# A Multi-Resolution Approach for *BCS*-Based Imaging of Sparse Scatterers

N. Anselmi, L. Poli, G. Oliveri, and A. Massa

# Abstract

In this work, a novel Bayesian compressive sensing (*BCS*)-based microwave imaging method is proposed. The developed technique suitably combines the regularization properties of *CS* techniques with those of the iterative multi-scale approach (*IMSA*), in order to exploit the progressively acquired information on the scatterer location and size and improve the overall accuracy of the retrieved images. Toward this end, an innovative information-driven relevance vector machine (*RVM*) has been developed. Some preliminary results are shown to verify the effectiveness of the proposed *IMSA-BCS* strategy.

## **1** Mathematical Formulation

Let us consider an inaccessible investigation domain  $\Lambda$  irradiated by a set of incident transverse-magnetic planes  $E_{inc}^{v}(\mathbf{r}^{v}), v = 1, ..., V$ , impinging from the angular directions  $\theta^{v} = \frac{2\pi}{V}(v-1)$ , being V the number of views. In this working scenario, the scattered field  $E_{scatt}^{v}(\mathbf{r}_{s}^{v}), s = 1, ..., S$ , is supposed to be measured through a set of S sensors equally displaced on a circular observation domain  $\Theta$ , external to the investigation domain  $(\Lambda \cap \Theta = 0)$ , having radius  $\rho$ . The exact location of the sensors are identified by the position vector  $\mathbf{r}_{s}^{v} = (\rho \cos \theta_{s}^{v} \sin \theta_{s}^{v})$ , being  $\theta_{s}^{v} = \theta^{v} + \frac{2\pi}{S}(s-1)$ .

This scattered field is known to be dependent on the equivalent currents  $J_{eq}^{v}(\mathbf{r})$  generated in the support of the unknown scatterers placed into the domain  $\Lambda$ , according to the *data equation* 

$$E_{scatt}^{v}\left(\mathbf{r}_{s}^{v}\right) = -k_{0}^{2} \int_{\Lambda} J_{eq}^{v}\left(\mathbf{r}'\right) G\left(\mathbf{r}_{s}^{v}/\mathbf{r}'\right) \tag{1}$$

where  $G(\mathbf{r}_s^v/\mathbf{r}')$  is the Green's function in the free space and  $k_0 = \omega \sqrt{\varepsilon_0 \mu_0}$ . The material properties of the investigation domain  $\Lambda$  in terms of relative dielectric permittivity  $\varepsilon_r(\mathbf{r})$  and electric conductivity  $\sigma(\mathbf{r})$  are described by means of the object function

$$\tau \left( \mathbf{r} \right) = \varepsilon_r \left( \mathbf{r} \right) - \varepsilon_0 - \frac{\sigma \left( \mathbf{r} \right)}{2\pi f \varepsilon_0} \tag{2}$$

f being the frequency of the TM plane wave.

In order to numerically deal with (1), the investigation domain is discretized into N sub-domains (cells), providing the matrix form of

$$\mathbf{E}^{v} = \mathbf{G} \mathbf{J}_{eq}^{v} + \mathbf{N}^{v} \tag{3}$$

**G** being the Green's matrix and  $\mathbf{N}^v$  a zero mean additive Gaussian noise vector of variance  $\sigma^2$ . The dielectric features of the N sub-domains described through the discretized form of the object function  $\tau$  are then retrieved through the following iterative strategy which combines a multi-resolution approach and the *BCS* method, aimed to maximize the a-posteriori probability of the equivalent sources given the scattered field as:

$$\widehat{\mathbf{J}}_{eq}^{v} = \arg\left\{\max\left[\mathcal{P}\left(\mathbf{J}_{eq}^{v} \middle| \mathbf{E}_{scatt}^{v}\right)\right]\right\}, \qquad v = 1, ..., V$$
(4)

More in detail, the algorithms works as follows:

- 1. Initialization: Definition of input parameters of the BCS problem, namely the initial estimation of the noise on the scattered data,  $\sigma_{init}^2$ , the convergence parameter,  $\gamma$ , and the parameter related to the stopping criterion of the IMSA,  $\chi$ . Set the region of interest equal to the whole domain  $\mathcal{D}^{(1)} = \Lambda$ ;
- 2. BCS inversion via "Constrained-RVM":
  - (a) increase of the iteration index: i = i + 1;
  - (b) solution of the BCS problem within the Region of Interest (RoI)  $\mathcal{D}^{(i-1)}$  defined at the (i-1)-th step,

by maximizing the following cost function:

$$\ell\left(\mathbf{a}^{v}\right) = -0.5\left[2S\log\left(2\pi\right) + \log\left(\mathbf{C}\right) + \left(\mathbf{E}_{scatt}^{v}\right)^{T}\mathbf{C}^{-1}\left(\mathbf{E}_{scatt}^{v}\right)\right], \qquad v = 1, ..., V$$
(5)

where  $\mathbf{C} = \sigma^2 \mathbf{I} + \mathbf{G} \left[ diag \left( \mathbf{a}^v \right) \right]^{-1} \mathbf{G}^T$  and being  $\mathbf{a}^v$  the hyperparameter vector whose entries corresponding to the cells out of the *RoI*  $\mathcal{D}^{(i-1)}$  are forced to  $\infty$ ;

#### 3. Equivalent Current Retrieval:

Computation of the equivalent currents starting from the hyperparameter vector  $\mathbf{a}^v$  according to:

$$\mathbf{J}_{eq}^{v} = \frac{1}{\sigma^{2}} \left[ \frac{\mathbf{G}^{T} \mathbf{G}}{\sigma^{2}} diag\left(\mathbf{a}^{v}\right) \right]^{-1} \mathbf{G}^{T} \mathbf{E}_{scatt}^{v}, \qquad v = 1, ..., V$$
(6)

#### 4. Features' Retrieval:

Reconstruction of the material properties of the investigation domain taking advantage from the first order Born approximation through

$$\tau\left(\mathbf{r}_{n}^{(i)}\right) = \frac{1}{V} \sum \frac{\mathbf{J}_{eq}^{v}\left(\mathbf{r}_{n}^{(i)}\right)}{\mathbf{E}_{inc}^{v}\left(\mathbf{r}_{n}^{(i)}\right)}, \qquad n = 1, ..., N$$
(7)

being  $\mathbf{r}_n^{(i)}$  the barycenter of the n-th cell within the *RoI*  $\mathcal{D}^{(i-1)}$ ;

#### 5. Convergence Check:

Definition of the new RoI  $\mathcal{D}^{(i)}$  according to the contrast function distribution and evaluation of the following termination condition:

$$\left(\frac{L^{(i-1)} - L^{(i)}}{L^{(i)}}\right) < \chi \tag{8}$$

being  $L^{(i)}$  the side of the *RoI*  $\mathcal{D}^{(i)}$ . If such a condition is met, then stop the iterative process, otherwise go to step 2.

