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1 Introduction

Phased array antennas have significantly improved since the first introduction, nowadays they are ubiquity
in every-day life because a they are used for a lot of applications: radar, communications, remote sensing,
navigation, radiostronomy, automotive, biomedical imaging, radiotherapy and a lot of research activity. Modern
phased arrays permits to obtain high radiation performance and fast beam scanning, but this array are expensive.
In the near future phased array will need big-scale production of economic antenna systems, so it will be necessary
to reduce the overall costs of the array. In a fully populated solution there are a control point for each antenna
element. Half of the cost is due to the TX/RX module, so to reduce the cost is possible to reduce the number
of control points. Unconventional architecture such as sub-arrayed/clustered, thinned, or sparse arrays have
been proposed instead of fully-populated array. Such sub-optimal solutions gaining more attention because of

the most recent market requirements on radiation performance in modern radar and communication systems.

In this framework the exact tiling of a finite area with multiple tiles (or sub-array) of two or more radiating
elements, is of great interest in nowadays phased array design. Each tile is feeded with a single control point,
so there are less control point (TX/RX modules) than fully-populated architecture. It permits to reduce the
number of control point by grouping two or more radiating element over a single control point, still yielding
satisfactory radiation features. Unfortunately a new problem arise, because the periodicity introduced by the
quantization of aperture illumination, permits the undesired high sidelobes. Therefore reducing the architectural
complexity by partitioning the array aperture in sub-array (diamond tiles) of equal shapes and orientations, in
the power pattern arises undesired grating lobes. To reduce unwanted lobes it is possible to use aperiodic sub-
array or tiles having irregular shapes and irregular location or an aperiodic polyomino-based clustering methods.

These possible solutions break the periodicity due to the quantization and reduce the level of undesired lobes.

The complete covering of a bounded region, using translated copies of tiles, without overlapping, it is well known

in mathematical litterature and it is exploited for array design.

A lattice divides the plane (array aperture) in a small region called fundamental region. Tiling a plane means:

cover the entire plane without leaving hole or overlaps by the union of at least two fundamental regions.

Tiling problems are very complex poblems, they are NP-complete problems. If simple tiles shapes are consid-
ered, it is possible to know if the aperture is completely tileable. The method presented in provides an algorithm
for the generation of all existing tilings of a simply connected region using domino and lozenge tiles to cover

rectangular and hexagonal aperture respectively.

On the actual state-of-art literature a recently solution is to use domino tiles (tiles with at least two square
cells) which have been used for the optimization of small and large antenna aperture by using Exhaustive Tiling

Method (ETM) and Genetic Algorithm Optimization Tiling Method (OTM-GA).

The first method, ETM, develops an enumerative solution by using mathematical tiling theorems and algorithms,
it permits to obtain all the possible tiling configurations for a given tile shape and aperture. In particular it

is possible to obtain the optimal coverage, so the optimal solution. By providing as input a fully-populated



reference solution, the algorithm gives as output a solution very close to reference one in terms of radiation
performance. This algorithm works only for low/medium aperture, because when the array size increase, the
possible tiling configurations increase exponentially; so it is computationally demanding to generate all the

possible configurations.

The second method, namely OTM-GA (Optimization Tiling Method - Genetic Algorithm), is able to find the
sub-optimal /optimal tiling configuration with an high success-rate by evaluating only a sub-set of the solution
space. GA exploits a set of individuals characterized by a good genetic content in terms of radiation performance
defined in according to mathematical tiling theorems and algorithms. This method is robust because radiation
performance converge very close to reference ones.

Compared with the state-of-art, this thesis presents some methodological advances:

1. In tiling theorems and algorithms are used also for lozenge shaped tiles to cover hexagonal aperture. The

objective is to apply ETM for low/medium hexagonal aperture array using lozenge tiles.

2. Apply OTM-GA based on binary and integered coding to explore a wide solution space for large hexago-
nal aperture by defining schemata blocks to obtain sub-optimal/optimal solution very close to reference

solution.

3. Apply a synthesis methodologies on a single element to make a comparison between idel and real antenna

element.

The most important novelty in this thesis is the use of hexagonal aperture arrays and OTM-GA based on integer

coding:

e The hexagonal arrangements is chosen from many others geometries because it has the best steerable
characteristics hence it permits to reduce the presence of grating lobes. Another reason to use hexagon is
that hexagonal shape can be used to tile surfaces without leaving holes between every hexagon, in order
to create an honeycomb structure. Finally in hexagonal arrays it is possible to obtain nulls more depper

than circular array.

e The use of Genetic Algorithms is justified by perfomance compared with other optimization method, like
Particle Swarm Optimization (PSO), GAs are also used in different scientific field. For example described
some cases: in one example D. E. Golberg has developed algorithms that learns to control a gas pipeline
system modeled on the one that carries natural gas from the Southwest and Northeast. In another example,
L. Dawis has used similar techniques of Golberg to design communications systems, software’s objective
is to carry the maximum possible amount of data with the minimum number of transmission line and

switches connected them.

