∣ = {1; 2}, if it is true the word

(individual) is admissible, otherwise dis
rad the individual and generate a new one

� Iterate the 
y
le until the population isn't 
omplete

• Step 4: Fitness Evaluation

� Determine the GA-Population 
orresponding to word set

� Compute the �tness asso
iated to ea
h individual

� Apply elitism operator to keep the best individual

• Step 5: Convergen
e Che
k

� The optimization stop when the number of iterations (i) are equal to the number of iteration �xed

(I): i = I

� If the 
ondition is true the 
onvergen
e is rea
hed and c
opt = c

opt
I , otherwise in
rease iteration index

i = i+ 1 and go to Step 3 - Reprodu
tion Cy
le
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3.5.3 Integer-GA Optimization Tiling Method (OTM-IGA)

One problem of Binary-GA is due to the lenght of string when there are a lot of unknows. For example if the

maximum letter of maximal tiling word is equal to ten, it need four bits to en
ode every letter, if word lenght

is 37 the total lenght of binary string is 37 × 3 = 111. It is ne
essary to manage 111 binary value during the

optimization pro
ess, so a lot of time 
omputational e�ort is needed. One way to redu
e the string lenght is

to represent letter with integer rather than binary (Tab. 4). This solution is justi�ed from the height fun
tion

and tiling word value, be
ause they have integer value.

The main advantages are:

• Avoid 
onversion of height fun
tion value from integer to binary,

• Integer 
oding permits to redu
e 
omputational e�ort, as result the simulation period des
reases,

• GA operators have more probability to generate the admissible word due to string more shorter than

binary 
ase.

Word type
Word value

Word lenght Nbit to 
oding

Binary

001001001001001010010010001001010011011010

001001010011100011010001001010011011010

001001010010010001001001001001

111 bit 3 bit

Integer
1111122211233211234321123321122211111

37 integer value /

Table 4: Integer String vs. Binary String. Group of 3 bits 
orresponds to one integer letter

The integer based method is similar to binary 
ase [Se
.3.5.2℄; also for the key-points: GA-S
hemata and GA-

Impli
it Parallelism, the only di�eren
e is the 
oding type that permits to simplify the implementation, be
ause

is similar to binary 
ase des
ribed in [Se
.3.5.2℄ but without Step 2 - Binary Coding:

• Step 1: Population Initialization

• Step 2: Reprodu
tion Cy
le

there are di�eren
es between integer and binary 
ase for 
rossover and mutation operator due to di�erent


oding type:

� Integer Crossover: this operator 
ut two strings asso
iated with two individuals and merge them

to generate a best individual than the two before, with integer value we have more possibility to

generate a feasible individual than binary 
ase

� Integer Mutation: this operator 
hange a value to another in the string of individual, in a partially

random way, this permits to add a new individual to the population, with integer value we have more

possibility to generate a feasible individual than binary 
ase

• Step 3: Fitness Evaluation

• Step 4: Convergen
e Che
k
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More information on the topi
s of this do
ument 
an be found in the following list of referen
es.
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