# 2 Preliminary Numerical Assessment

### **2.1** L-shaped Object, $\ell = 1.5\lambda$

#### Test Case Description

#### Direct solver:

- Side of the investigation domain:  $L = 6.0\lambda$
- Cubic domain divided in  $\sqrt{D} \times \sqrt{D}$  cells
- Number of cells for the direct solver: D = 1600 (discretization =  $\lambda/10$ )

#### Investigation domain:

- Cubic domain divided in  $\sqrt{N} \times \sqrt{N}$  cells
- Number of cells for the inversion:
  - First Step IMSA:  $N^{(1)} = 100$  (discretization =  $\lambda/10$ )
  - Following Steps IMSA:  $N^{(i)}$  not fixed, defined according to the estimated RoI  $\mathcal{D}^{(i)}$

#### Measurement domain:

- Total number of measurements: M = 60
- Measurement points placed on circles of radius  $\rho = 4.5\lambda$

#### Sources:

- Plane waves
- Number of views: V = 60;  $\theta_{inc}^v = 0^\circ + (v 1) \times (360/V)$
- Amplitude: A = 1.0
- Frequency:  $F = 300 \text{ MHz} (\lambda = 1)$

#### Background:

- $\varepsilon_r = 1.0$
- $\sigma = 0 \, [\mathrm{S/m}]$

#### Scatterer

- L-shaped object,  $\ell = 1.5\lambda$
- $\varepsilon_r \in \{1.01, 1.02, 1.04, 1.05, 1.06, 1.08, 1.10, 1.15, 1.20\}$
- $\sigma = 0 [S/m]$



Figure 1: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.02$  - (a) Actual profile and (b)-(o) IMSA-BCS reconstructed profiles for (b)(e)(h) SNR = 20 [dB], (c)(f)(i) SNR = 10 [dB] and (d)(g)(l) SNR = 5 [dB] at the step (b)-(d) S = 1, (e)-(g) S = 2, and (h)-(l) S = 3.

|                                                             | SNR = 50 dB                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                |                                                                                                                                             |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                             | S = 1                                                                                                                                                 | S=2                                                                                                                                                           | S=3                                                                                                                                                            | S = 4                                                                                                                                       |  |  |
| $\xi_{tot}$                                                 | $9.01\times10^{-4}$                                                                                                                                   | $5.09\times10^{-4}$                                                                                                                                           | $5.64\times10^{-4}$                                                                                                                                            | $5.64\times10^{-4}$                                                                                                                         |  |  |
| $\xi_{int}$                                                 | $1.20\times 10^{-2}$                                                                                                                                  | $8.97\times10^{-3}$                                                                                                                                           | $1.04\times 10^{-2}$                                                                                                                                           | $1.04\times 10^{-2}$                                                                                                                        |  |  |
| $\xi_{ext}$                                                 | $5.30 	imes 10^{-4}$                                                                                                                                  | $2.29\times 10^{-4}$                                                                                                                                          | $2.39\times 10^{-4}$                                                                                                                                           | $2.39\times 10^{-4}$                                                                                                                        |  |  |
|                                                             |                                                                                                                                                       | SNR =                                                                                                                                                         | = 20 <i>dB</i>                                                                                                                                                 |                                                                                                                                             |  |  |
|                                                             | S = 1                                                                                                                                                 | S=2                                                                                                                                                           | S=3                                                                                                                                                            | S = 4                                                                                                                                       |  |  |
| $\xi_{tot}$                                                 | $9.09 \times 10^{-4}$                                                                                                                                 | $5.21 \times 10^{-4}$                                                                                                                                         | $4.85\times10^{-4}$                                                                                                                                            | $5.72 \times 10^{-4}$                                                                                                                       |  |  |
| $\xi_{int}$                                                 | $1.21\times 10^{-2}$                                                                                                                                  | $9.18 \times 10^{-3}$                                                                                                                                         | $8.73 \times 10^{-3}$                                                                                                                                          | $1.04\times 10^{-2}$                                                                                                                        |  |  |
| $\xi_{ext}$                                                 | $5.34 	imes 10^{-4}$                                                                                                                                  | $2.35 	imes 10^{-4}$                                                                                                                                          | $2.13 	imes 10^{-4}$                                                                                                                                           | $2.47\times 10^{-4}$                                                                                                                        |  |  |
| -                                                           |                                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                                |                                                                                                                                             |  |  |
|                                                             |                                                                                                                                                       | SNR =                                                                                                                                                         | = 10 <i>dB</i>                                                                                                                                                 |                                                                                                                                             |  |  |
|                                                             | S = 1                                                                                                                                                 | SNR =<br>S = 2                                                                                                                                                | = 10dB $S = 3$                                                                                                                                                 | S = 4                                                                                                                                       |  |  |
| ξtot                                                        | S = 1<br>9.38 × 10 <sup>-4</sup>                                                                                                                      | $SNR = $ $S = 2$ $5.18 \times 10^{-4}$                                                                                                                        | = $10dB$<br>S = 3<br>$4.69 \times 10^{-4}$                                                                                                                     | $S = 4$ $5.42 \times 10^{-4}$                                                                                                               |  |  |
| $\xi_{tot}$<br>$\xi_{int}$                                  | S = 1<br>$9.38 \times 10^{-4}$<br>$1.22 \times 10^{-2}$                                                                                               | SNR = 0<br>S = 2<br>$5.18 \times 10^{-4}$<br>$8.85 \times 10^{-3}$                                                                                            | = $10dB$<br>S = 3<br>$4.69 \times 10^{-4}$<br>$8.26 \times 10^{-3}$                                                                                            | S = 4<br>$5.42 \times 10^{-4}$<br>$1.01 \times 10^{-2}$                                                                                     |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$                               | S = 1<br>9.38 × 10 <sup>-4</sup><br>1.22 × 10 <sup>-2</sup><br>5.56 × 10 <sup>-4</sup>                                                                | SNR =<br>S = 2<br>$5.18 \times 10^{-4}$<br>$8.85 \times 10^{-3}$<br>$2.42 \times 10^{-4}$                                                                     | = $10dB$<br>S = 3<br>$4.69 \times 10^{-4}$<br>$8.26 \times 10^{-3}$<br>$2.12 \times 10^{-4}$                                                                   | S = 4<br>5.42 × 10 <sup>-4</sup><br>1.01 × 10 <sup>-2</sup><br>2.24 × 10 <sup>-4</sup>                                                      |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{ext}}$ | S = 1<br>9.38 × 10 <sup>-4</sup><br>1.22 × 10 <sup>-2</sup><br>5.56 × 10 <sup>-4</sup>                                                                | SNR =<br>S = 2<br>$5.18 \times 10^{-4}$<br>$8.85 \times 10^{-3}$<br>$2.42 \times 10^{-4}$<br>SNR =                                                            | = $10dB$<br>S = 3<br>$4.69 \times 10^{-4}$<br>$8.26 \times 10^{-3}$<br>$2.12 \times 10^{-4}$<br>= $5dB$                                                        | S = 4<br>5.42 × 10 <sup>-4</sup><br>1.01 × 10 <sup>-2</sup><br>2.24 × 10 <sup>-4</sup>                                                      |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{ext}}$ | S = 1<br>$9.38 \times 10^{-4}$<br>$1.22 \times 10^{-2}$<br>$5.56 \times 10^{-4}$<br>S = 1                                                             | SNR =<br>S = 2<br>$5.18 \times 10^{-4}$<br>$8.85 \times 10^{-3}$<br>$2.42 \times 10^{-4}$<br>SNR =<br>S = 2                                                   | = $10dB$<br>S = 3<br>$4.69 \times 10^{-4}$<br>$8.26 \times 10^{-3}$<br>$2.12 \times 10^{-4}$<br>= $5dB$<br>S = 3                                               | S = 4<br>5.42 × 10 <sup>-4</sup><br>1.01 × 10 <sup>-2</sup><br>2.24 × 10 <sup>-4</sup><br>S = 4                                             |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | S = 1<br>9.38 × 10 <sup>-4</sup><br>1.22 × 10 <sup>-2</sup><br>5.56 × 10 <sup>-4</sup><br>S = 1<br>9.73 × 10 <sup>-4</sup>                            | SNR =<br>S = 2<br>$5.18 \times 10^{-4}$<br>$8.85 \times 10^{-3}$<br>$2.42 \times 10^{-4}$<br>SNR =<br>S = 2<br>$5.31 \times 10^{-4}$                          | = $10dB$<br>S = 3<br>$4.69 \times 10^{-4}$<br>$8.26 \times 10^{-3}$<br>$2.12 \times 10^{-4}$<br>= $5dB$<br>S = 3<br>$4.34 \times 10^{-4}$                      | $S = 4$ $5.42 \times 10^{-4}$ $1.01 \times 10^{-2}$ $2.24 \times 10^{-4}$ $S = 4$ $4.34 \times 10^{-4}$                                     |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | S = 1<br>9.38 × 10 <sup>-4</sup><br>1.22 × 10 <sup>-2</sup><br>5.56 × 10 <sup>-4</sup><br>S = 1<br>9.73 × 10 <sup>-4</sup><br>1.22 × 10 <sup>-2</sup> | SNR =<br>S = 2<br>$5.18 \times 10^{-4}$<br>$8.85 \times 10^{-3}$<br>$2.42 \times 10^{-4}$<br>SNR =<br>S = 2<br>$5.31 \times 10^{-4}$<br>$8.84 \times 10^{-3}$ | = 10dB<br>S = 3<br>$4.69 \times 10^{-4}$<br>$8.26 \times 10^{-3}$<br>$2.12 \times 10^{-4}$<br>= 5dB<br>S = 3<br>$4.34 \times 10^{-4}$<br>$7.44 \times 10^{-3}$ | S = 4<br>$5.42 \times 10^{-4}$<br>$1.01 \times 10^{-2}$<br>$2.24 \times 10^{-4}$<br>S = 4<br>$4.34 \times 10^{-4}$<br>$7.44 \times 10^{-3}$ |  |  |