In literature different scientific paper that talk about genetic algorithms applied to electromagnetic field,

antenna array design, tiling with GA-based strategy and the use of genetic algorithms are motivated by:

— GAs work with discrete parameters



In a solution space with a lot of local minimas, GAs operator as crossover and mutation permits to

quickly go from a region to another

The optimization process is able to deal with a lot of parameters, because the solution space has a

lot of local minimas

Simple to understand and program

Useful for a large space of finite solutions, because GAs permit to obtain the optimal solution

In particular the novelty regard integer coding integer coding ensure that each chromosome is encoded

with shorter strings than binary case, therefore less computational effort.



2 Variable Definitions

e Side’s lenght of the domain Lyg:

Side’s lenght of the lattice/geometry domain measured in A
e Lenght of two opposite side of rectangular aperture L,:
Side’s lenght of rectangular aperture along x axis measured in A
e Lenght of two opposite side of rectangular aperture L,:
Side’s lenght of rectangular aperture along y axis measured in A
o Number of the points N}":
Number of the points of the lattice/geometry
e Points along x M,:
Number of the points along x axis of the lattice/geometry
e Points along y Np:
Number of the points along y axis of the lattice/geometry of the lattice/geometry
e Total number of cells Nt
total number of cells where to put the elements of the array of the lattice/geometry

e Number of cells along x M.,:

total number of cells along x axis of the lattice/geometry

e Number of cells along y N,:

total number of cells along y axis of the lattice/geometry
e Number of points of the boundary N,S””“"d):

number of points of the array lattice/geometry
e Total numbers of elements N, :

total number of elements which compose the array
e Number of pattern samples along u direction N,:

Total number of pattern samples along u direction for ETM software (must be even)
e Number of pattern samples along v direction IV,:

Total number of pattern samples along v direction for ETM software (must be even)
e Weight of SLL wsyy, :

weight of SLL for fitness function



Weight of directivity wp :
weight of directivity for fitness function

Weight of HPBW azimuth cut w§/psy :

weight, of Half Power Beamwidth for fitness function along azimuth direction

Weight of directivityof HPBW elevation cut w$% 5y :

weight of Half Power Beamwidth for fitness function along elevation direction

Weight of directivity wpqask :

weight of mask for fitness function

Barycenter along x B,:

barycenter of array along x direction

Barycenter along y By:

barycenter of array along y direction

Variance along x 0,:

value of array variance along x direction

Variance along y oy,:

value of array variance along y direction

Element spacing along x d:

value of the spacing between two nearest element along x direction

Element spacing along y; dy:

value of the spacing between two nearest element along y direction when two triangles has a common side

Element spacing along ya dy»:

value of the spacing between two nearest element along y direction when two triangles has a common
vertex

Number of elements for cell N;:

number of elements for each cell of lattice/geometry

Pointing Direction of 6 angle 0y :
pointing direction of main beam along 6
Pointing Direction of ¢ angle ¢q :

pointing direction of main beam along ¢



Pointing Direction of u = senfcos¢ coordinate ug :

pointing direction of main beam along u

Pointing Direction of v = senflsen¢ coordinate v :

pointing direction of main beam along v

Length of A side a :

length of two opposite sides A of hexagon measured as adjacent cells

Length of B side b :

length of two opposite sides B of hexagon measured as adjacent cells

Length of C side ¢ :

length of two opposite sides C of hexagon measured as adjacent cells

Length of A side L, :

length of two opposite sides A of hexagon measured in A

Length of B side Ly, :

length of two opposite sides B of hexagon measured in A

Length of C side L. :

length of two opposite sides C of hexagon measured in A

Tiling configurations 7" :

number of possible tiling configurations for an exhaustive generation

Number of unknows N,,:

unknows are the inner points of the array

Maximum of word max U,,qs:

upper bound of the word max

Number of chromosome bits N.p:

lenght of the chromosome

Number of bits of integer coding Np;:

number of bits to coding integer values in binary values

Number of trials (seed) Ngeed:

number of trials (seed) launched for every simulation, useful to generate pseudo-random numbers



Number of individuals Ny:

population dimension, it is the set of trial solution, equal to the double of the number of array lattice
internal points

Number of flips N fips:

number of flips (rotation) of 180 [deg] of a group of lozenges with a local minimum/maximum in their
center

Number of schemata Ngp:

number of template that identifies a subset of strings with similarities at certain fixed string position

Cross-Over probability peg:

probability to obtain the best child by using the good features of the current trial solutions

Mutation probability p,, = 0.01

probability to introduce new features

Diversity Percentage - do;

percentage of bits that every word must have different between each word



3 Mathematical Formulation

3.1 Array Geometry

Consider a planar phased array radar with hexagonal aperture discretized into equilateral triangular elementary
cells where the aperture dimension is the number of adjacent triangle for evey side of the hexagon, the number
adjacent triangle for each side is indicated as a, b, ¢, d, e, f, the effective lenght (Lo c.a.¢ ) of each side
is equal to the product between the lenght of side of triangular cell (L) and the number of adjacent triangles

a, b, c, d, e, f toevery side:

Ly=Lx~v, v€(a, b, c d e, f) (1)

Every cell contains in its barycenter (x,,y,) a radiating element. The arrangement of radianting elements is
due to the shape of elementary cells in which the aperture is discretized. In particular, triangles are disposed
upward and downward, so there are three different inter-element spacing to consider: dy, dy1, dy2[Fig.1]. To
calculate spacing we have to consider that the spacing along x-axis (d,) is constant between each element,

but along y-axis is different between elements that belongs to a couple of triangles with common side (d1) or

with one common vertex (dy2)[Fig.1], then cell barycenter coordinates are: =, = %, Yn = % . @, after this
considerations the inter-element spacing value are:

d, = g (2)

dp = 3)

dyp = L x — (4)

V3

To calculate the aperture dimension, given the inter-element spacing and the number of triangle for each side,

let start from the highest spacing dy2. From ds 4 calculate L with the inverse formula:

L:dy2X§ (5)

then calculate the side leght of the hexagon using 1.

As example, if we consider dys < 0.5A, the side lenght obtained is L < 0.43X, then the number of adjacent

triangles are: a =b=c=d =e = f = 10, so the side lenght is: L, =0.43Ax10=4.3\, vy € (a, b, ¢, d, ¢, f).
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Figure 1: Array Lattice - Intra Element Distances

Pile of cubes: Hexagon as a 3D box

An hexagon can be seen as a big 3-dimensional cube with small 3D cubes inside, where each lozenge correspond
to a small part inside the entire 3D box, therefore the lozenges are pile of cubes inside the hexagon [Fig.2].
The hexagon with side lenght (a, b, ¢, a, b, ¢) can be seen as a 3D box with dimension a x b x ¢ composed
by vertical and horizontal lozenges. So states that if the hexagon is regular (¢ = b = ¢ = n) the number of
diamond for each one of the three possible orientation is n? so the total number of diamond is 3n2. If hexagon
is irregular (a # b # ¢) the 3D structure can be seen as a parallelepiped. For every face the number of lozenge

of a fixed orientation is:

e number of array elements:

Nag=2x(axc+bxc+axb) (6)
e number of vertical diamond:
N,v =axc (7)
e number of horizontal left diamond:
NUHlef, bxc (8)

e number of horizontal right diamond:

NUH”-yht =axb (9)
e total number of diamond is:
Nel
Ndiamond = NG'V + No-Hleft + No-Hriyht = T (10)
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3.2 Tile-Based Sub-Array Architecture

Starting from a fully populated case fills by N radiating elements Fig.3, where every element is positioned in
the barycenter of elementary cells (Sec.3.1), the amplitude and phase of each element is controlled by a single
T/R module (N control points), but in the architecture described in this section the objective is to reduce the

number of control points, by clustering two elements that belong to adjacent cells.

The elementary cells of this type of tiling are equilateral triangles, the combination of a couple of elementary
cells those share a side and they permit to obtain a diamond shaped tile, this shape has internal angles of 120
degrees and 60 degrees. There are three different types of orientations: vertical (av), horizontal-left (aHleff)
and horizontal-right (o) [Fig.4-5]. Therefore the sub-array architecture is composed by 4 control points

composed by amplitude attenuator (o) and phase shifter (8,)[Fig.6].

Figure 3: Sketch of hexagonal aperture of fully populated architecture

UWeft O-Vright

Yn
Yq Yq |
Yn—171

Yn—1

Ly = Tp z Tp-1 Lg Tp x Tp-1 Tg Tp x

(a) (b) (c)

Figure 4: Diamond-like tile: (a) Vertical, (b) Horizontal left, (c) Horizontal right
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Figure 5: Array Aperture Tiling withc = {1, 1, 2, 3, 3, 4, 5, 5, 2, 6, 6, 7, 4, 8, 8,9, 10, 10, 7, 11, 11, 9, 12, 12}
and O':{O"/left, GH, O-Vright7 GH, O-Vright7 o—‘/left7 GH, O-‘/left, O'H, o-Vright’ O-Vright7 o—‘/left}, being
a=2,b=2,¢c=2and Q =12

Figure 6: Sketch of hexagonal aperture of sub-array architecture with feeding network

The locations and orientations of the elementary diamond-shaped tile must be properly optimized to yield the
maximum (total) converage of the array aperture without leaving hole and to obtain an irregular sub-array
arrangement for minimazing the level of “quantization lobes”.