Table I: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.02$  - Reconstruction errors: total  $(\xi_{tot})$ , internal  $(\xi_{int})$  and external  $(\xi_{ext})$  errors.

|           | SNR = 50dB |       |         |       |  |
|-----------|------------|-------|---------|-------|--|
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.50  | 1.50    | 1.50  |  |
| $N^{(S)}$ | 100        | 148   | 148     | 148   |  |
| $Q^{(S)}$ | 100        | 64    | 25      | 25    |  |
|           |            | SNR = | = 20 dB |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.50  | 1.50    | 1.50  |  |
| $N^{(S)}$ | 100        | 148   | 148     | 148   |  |
| $Q^{(S)}$ | 100        | 64    | 36      | 25    |  |
|           |            | SNR = | = 10 dB |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.50  | 1.50    | 1.50  |  |
| $N^{(S)}$ | 100        | 175   | 175     | 175   |  |
| $Q^{(S)}$ | 100        | 100   | 36      | 25    |  |
|           |            | SNR   | = 5dB   |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 175   | 175     | 175   |  |
| $Q^{(S)}$ | 100        | 100   | 36      | 36    |  |
|           |            |       |         |       |  |

Table II: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.02$  - Investigation domain parameters: restricted investigation domain size  $L^{(S)}$ , total number of cells  $N^{(S)}$  and number of cells within the restricted domain size  $Q^{(S)}$ .



Figure 2: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.05$  - (a) Actual profile and (b)-(o) IMSA-BCS reconstructed profiles for (b)(e)(h) SNR = 20 [dB], (c)(f)(i) SNR = 10 [dB] and (d)(g)(l) SNR = 5 [dB] at the step (b)-(d) S = 1, (e)-(g) S = 2, and (h)-(l) S = 3.