Hence we have move from a fully populated architecture to a clustered architecture. This solution has the
advantage to reduce the cost, due to decreasing number of control points, but there is a drawback due to
deterioration of radiation properties, because less control points mean less degree of freedom to synthesize the
array.

The array factor of clustered array with element spacing d,, dy1 and dy» is:
N
AF(Q, ¢) _ Z Inejk(znszn9505¢+ynsznGszn(/)) (11)

n=1

with (zn,,yn) n =1,..., N are the barycenter of a single array element.
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where k = QT“ is the wave number, A is the wavelenght, I,, is the cluster excitations:
Q .
I o= Y agePi. 4, n=1,.,N (12)
g=1

where @) is the number of subarray that covering totally or partially the array surface, oy and 3, are the ¢ —th
sub-array amplitude and phase coefficients, ¢,, € [1,Q], n = 1,..., N is the membership of each n — th element
of the array to one of the () subarrays, d.,, is the Kronecker delta function equal to é.,, = 1 when the n —th

element belong to the ¢ — th sub-array oy (¢, = ¢), while d.,, = 0 otherwise (¢, # ¢). The clustered amplitudes

oy is the average of amplitudes a%REF), n =1,..., N of the reference/ideal fully-populated array that belongs
to the same cluster:
ZN—1 apet s, q
= Sm=ln Tend g 13
CYq Dq 3 ) ) Q ( )
where
N
quz(scnqa (J:L---aQ (14)
n=1
The corresponding phases are:
By = —k(zgsenbocospy + ygsenbpsendo), ¢ =1,...,Q (15)

where 0y and ¢ are the pointing direction angles and the diamonds barycenter positions inside the aperture
are calculated based on barycenter coordinates along x (z,,)and along y (y,) of elementary cells that belong to

the tile [Fig.6]:

1 Y 1 Y
T = oo anécnq and yq = oo anécnq, q=1,...,Q (16)
4 pn=1 4 pn=1

From (11) the power pattern with isotropic radiating elements is:

P(0,¢) = [|AF(0,9)] (17)

If we consider real radiating elements, in order to have a close approximation of the real antenna array pattern,
we have to consider the average embedded/active element pattern |EP(6, ¢)| for all radiating element, so the

power pattern become:

Preal(ov ¢) = |EP(95 ¢) X AFn(95 ¢)|2 (18)

15



3.3 Tiling Theory and Theorems

In this section, the tiling theorems and theory regarding the exact coverage of hexagonal regions with diamond

tiles, are reported.

Tilability Condition: Is the region tileable?

First of all is important to define when it is possible to tile an hexagonal region. Saldanha in states that the
necessary condition for tileability is: “the black and white triangles that compose the hexagonal region (like
Fig.9) must be equal in number”, therefore the strong condition is:

“Theorem 1: Let R be a triangulated simply connected bounded region and X a finite set of tile shapes. Let G
be the group with generators corresponding to edges and relations given by boundaries of elements of . Then a
necessary condition for the tileability of R by translates of elements of 3 is that the word induced by the boundary

of R is trivial in G”.

Helfgott in states the followind theorem:

“The necessary and sufficient condition for the existence of hexagon with side length (a, b, ¢, d, e, f) is that
the parameters be nonnegative integers satisfying a a —d = ¢ — f = e — b. The number of upward pointing
triangles minus the number of downward pointing triangles in an (a, b, ¢, d, e, f) hexagon is a a — d, since
every lozenge covers one upward pointing triangle and one downward pointing triangle, an (a, b, ¢, d, e, f)
hexagon can be tiled by lozenges only if a = d and this implies that that the hexagon is an (a, b, ¢) hexagon.

a, b, cis the length of opposite side of hexagon.”

Cardinality of the solutions space

It is important to understand how many configuration is possible to generate. From a semiregular hexagon with

side-lengths a, b, ¢, a, b, ¢ can be tiled by lozenges according with the formula:

i+j+k—1
T (19

i=1j5=1k=1

I have calculate the number of configurations assuming a = b = ¢ from (a, b, ¢) = (1, 1, 1) to (a, b, ¢) =

(10, 10, 10) as shown in Tab. 2 and Fig. 7.
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[(a,b,0) ]
1 2
2 20
3 980
4 232848
5 267227532
6 1.47861942 x 10'?
7 3.94059963 x 1016
8 5.05516068 x 102!
9 3.12034478 x 10%7
10 9.26503772 x 1033

Table 2: (a, b, ¢) vs. T, number of tiling configurations

Tiling Configurations

80

70

60 -

50

40

log(T)

30 -

20

10

Figure 7: (a, b, ¢) vs. T, number of tiling con figurations

Fig. 7 shows that when a, b, ¢ increase, the number of tiling configurations increases exponentially.
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3.4 Array Tiling Synthesis Problem

Given an array of N elements positioned at the barycenter of equilateral triangular unit cells combined into
diamond-like tiles, within an hexagonal shaped aperture, find the optimal tiling configuration ¢ and the corre-
sponding sub-array weights a , 8 such that the radiated pattern fits user-defined requirements ® (g, a, ﬁ) with

the main lobe steered at 6y, ¢g.

The starting array to cluster is a fully populated architecture with reference excitation amplitudes have been
synthesized through an optimal Convex Programming (CP)-based method, with array weights o« , (8 that fits
the reference mask M (6, ¢; ¢), while the clustered architecture is a sub-optimal solution compared to reference
one. The goal is to obtain clustered power patter very close to reference one, to do this the only DoFs is tiling
configuration. Therefore the objective is to find the tile locations and orientations that minimize the power
pattern area of clustered array outside the power pattern mask M (6, ¢). The mismatch between the reference
and tiled amplitude and phase weights is called mask matching (green area of Fig.8) and it is represented

with the following cost function (eq. 20):
11
b §)= [ [ IPO.050) = M0.0) - HP6.6:0) ~ (0. )b (20)

where P (0, ¢;¢c) is the clustered power pattern defined in (17) or (18), M (0, ¢;¢) is the reference mask, o =
{ag; ¢ =1,...,Q} is the amplitude coefficient vector, f = {B4; ¢ = 1,...,Q}is the weight coefficient vector,

c={cn; n=1,...,N} is the clustered vector and H(-) is the Heaviside function (step function):

H@):{ lifz>0

0 otherwise

The objective is mask matching minimization, it means minimize the cost function ®(c, a, ) and the only
degree of freedom to fit the design constraints defined by the power pattern mask is the tile positions within
the antenna aperture, defined by the tiling vector C; this implies that the optimal solution depends on tiling

configuration, in particular the best tiling solution is that minimize the cost function:

Cort — arg(ming=1,..7{®(c, a, é)}) (21)
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Figure 8: Example of pattern and mask to minimize the cost function
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3.5 Tiling Methodologies
3.5.1 Enumerative Tiling Method (ETM)

If the aperture considered is completely tileable and it has small size, it is possible to generate an exhaustive

analysis of the solution space. So it is possible to use ETM to generate all the combinations to find the optimal

solution for finding the optimal tiling. A key-issue is the generation of all tiling configurations, to do this,

the approach described in solves this problem. It uses the height function to univocally identify a generic t-th
\%

solution ¢ (¢ = 1,...,T) and it describes diamond tiles organization (¥, gHtest, gHriont) within the array

aperture A.

Height Function Computation

To define the heigh function h(-), it is uselful to describe before the array aperture A. It is composed by N
elements. Every elements is inside a pixel defined as vertexs {v,; n =0, ..., N} and

edges {€n—sntl, €nypnlettice; € ypintatticer1, N = 0,...,N}. Every pixel is colored in black or white like a
checkerboard pattern. Black means that the edges for that pixel are oriented counterclockwise, white means
clockwise (Fig. 9). The height function is defined on the pixel vertexes {h, = h(v,), n =0,..., N}, while the

h-values are calculated on the edge orientations.

The algorithm used to calculate h-values is divided in two step:

o Step 1: Computation of the h-value of the boundary vertices of A

Lozenge case described in is equal to domino case, so consider only the vertexes on the boudary aperture
( ezt € 04, vem = {v , m=1,..., Negt }), starting from an origin vertex vy € vﬁ?t which height function

is set to h(vg) = 0 and moving along A clockwise, two cases have to be considered:
— If edge belongs to a white cell the height function value of the next vertex v,y1 is A (v,41) =
h® (v,) + 1
— If edge belongs to a black cell the height function value of the next vertex v,,1 is A" (v,41) =

h® (v,) — 1

The height function value on the boundary is independently on the tiling configuration (V¢ € [1,7T]). At
the end of computation the last vertex is the starting vertex, vg, its height function value is equal to the

starting value h(vy) = 0.

o Step 2: Computation of the h-value of the internal vertices of A

Select a vertex that belongs to the set of internal vertexes v( ) gfz)t, Z(fl)t = {v(t) n = N — Neat},
with a neighbor vertex v(t) € v ff}rnlattice, U'Eth)rnlaf“CEfl’ 7(:) nlattice _ ] which has height function already

set h,(gt) = h(t)(vp). Every tile is composed by two pixels, black and white respectively, so the value of all
internal vertexes depend on pixel colour. Starting from vertex v, with know height function h(®) (vp) = h,(f),

the height function of neighbor vertexes are determined with the following rule:

20



— if cell is white turns around it in a clockwise direction and there are two different case:

* if cell edge belongs to tile edge, the height function of next vertex vp41 is equal to domino case:
t t
h' =h + 1.
x if cell edge doesn’t belong to tile edge (it means that cell edge is the tile central axis) the height

function of v, is different to domino case, for lozenge states: hz(fll = h,(f) -2

— if cell is black turns around it in a counterclockwise direction and there are two different case:

* if cell edge belongs to tile edge, the height function of next vertex vp41 is equal to domino case:
t t
W' =hy — 1.
x if cell edge doesn’t belong to tile edge (it means that cell edge is the tile central axis) the height

function of vy is different to domino case, for lozenge states: hz(fll = h,(f) +2.