|                                                             | SNR = 50 dB                                                                                                                           |                                                                                                                                                               |                                                                                                                                                |                                                                                                                               |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                             | S = 1                                                                                                                                 | S=2                                                                                                                                                           | S=3                                                                                                                                            | S = 4                                                                                                                         |  |  |
| $\xi_{tot}$                                                 | $2.75\times 10^{-3}$                                                                                                                  | $1.31\times 10^{-3}$                                                                                                                                          | $1.23\times 10^{-3}$                                                                                                                           | $1.23\times 10^{-3}$                                                                                                          |  |  |
| $\xi_{int}$                                                 | $2.82\times 10^{-2}$                                                                                                                  | $2.00\times 10^{-2}$                                                                                                                                          | $1.99\times 10^{-2}$                                                                                                                           | $1.99\times 10^{-2}$                                                                                                          |  |  |
| $\xi_{ext}$                                                 | $1.87\times 10^{-3}$                                                                                                                  | $6.78 	imes 10^{-4}$                                                                                                                                          | $6.12\times 10^{-4}$                                                                                                                           | $6.12\times 10^{-4}$                                                                                                          |  |  |
|                                                             |                                                                                                                                       | SNR =                                                                                                                                                         | = 20 <i>dB</i>                                                                                                                                 |                                                                                                                               |  |  |
|                                                             | S = 1                                                                                                                                 | S=2                                                                                                                                                           | S=3                                                                                                                                            | S = 4                                                                                                                         |  |  |
| $\xi_{tot}$                                                 | $2.77\times10^{-3}$                                                                                                                   | $1.39 \times 10^{-3}$                                                                                                                                         | $1.23\times 10^{-3}$                                                                                                                           | $1.23 \times 10^{-3}$                                                                                                         |  |  |
| $\xi_{int}$                                                 | $2.84\times10^{-2}$                                                                                                                   | $2.14\times 10^{-2}$                                                                                                                                          | $1.98\times 10^{-2}$                                                                                                                           | $1.98\times 10^{-2}$                                                                                                          |  |  |
| $\xi_{ext}$                                                 | $1.86\times 10^{-3}$                                                                                                                  | $7.21\times 10^{-4}$                                                                                                                                          | $6.17 	imes 10^{-4}$                                                                                                                           | $6.17\times10^{-4}$                                                                                                           |  |  |
|                                                             | SNR = 10dB                                                                                                                            |                                                                                                                                                               |                                                                                                                                                |                                                                                                                               |  |  |
|                                                             |                                                                                                                                       | SNR =                                                                                                                                                         | = 10 <i>dB</i>                                                                                                                                 |                                                                                                                               |  |  |
|                                                             | S = 1                                                                                                                                 | SNR =<br>S = 2                                                                                                                                                | = 10dB $S = 3$                                                                                                                                 | S = 4                                                                                                                         |  |  |
| $\xi_{tot}$                                                 | S = 1<br>2.81 × 10 <sup>-3</sup>                                                                                                      | $SNR = $ $S = 2$ $1.47 \times 10^{-3}$                                                                                                                        | = $10dB$<br>S = 3<br>$1.19 \times 10^{-3}$                                                                                                     | S = 4<br>$1.19 \times 10^{-3}$                                                                                                |  |  |
| $\xi_{tot}$<br>$\xi_{int}$                                  | S = 1<br>2.81 × 10 <sup>-3</sup><br>2.83 × 10 <sup>-2</sup>                                                                           | $SNR =$ $S = 2$ $1.47 \times 10^{-3}$ $1.98 \times 10^{-2}$                                                                                                   | = $10dB$<br>S = 3<br>$1.19 \times 10^{-3}$<br>$1.74 \times 10^{-2}$                                                                            | S = 4<br>1.19 × 10 <sup>-3</sup><br>1.74 × 10 <sup>-2</sup>                                                                   |  |  |
| $\xi_{tot}$<br>$\xi_{int}$<br>$\xi_{ext}$                   | S = 1<br>2.81 × 10 <sup>-3</sup><br>2.83 × 10 <sup>-2</sup><br>1.87 × 10 <sup>-3</sup>                                                | SNR =<br>S = 2<br>$1.47 \times 10^{-3}$<br>$1.98 \times 10^{-2}$<br>$8.23 \times 10^{-4}$                                                                     | = 10dB<br>S = 3<br>$1.19 \times 10^{-3}$<br>$1.74 \times 10^{-2}$<br>$6.50 \times 10^{-4}$                                                     | S = 4<br>1.19 × 10 <sup>-3</sup><br>1.74 × 10 <sup>-2</sup><br>6.50 × 10 <sup>-4</sup>                                        |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{ext}}$ | S = 1<br>2.81 × 10 <sup>-3</sup><br>2.83 × 10 <sup>-2</sup><br>1.87 × 10 <sup>-3</sup>                                                | SNR =<br>S = 2<br>$1.47 \times 10^{-3}$<br>$1.98 \times 10^{-2}$<br>$8.23 \times 10^{-4}$<br>SNR =                                                            | = 10dB<br>S = 3<br>$1.19 \times 10^{-3}$<br>$1.74 \times 10^{-2}$<br>$6.50 \times 10^{-4}$<br>= 5dB                                            | $S = 4$ $1.19 \times 10^{-3}$ $1.74 \times 10^{-2}$ $6.50 \times 10^{-4}$                                                     |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\xi_{ext}$                   | S = 1 2.81 × 10 <sup>-3</sup> 2.83 × 10 <sup>-2</sup> 1.87 × 10 <sup>-3</sup> $S = 1$                                                 | SNR =<br>S = 2<br>$1.47 \times 10^{-3}$<br>$1.98 \times 10^{-2}$<br>$8.23 \times 10^{-4}$<br>SNR =<br>S = 2                                                   | $= 10dB$ $S = 3$ $1.19 \times 10^{-3}$ $1.74 \times 10^{-2}$ $6.50 \times 10^{-4}$ $= 5dB$ $S = 3$                                             | $S = 4$ $1.19 \times 10^{-3}$ $1.74 \times 10^{-2}$ $6.50 \times 10^{-4}$ $S = 4$                                             |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | S = 1 2.81 × 10 <sup>-3</sup> 2.83 × 10 <sup>-2</sup> 1.87 × 10 <sup>-3</sup> $S = 1$ 2.93 × 10 <sup>-3</sup>                         | SNR =<br>S = 2<br>$1.47 \times 10^{-3}$<br>$1.98 \times 10^{-2}$<br>$8.23 \times 10^{-4}$<br>SNR =<br>S = 2<br>$1.67 \times 10^{-3}$                          | = 10dB<br>S = 3<br>$1.19 \times 10^{-3}$<br>$1.74 \times 10^{-2}$<br>$6.50 \times 10^{-4}$<br>= 5dB<br>S = 3<br>$1.19 \times 10^{-3}$          | S = 4 1.19 × 10 <sup>-3</sup> 1.74 × 10 <sup>-2</sup> 6.50 × 10 <sup>-4</sup> $S = 4$ 1.19 × 10 <sup>-3</sup>                 |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | S = 1 2.81 × 10 <sup>-3</sup> 2.83 × 10 <sup>-2</sup> 1.87 × 10 <sup>-3</sup> $S = 1$ 2.93 × 10 <sup>-3</sup> 2.82 × 10 <sup>-2</sup> | SNR =<br>S = 2<br>$1.47 \times 10^{-3}$<br>$1.98 \times 10^{-2}$<br>$8.23 \times 10^{-4}$<br>SNR =<br>SNR =<br>$1.67 \times 10^{-3}$<br>$2.20 \times 10^{-2}$ | $= 10dB$ $S = 3$ $1.19 \times 10^{-3}$ $1.74 \times 10^{-2}$ $6.50 \times 10^{-4}$ $= 5dB$ $S = 3$ $1.19 \times 10^{-3}$ $1.66 \times 10^{-2}$ | $S = 4$ $1.19 \times 10^{-3}$ $1.74 \times 10^{-2}$ $6.50 \times 10^{-4}$ $S = 4$ $1.19 \times 10^{-3}$ $1.66 \times 10^{-2}$ |  |  |