(1) ¢ y(®

int?

v — {vg), n=1,..,N}.

Tterate the algorithm for all internal vertexes vy, int B

Y

Yl

(& _plattice
p—rn—mntttee

€nin;ar,ti,ne4)nin;ar,r,me71

\
En—nplattice_, PR

Up nlattice _1 Un nlattice

Figure 9: Black and white checkerboard representation of the array aperture A with pixel vertices v,, n =
1,..., N and edges €n—ntly Ep—ontnlattice; €p_ypplattice 1, 1= o,..., N

Enumerative Tiling Method (ETM)

This method is used when the aperture dimension is small.

Starting from the height funtion, the procedure to generate the complete set of tiling configurations is based on
the definition of tiling words: w(*) = {wl(t) :l=1,...,L} (t=1,...,T). Each one correspond to a configuration,
c®, and the lenght of the word is equal to the number of internal vertex (Nint = N — Nggt) of the aperture A.
Every letter of the word is an integer value calculate from the height function, it is different to domino case, for

lozenge is stated is:

l=1,..,Lt=1,.,T (22)
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where 1 is the height function of the t-th configuration (c*)) for n-th vertex (v,) and k" is the height

function of the minimal tiling (c™™) for n-th vertex (v,).

The minimal tiling ¢ = c¢(!) is the first configuration; it is obtained when the height function has no
maximum value, except on the aperture boundary dA. The algorithm is described by Thurston in, it is the

same described in used for domino:

e Step 1: Vertex Selection

Find the boundary vertex, vr(ll) eEv

arg {mawn:17,,,71\/m [h(l) (vn); vp € Véi)t} }

)

ext’

n =1,..., Negt, with the maximum height function value: uﬁ}’ =

e Step 2: Diamond Tile Placement

H

Place a diamond tile, ¢V, ofiest or gHrisrt in order to cover the maximum height function value of the

boundary and without add local maxima inside the aperture A. There is only a way to do this: the

adjacent vertex of 07(11) have to correspond with those of the newly placed tile.

e Step 3: Update boundary, aperture and h-value

When tile is placed, compute the height function of internal vertex covered, in according with algorithm
described in Sec.3.5.1. Then update the aperture boundary 9A « 9 (A — ¢V/Hiest/Hriant) and the aperture

A «— (A _ O-V/Hleft/Hright)_

e Step 4: Stop Criterion

Continue to iterate the algorithm from step 1 to 3 until all the aperture is covered and the height functions

of all internal vertexes are calculated.

The coding of minimal tiling word is always w(!) = 0 because hslt) =h"™" n=1,.., Nint.

The same algorithm is applied for calculating the maximal tiling configuration as for domino tile. It is obtained
when the height function has no minimum value, except on the aperture boundary 0A. Therefore the difference
is in Step 1 - Vertex Selection. Because to obtain in the maximal configuration the starting vertex is 07(11) €

1) (1)

Veuts M= 1, ..., Negy with the minimum height function value: vy’ = arg {maznzlﬁ___ﬁNm Y (v,); v, € v(l)] }

ext

Thurston algorithm permits to construct tiling configuration only when there are local maximum on 9A. To
generate all the aperture tiling, Thurston algorithm have to be reinterpret in order to generate tiling starting
from local maxima on the interior of A. To solution used exploits Birkhoff’s representation theorem for finite

distributive lattices.

Consider a set of vertexes vgt) € vz(fl)t, vgt) = {vgt), s=1,...M; M < N;,;} inside the aperture A on which the
height function of vgt) reachs a local maximum. The set vgt) have to contains at least one vertex, in this set by
applying a downward /upward flip permits to obtain a new tiling configuration. If vgt) contains more than one

vertex, it is viewes as a collection of meet-irreducible elements.
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This ideas is formalized with Birkhoff’s representation theorem: Any finite lattice distributive is isomorphic

to the lattice of the ideals of the order of its meet-irreducible elements.

This theorem permits to characterize the tiling as a collection of meet-irreducible elements if and only if its
height function admits exactly one local maximum in the interior of A. So the minimal tiling obtained with

Thurston algorithm is the empty case.