Table III: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.05$  - Reconstruction errors: total  $(\xi_{tot})$ , internal  $(\xi_{int})$  and external  $(\xi_{ext})$  errors.

|           | SNR = 50 dB |       |         |       |  |
|-----------|-------------|-------|---------|-------|--|
|           | S = 1       | S = 2 | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00        | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100         | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100         | 144   | 36      | 36    |  |
|           |             | SNR = | = 20 dB |       |  |
|           | S = 1       | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00        | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100         | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100         | 144   | 36      | 36    |  |
|           |             | SNR = | = 10 dB |       |  |
|           | S = 1       | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00        | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100         | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100         | 144   | 36      | 36    |  |
|           |             | SNR   | = 5dB   |       |  |
|           | S = 1       | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00        | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100         | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100         | 144   | 36      | 36    |  |
|           |             |       |         |       |  |

Table IV: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.05$  - Investigation domain parameters: restricted investigation domain size  $L^{(S)}$ , total number of cells  $N^{(S)}$  and number of cells within the restricted domain size  $Q^{(S)}$ .



Figure 3: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.10$  - (a) Actual profile and (b)-(o) IMSA-BCS reconstructed profiles for (b)(e)(h) SNR = 20 [dB], (c)(f)(i) SNR = 10 [dB] and (d)(g)(l) SNR = 5 [dB] at the step (b)-(d) S = 1, (e)-(g) S = 2, and (h)-(l) S = 3.



|                                                             | SNR = 50 dB                                                                                                                   |                                                                                                                                                              |                                                                                                                    |                                                                                                                               |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                             | S = 1                                                                                                                         | S=2                                                                                                                                                          | S=3                                                                                                                | S = 4                                                                                                                         |  |  |
| $\xi_{tot}$                                                 | $5.91 	imes 10^{-3}$                                                                                                          | $2.63\times 10^{-3}$                                                                                                                                         | $2.36\times 10^{-3}$                                                                                               | $2.36\times 10^{-3}$                                                                                                          |  |  |
| $\xi_{int}$                                                 | $5.53\times10^{-2}$                                                                                                           | $3.67\times 10^{-2}$                                                                                                                                         | $3.50\times 10^{-2}$                                                                                               | $3.50\times 10^{-2}$                                                                                                          |  |  |
| $\xi_{ext}$                                                 | $4.05\times 10^{-3}$                                                                                                          | $1.40 \times 10^{-3}$                                                                                                                                        | $1.21\times 10^{-3}$                                                                                               | $1.21\times 10^{-3}$                                                                                                          |  |  |
|                                                             |                                                                                                                               | SNR =                                                                                                                                                        | 20dB                                                                                                               |                                                                                                                               |  |  |
|                                                             | S = 1                                                                                                                         | S = 2                                                                                                                                                        | S = 3                                                                                                              | S = 4                                                                                                                         |  |  |
| $\xi_{tot}$                                                 | $5.89 \times 10^{-3}$                                                                                                         | $2.85\times10^{-3}$                                                                                                                                          | $2.42\times 10^{-3}$                                                                                               | $2.42\times 10^{-3}$                                                                                                          |  |  |
| $\xi_{int}$                                                 | $5.55\times10^{-2}$                                                                                                           | $3.99\times 10^{-2}$                                                                                                                                         | $3.57\times 10^{-2}$                                                                                               | $3.57\times 10^{-2}$                                                                                                          |  |  |
| $\xi_{ext}$                                                 | $4.03 \times 10^{-3}$                                                                                                         | $1.51 \times 10^{-3}$                                                                                                                                        | $1.25\times 10^{-3}$                                                                                               | $1.25\times 10^{-3}$                                                                                                          |  |  |
|                                                             | SNR = 10dB                                                                                                                    |                                                                                                                                                              |                                                                                                                    |                                                                                                                               |  |  |
|                                                             |                                                                                                                               | SNR =                                                                                                                                                        | 10dB                                                                                                               |                                                                                                                               |  |  |
|                                                             | S = 1                                                                                                                         | SNR =<br>S = 2                                                                                                                                               | 10dB $S = 3$                                                                                                       | S = 4                                                                                                                         |  |  |
| ξtot                                                        | S = 1<br>5.97 × 10 <sup>-3</sup>                                                                                              | $SNR =$ $S = 2$ $2.91 \times 10^{-3}$                                                                                                                        | 10dB<br>S = 3<br>$2.55 \times 10^{-3}$                                                                             | $\frac{S=4}{2.55\times10^{-3}}$                                                                                               |  |  |
| $\xi_{tot}$<br>$\xi_{int}$                                  | S = 1<br>5.97 × 10 <sup>-3</sup><br>5.49 × 10 <sup>-2</sup>                                                                   | SNR =<br>S = 2<br>$2.91 \times 10^{-3}$<br>$3.67 \times 10^{-2}$                                                                                             | $  10dB \\ S = 3 \\ 2.55 \times 10^{-3} \\ 3.55 \times 10^{-2} $                                                   | S = 4<br>2.55 × 10 <sup>-3</sup><br>3.55 × 10 <sup>-2</sup>                                                                   |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$                               | S = 1<br>$5.97 \times 10^{-3}$<br>$5.49 \times 10^{-2}$<br>$4.06 \times 10^{-3}$                                              | SNR =<br>S = 2<br>$2.91 \times 10^{-3}$<br>$3.67 \times 10^{-2}$<br>$1.64 \times 10^{-3}$                                                                    | $  10dB  S = 3  2.55 \times 10^{-3}  3.55 \times 10^{-2}  1.39 \times 10^{-3} $                                    | S = 4<br>2.55 × 10 <sup>-3</sup><br>3.55 × 10 <sup>-2</sup><br>1.39 × 10 <sup>-3</sup>                                        |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{ext}}$ | S = 1<br>5.97 × 10 <sup>-3</sup><br>5.49 × 10 <sup>-2</sup><br>4.06 × 10 <sup>-3</sup>                                        | SNR =<br>S = 2<br>$2.91 \times 10^{-3}$<br>$3.67 \times 10^{-2}$<br>$1.64 \times 10^{-3}$<br>SNR =                                                           | $S = 3$ $2.55 \times 10^{-3}$ $3.55 \times 10^{-2}$ $1.39 \times 10^{-3}$ $= 5dB$                                  | $S = 4$ $2.55 \times 10^{-3}$ $3.55 \times 10^{-2}$ $1.39 \times 10^{-3}$                                                     |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{ext}}$ | S = 1<br>$5.97 \times 10^{-3}$<br>$5.49 \times 10^{-2}$<br>$4.06 \times 10^{-3}$<br>S = 1                                     | SNR =<br>S = 2<br>$2.91 \times 10^{-3}$<br>$3.67 \times 10^{-2}$<br>$1.64 \times 10^{-3}$<br>SNR =<br>S = 2                                                  |                                                                                                                    | S = 4<br>2.55 × 10 <sup>-3</sup><br>3.55 × 10 <sup>-2</sup><br>1.39 × 10 <sup>-3</sup><br>S = 4                               |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | S = 1<br>5.97 × 10 <sup>-3</sup><br>5.49 × 10 <sup>-2</sup><br>4.06 × 10 <sup>-3</sup><br>S = 1<br>6.34 × 10 <sup>-3</sup>    | SNR =<br>S = 2<br>$2.91 \times 10^{-3}$<br>$3.67 \times 10^{-2}$<br>$1.64 \times 10^{-3}$<br>SNR =<br>S = 2<br>$3.91 \times 10^{-3}$                         | $  10dB  S = 3  2.55 \times 10^{-3}  3.55 \times 10^{-2}  1.39 \times 10^{-3}  = 5dB  S = 3  2.47 \times 10^{-3} $ | S = 4 2.55 × 10 <sup>-3</sup> 3.55 × 10 <sup>-2</sup> 1.39 × 10 <sup>-3</sup> $S = 4$ 2.47 × 10 <sup>-3</sup>                 |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | $S = 1$ $5.97 \times 10^{-3}$ $5.49 \times 10^{-2}$ $4.06 \times 10^{-3}$ $S = 1$ $6.34 \times 10^{-3}$ $5.49 \times 10^{-2}$ | $SNR = SNR = SNR = S = 2$ 2.91 × 10 <sup>-3</sup> 3.67 × 10 <sup>-2</sup> 1.64 × 10 <sup>-3</sup> $SNR = S = 2$ 3.91 × 10 <sup>-3</sup> $NaN \times 10^{-a}$ |                                                                                                                    | $S = 4$ $2.55 \times 10^{-3}$ $3.55 \times 10^{-2}$ $1.39 \times 10^{-3}$ $S = 4$ $2.47 \times 10^{-3}$ $3.22 \times 10^{-2}$ |  |  |

Table V: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.10$  - Reconstruction errors: total  $(\xi_{tot})$ , internal  $(\xi_{int})$  and external  $(\xi_{ext})$  errors.

|           | SNR = 50dB |       |         |       |  |
|-----------|------------|-------|---------|-------|--|
|           | S = 1      | S = 2 | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100        | 144   | 36      | 36    |  |
|           |            | SNR = | = 20 dB |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100        | 144   | 36      | 36    |  |
|           |            | SNR = | = 10 dB |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100        | 144   | 36      | 36    |  |
|           |            | SNR   | = 5dB   |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100        | 144   | 36      | 36    |  |
|           |            |       |         |       |  |

Table VI: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.10$  - Investigation domain parameters: restricted investigation domain size  $L^{(S)}$ , total number of cells  $N^{(S)}$  and number of cells within the restricted domain size  $Q^{(S)}$ .



Figure 4: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.15$  - (a) Actual profile and (b)-(o) IMSA-BCS reconstructed profiles for (b)(e)(h) SNR = 20 [dB], (c)(f)(i) SNR = 10 [dB] and (d)(g)(l) SNR = 5 [dB] at the step (b)-(d) S = 1, (e)-(g) S = 2, and (h)-(l) S = 3.

|                                                             |                                                                                                                                                       | SNR = 50 dB                                                                                                                                   |                                                                                                                                                                    |                                                                                                                                       |  |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                             | S = 1                                                                                                                                                 | S=2                                                                                                                                           | S=3                                                                                                                                                                | S = 4                                                                                                                                 |  |  |  |
| $\xi_{tot}$                                                 | $8.88\times 10^{-3}$                                                                                                                                  | $4.04 \times 10^{-3}$                                                                                                                         | $3.48\times 10^{-3}$                                                                                                                                               | $3.48 \times 10^{-3}$                                                                                                                 |  |  |  |
| $\xi_{int}$                                                 | $8.11\times 10^{-2}$                                                                                                                                  | $5.20 \times 10^{-2}$                                                                                                                         | $4.62\times 10^{-2}$                                                                                                                                               | $4.62\times 10^{-2}$                                                                                                                  |  |  |  |
| $\xi_{ext}$                                                 | $6.00 	imes 10^{-3}$                                                                                                                                  | $2.17\times 10^{-3}$                                                                                                                          | $1.79\times 10^{-3}$                                                                                                                                               | $1.79 	imes 10^{-3}$                                                                                                                  |  |  |  |
|                                                             |                                                                                                                                                       | SNR =                                                                                                                                         | = 20 <i>dB</i>                                                                                                                                                     |                                                                                                                                       |  |  |  |
|                                                             | S = 1                                                                                                                                                 | S=2                                                                                                                                           | S=3                                                                                                                                                                | S = 4                                                                                                                                 |  |  |  |
| $\xi_{tot}$                                                 | $8.92 \times 10^{-3}$                                                                                                                                 | $4.26\times 10^{-3}$                                                                                                                          | $3.69 \times 10^{-3}$                                                                                                                                              | $3.69 \times 10^{-3}$                                                                                                                 |  |  |  |
| $\xi_{int}$                                                 | $8.01\times 10^{-2}$                                                                                                                                  | $5.46\times10^{-2}$                                                                                                                           | $4.97\times 10^{-2}$                                                                                                                                               | $4.97\times 10^{-2}$                                                                                                                  |  |  |  |
| $\xi_{ext}$                                                 | $5.97 	imes 10^{-3}$                                                                                                                                  | $2.33 \times 10^{-3}$                                                                                                                         | $1.92 \times 10^{-3}$                                                                                                                                              | $1.92 \times 10^{-3}$                                                                                                                 |  |  |  |