Now the idea is to used a generalized version of Thurston Algorithm to generate all the tiling configurations.
The objective is to cover the internal vertexes of A such that doesn’t appear local maximum in the height
function. The solution proposed in uses the meet-irreducible elements with only a vertex with a local maximum
on height function value. This solution undertake that for each meet-irreducible element exist at least a tiling

with a local maximum outside the region of meet-irreducible element.

The exhaustive generation algorithm for diamond and it is very similar with domino case described in is divided

in. The algorithm is the following:

o Step 1: Select height function minimum and update tiling word

Determine the local minimum of height function by scanning the associated tiling word w(*) in backward

direction starting from the last letter to the first one: hz(-t_)1 > h(t), i € [2,...,Nint — 1], so the local

i
minimum is in i-th position. Then update the word by appling an upward flip in i-th position to obtain

a new word w®as follows:

(t) _ :
Wr, n=1..,t—1
WD = { (23)
wg) +1 n=:1

If no vertex is found, it means that w(*) encodes the maximal tiling word.

e Step 2: Update height function

Compute the new height function value from the updated tiling word w(**tDfor the first i-¢th inner vertexes,

it is different from that described in for domino tile. In this case for lozenge is describe in: th +)

3- w,(fH) + h%l), n=1,...,1

e Step 3: Feasibility check

Check the height function difference between the n-th vertex its neighbor, it is different from that described

in for domino tile. In this case for lozenge is describe in: if the condition|h! — hl(f) = {1;2} is true

continue with the next step, otherwise go to Step 1 - Select height function minimum and update tiling

word

e Step 4: New tiling generation

Place a tile inside the aperture A in according with rule Step 2 - Computation of the h-value of the

internal vertices of A of height function computation algorithm, then cover all the aperture following
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the algorithm used to generate minimal tiling, compute height function value hgf ), n = 1,..., Njns then

compute the remaining letters of wg), n=1+1,..., Ny using the rule 22.
e Step 5: Stopping criterion

If t = T'—1 stop the tiling generation, because all the possible tiling configurations are generated; otherwise

go to Step 1 - Select height function minimum and update tiling word

Finally the optimal solution is found by selecting the configuration that fits the requirements (i.e.: minimum

SLL, minimum mask matching, ...). More details state in Sec.3.4.
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3.5.2 Binary-GA Optimization Tiling Method (OTM-BGA)

When the aperture is large, the aperture tiling is obtained through an innovative binary GA. This solution
exploits “schemata’” to explore the solution space for enabling the array syntesis. The key-points of GAs those
justified its effective/profitable are: GA-Schemata, GA-Implicit Parallelism and GA-coding. These three key-

points are here described:

o (GA-Schemata:

Schemata is a template that describes chromosome subset with similarities at certain positions and
schemata associated to “good” individuals reproduce faster during the optimization process. To gen-

erate the schemata, in an important theorem is stated:

“The Schemata Theorem: the expected number of schemata H at generation ¢ + 1 when using a

canonical GA with serial operator (crossover and mutation) is:

m(H,t 6 (H
E[m(H,t+1)]Z%{1—p0%pdiff(H,t)—o(H)pm} ” (24)
where:
— E[] = expectation of number of individuals for schemata H at iteration ¢ + 1

— m(H,t) = number of instances for schemata H at iteration ¢
— <I>—(t) = mean fitness of individuals in the population

— pe = crossover probability

— pm = mutation probability

— ¢ (H) = schemata lenght

[ = schemata string lenght
— pdiff = probability that a parent doesn’t match with schemata H

— o(H) = schema order

o GA-Implicit Parallelism:

implicit parallelism refers to the fact that every generation of genetic algorithm not just deals with n
individuals, but the Genetic Algorithm actually manages about O (n3) models. A single population

member simultaneously belongs to a plethora of schemata.

From the definition of schemata and implicit parallelism it is possible to yield the population of genetic

algorithm, but it is difficult to obtain good schemata from a random generation of initial population for a
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large array. Because schemata depend on population and to obtain a good population and a good schemata
they have to be chosen from the complete set of tiling word, but if the array is large it is computationally
infeasible to generate all the set. So the solution used is a random generation of the population as for
domino tile. To generate the words (population), the rules used for lozenge tile, are the same used for

domino tile:

— Rule 1:

the difference between two consecutive letters in the same word is: wl(t) — wz(j-)1 = {0, £1}, I =

1,..., Nin: and the difference between the same letters of two consecutive tiling word is: wl(t) —wl(tH) =

{0, £1}, I1=1,...,; Nins

— Rule 2:
prove that the letters of the maximal tiling word w(7) with the same value belongs to connected
regions over A