|                                                             |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                    |                                                                                                                                       |  |  |  |
|                                                             |                                                                                                                                                       | SNR =                                                                                                                                         | = 10 <i>dB</i>                                                                                                                                                     |                                                                                                                                       |  |  |  |
|                                                             | S = 1                                                                                                                                                 | SNR =<br>S = 2                                                                                                                                | = 10dB $S = 3$                                                                                                                                                     | S = 4                                                                                                                                 |  |  |  |
| ξ <sub>tot</sub>                                            | S = 1<br>9.16 × 10 <sup>-3</sup>                                                                                                                      | $SNR = $ $S = 2$ $4.68 \times 10^{-3}$                                                                                                        | = $10dB$<br>S = 3<br>$3.87 \times 10^{-3}$                                                                                                                         | $S = 4$ $3.87 \times 10^{-3}$                                                                                                         |  |  |  |
| $\xi_{tot}$<br>$\xi_{int}$                                  | S = 1<br>9.16 × 10 <sup>-3</sup><br>8.02 × 10 <sup>-2</sup>                                                                                           | SNR =<br>S = 2<br>$4.68 \times 10^{-3}$<br>$5.41 \times 10^{-2}$                                                                              | = $10dB$<br>S = 3<br>$3.87 \times 10^{-3}$<br>$5.03 \times 10^{-2}$                                                                                                | S = 4<br>$3.87 \times 10^{-3}$<br>$5.03 \times 10^{-2}$                                                                               |  |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$                               | S = 1<br>9.16 × 10 <sup>-3</sup><br>8.02 × 10 <sup>-2</sup><br>6.17 × 10 <sup>-3</sup>                                                                | SNR =<br>S = 2<br>$4.68 \times 10^{-3}$<br>$5.41 \times 10^{-2}$<br>$2.59 \times 10^{-3}$                                                     | = $10dB$<br>S = 3<br>$3.87 \times 10^{-3}$<br>$5.03 \times 10^{-2}$<br>$2.10 \times 10^{-3}$                                                                       | S = 4<br>3.87 × 10 <sup>-3</sup><br>5.03 × 10 <sup>-2</sup><br>2.10 × 10 <sup>-3</sup>                                                |  |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{ext}}$ | S = 1<br>9.16 × 10 <sup>-3</sup><br>8.02 × 10 <sup>-2</sup><br>6.17 × 10 <sup>-3</sup>                                                                | SNR =<br>S = 2<br>$4.68 \times 10^{-3}$<br>$5.41 \times 10^{-2}$<br>$2.59 \times 10^{-3}$<br>SNR                                              | = $10dB$<br>S = 3<br>$3.87 \times 10^{-3}$<br>$5.03 \times 10^{-2}$<br>$2.10 \times 10^{-3}$<br>= $5dB$                                                            | S = 4<br>3.87 × 10 <sup>-3</sup><br>5.03 × 10 <sup>-2</sup><br>2.10 × 10 <sup>-3</sup>                                                |  |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$                               | S = 1<br>$9.16 \times 10^{-3}$<br>$8.02 \times 10^{-2}$<br>$6.17 \times 10^{-3}$<br>S = 1                                                             | SNR =<br>S = 2<br>$4.68 \times 10^{-3}$<br>$5.41 \times 10^{-2}$<br>$2.59 \times 10^{-3}$<br>SNR<br>S = 2                                     | = $10dB$<br>S = 3<br>$3.87 \times 10^{-3}$<br>$5.03 \times 10^{-2}$<br>$2.10 \times 10^{-3}$<br>= $5dB$<br>S = 3                                                   | S = 4<br>$3.87 \times 10^{-3}$<br>$5.03 \times 10^{-2}$<br>$2.10 \times 10^{-3}$<br>S = 4                                             |  |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | S = 1<br>9.16 × 10 <sup>-3</sup><br>8.02 × 10 <sup>-2</sup><br>6.17 × 10 <sup>-3</sup><br>S = 1<br>1.02 × 10 <sup>-2</sup>                            | SNR =<br>S = 2<br>$4.68 \times 10^{-3}$<br>$5.41 \times 10^{-2}$<br>$2.59 \times 10^{-3}$<br>SNR<br>S = 2<br>$5.50 \times 10^{-3}$            | = $10dB$<br>S = 3<br>$3.87 \times 10^{-3}$<br>$5.03 \times 10^{-2}$<br>$2.10 \times 10^{-3}$<br>= $5dB$<br>S = 3<br>$3.85 \times 10^{-3}$                          | S = 4 3.87 × 10 <sup>-3</sup> 5.03 × 10 <sup>-2</sup> 2.10 × 10 <sup>-3</sup> $S = 4$ 3.85 × 10 <sup>-3</sup>                         |  |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | S = 1<br>9.16 × 10 <sup>-3</sup><br>8.02 × 10 <sup>-2</sup><br>6.17 × 10 <sup>-3</sup><br>S = 1<br>1.02 × 10 <sup>-2</sup><br>7.92 × 10 <sup>-2</sup> | $SNR = 0$ $S = 2$ $4.68 \times 10^{-3}$ $5.41 \times 10^{-2}$ $2.59 \times 10^{-3}$ $SNR$ $S = 2$ $5.50 \times 10^{-3}$ $6.05 \times 10^{-2}$ | = $10dB$<br>S = 3<br>$3.87 \times 10^{-3}$<br>$5.03 \times 10^{-2}$<br>$2.10 \times 10^{-3}$<br>= $5dB$<br>S = 3<br>$3.85 \times 10^{-3}$<br>$4.50 \times 10^{-2}$ | S = 4 3.87 × 10 <sup>-3</sup> 5.03 × 10 <sup>-2</sup> 2.10 × 10 <sup>-3</sup> $S = 4$ 3.85 × 10 <sup>-3</sup> 4.50 × 10 <sup>-2</sup> |  |  |  |

Table VII: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.10$  - Reconstruction errors: total  $(\xi_{tot})$ , internal  $(\xi_{int})$  and external  $(\xi_{ext})$  errors.

|           | SNR = 50dB |       |         |       |  |
|-----------|------------|-------|---------|-------|--|
|           | S = 1      | S = 2 | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100        | 144   | 36      | 36    |  |
|           |            | SNR = | = 20 dB |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100        | 144   | 36      | 36    |  |
|           |            | SNR = | = 10 dB |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100        | 144   | 36      | 36    |  |
|           |            | SNR   | = 5dB   |       |  |
|           | S = 1      | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00       | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100        | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100        | 144   | 36      | 36    |  |
|           |            |       |         |       |  |

Table VIII: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.15$  - Investigation domain parameters: restricted investigation domain size  $L^{(S)}$ , total number of cells  $N^{(S)}$  and number of cells within the restricted domain size  $Q^{(S)}$ .