— Rule 3:

the minimal tiling word correspond to word w() = 0 and the mazimal tiling word has all letters
grater/equal than zero: w(7) = {wl(T), =1, ---,Nmt}, wl(T) > 0; therefore all the tiling word
between word mininimum word and maximum word are positive: wl(l) < wl(t) < wl(T), wl(t) >0,1=

1,...,Nint

e GA-Coding:

the computational burden and the cardinality of the solution space is the same described for domino tile:

— computational burden:

A1p x I x U where A1g is the CPU-time for a single cost function evaluation, I is the number of

iteration and U is the population dimension

— cardinality of the solution space:

it depends on the number of unknows. To reduce the number of unknowns it is preferable to use the
tiling word wl(t), Il =1,..., Njp rather than the tiling configuration cg), n = 1,...,N, because the

number of array elements are less than number of internal lattice point of array: N;,: < N.

By exploiting such guidelines, equal to the case described in, the following innovative optimization strategy has

been implemented based on GA with binary string:

e Step 1: Population Initialization

The first individual u( is the minimal tiling word w§“> = w1 and the last individual is the mazimal tiling

) = w(T). For the individuals from u = 2 to u = U—1 use “Rule 1” and “Rule 3” to increase by one

word W%
the letters that belong to vertex of internal region of the aperture (v, € Ain:): wl(“) lu—2= wl(”) lu=1 +1.

Then exploit “Rule 2” and “Rule 3” to generate all the others individuals. If the individuals generated
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U are less the number of individuals required U ([7 <U ) The remaining words are generated using

algorithm for minimal tiling. Otherwise if U > U select randomly U solutions from U.

e Step 2: Binary Coding

The strings associated with population individuals and height function have integer value. To encode
integer into binary, the first step is to find the maximum value of mazimal tiling word then compute the
number of bits to encode that value: ny; = logs [maz {w™)}]; finally the number of bits that encode an

individual is Ny;y = Nynt x logs [maz {w(T)}].

e Step 3: Reproduction Cycle:

Apply the roulette-wheel selection, crossover with probability p. and mutation with probability p,,

to geneate new individual (tiling word). Generally p. = 90% and p,,, = 0.1%

Compute the new height function: hg) =3 wg) + h%l), n=1,.., Nin

R — hl(f) = {1;2}, if it is true the word

Check the admissibility of the individual using the relation

(individual) is admissible, otherwise discrad the individual and generate a new one

Iterate the cycle until the population isn’t complete
e Step 4: Fitness Evaluation

— Determine the GA-Population corresponding to word set
— Compute the fitness associated to each individual

— Apply elitism operator to keep the best individual
e Step 5: Convergence Check

— The optimization stop when the number of iterations (i) are equal to the number of iteration fixed
(I):i=1
— If the condition is true the convergence is reached and ¢ = ¢, otherwise increase iteration index

1=1+ 1 and go to Step 3 - Reproduction Cycle
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3.5.3 Integer-GA Optimization Tiling Method (OTM-IGA)

One problem of Binary-GA is due to the lenght of string when there are a lot of unknows. For example if the
maximum letter of maximal tiling word is equal to ten, it need four bits to encode every letter, if word lenght
is 37 the total lenght of binary string is 37 x 3 = 111. It is necessary to manage 111 binary value during the
optimization process, so a lot of time computational effort is needed. One way to reduce the string lenght is
to represent letter with integer rather than binary (Tab. 4). This solution is justified from the height function

and tiling word value, because they have integer value.
The main advantages are:
e Avoid conversion of height function value from integer to binary,
e Integer coding permits to reduce computational effort, as result the simulation period descreases,

e GA operators have more probability to generate the admissible word due to string more shorter than

binary case.

| Word type | Word value | Word lenght | Npit to coding |
001001001001001010010010001001010011011010
Binary 001001010011100011010001001010011011010 111 bit 3 bit
001001010010010001001001001001
Integer 1111122211233211234321123321122211111 37 integer value /

Table 4: Integer String vs. Binary String. Group of 3 bits corresponds to one integer letter

The integer based method is similar to binary case [Sec.3.5.2]; also for the key-points: GA-Schemata and GA-
Implicit Parallelism, the only difference is the coding type that permits to simplify the implementation, because

is similar to binary case described in [Sec.3.5.2] but without Step 2 - Binary Coding:

e Step 1: Population Initialization

e Step 2: Reproduction Cycle
there are differences between integer and binary case for crossover and mutation operator due to different

coding type:

— Integer Crossover: this operator cut two strings associated with two individuals and merge them
to generate a best individual than the two before, with integer value we have more possibility to

generate a feasible individual than binary case

— Integer Mutation: this operator change a value to another in the string of individual, in a partially
random way, this permits to add a new individual to the population, with integer value we have more

possibility to generate a feasible individual than binary case
e Step 3: Fitness FEvaluation

e Step 4: Convergence Check
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More information on the topics of this document can be found in the following list of references.
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