Figure 5: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.20$  - (a) Actual profile and (b)-(o) IMSA-BCS reconstructed profiles for (b)(e)(h) SNR = 20 [dB], (c)(f)(i) SNR = 10 [dB] and (d)(g)(l) SNR = 5 [dB] at the step (b)-(d) S = 1, (e)-(g) S = 2, and (h)-(l) S = 3.

|                                                             | SNR = 50 dB                                                                                                                   |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                                                       |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                             | S = 1                                                                                                                         | S=2                                                                                                                                                           | S=3                                                                                                                                                                | S = 4                                                                                                                                 |  |  |
| $\xi_{tot}$                                                 | $1.21\times 10^{-2}$                                                                                                          | $6.02\times 10^{-3}$                                                                                                                                          | $4.90\times 10^{-3}$                                                                                                                                               | $4.90\times10^{-3}$                                                                                                                   |  |  |
| $\xi_{int}$                                                 | $1.07 \times 10^{-1}$                                                                                                         | $7.30\times10^{-2}$                                                                                                                                           | $5.81\times10^{-2}$                                                                                                                                                | $5.81\times10^{-2}$                                                                                                                   |  |  |
| $\xi_{ext}$                                                 | $8.04\times10^{-3}$                                                                                                           | $3.23 	imes 10^{-3}$                                                                                                                                          | $2.58\times 10^{-3}$                                                                                                                                               | $2.58\times 10^{-3}$                                                                                                                  |  |  |
|                                                             |                                                                                                                               | SNR =                                                                                                                                                         | = 20 <i>dB</i>                                                                                                                                                     |                                                                                                                                       |  |  |
|                                                             | S = 1                                                                                                                         | S=2                                                                                                                                                           | S=3                                                                                                                                                                | S = 4                                                                                                                                 |  |  |
| $\xi_{tot}$                                                 | $1.19\times 10^{-2}$                                                                                                          | $5.81 \times 10^{-3}$                                                                                                                                         | $4.83\times10^{-3}$                                                                                                                                                | $4.83\times10^{-3}$                                                                                                                   |  |  |
| $\xi_{int}$                                                 | $1.03 \times 10^{-1}$                                                                                                         | $6.95\times10^{-2}$                                                                                                                                           | $5.87\times10^{-2}$                                                                                                                                                | $5.87\times10^{-2}$                                                                                                                   |  |  |
| $\xi_{ext}$                                                 | $7.98 	imes 10^{-3}$                                                                                                          | $3.13 \times 10^{-3}$                                                                                                                                         | $2.51 \times 10^{-3}$                                                                                                                                              | $2.51\times10^{-3}$                                                                                                                   |  |  |
| 50000                                                       |                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                    |                                                                                                                                       |  |  |
|                                                             |                                                                                                                               | SNR =                                                                                                                                                         | = 10 <i>dB</i>                                                                                                                                                     |                                                                                                                                       |  |  |
|                                                             | S = 1                                                                                                                         | SNR =<br>S = 2                                                                                                                                                | = 10dB $S = 3$                                                                                                                                                     | S = 4                                                                                                                                 |  |  |
| ξtot                                                        | $S = 1$ $1.27 \times 10^{-2}$                                                                                                 | $SNR = $ $S = 2$ $6.40 \times 10^{-3}$                                                                                                                        | = $10dB$<br>S = 3<br>$5.23 \times 10^{-3}$                                                                                                                         | $S = 4$ $5.23 \times 10^{-3}$                                                                                                         |  |  |
| $\xi_{tot}$<br>$\xi_{int}$                                  | S = 1<br>$1.27 \times 10^{-2}$<br>$1.07 \times 10^{-1}$                                                                       | SNR =<br>S = 2<br>$6.40 \times 10^{-3}$<br>$7.19 \times 10^{-2}$                                                                                              | = $10dB$<br>S = 3<br>$5.23 \times 10^{-3}$<br>$6.41 \times 10^{-2}$                                                                                                | S = 4<br>$5.23 \times 10^{-3}$<br>$6.41 \times 10^{-2}$                                                                               |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$                               | S = 1<br>1.27 × 10 <sup>-2</sup><br>1.07 × 10 <sup>-1</sup><br>8.49 × 10 <sup>-3</sup>                                        | SNR =<br>S = 2<br>$6.40 \times 10^{-3}$<br>$7.19 \times 10^{-2}$<br>$3.47 \times 10^{-3}$                                                                     | = $10dB$<br>S = 3<br>$5.23 \times 10^{-3}$<br>$6.41 \times 10^{-2}$<br>$2.75 \times 10^{-3}$                                                                       | S = 4<br>5.23 × 10 <sup>-3</sup><br>6.41 × 10 <sup>-2</sup><br>2.75 × 10 <sup>-3</sup>                                                |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$                               | $S = 1$ $1.27 \times 10^{-2}$ $1.07 \times 10^{-1}$ $8.49 \times 10^{-3}$                                                     | SNR =<br>S = 2<br>$6.40 \times 10^{-3}$<br>$7.19 \times 10^{-2}$<br>$3.47 \times 10^{-3}$<br>SNR =                                                            | = $10dB$<br>S = 3<br>$5.23 \times 10^{-3}$<br>$6.41 \times 10^{-2}$<br>$2.75 \times 10^{-3}$<br>= $5dB$                                                            | S = 4<br>5.23 × 10 <sup>-3</sup><br>6.41 × 10 <sup>-2</sup><br>2.75 × 10 <sup>-3</sup>                                                |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$                               | S = 1<br>1.27 × 10 <sup>-2</sup><br>1.07 × 10 <sup>-1</sup><br>8.49 × 10 <sup>-3</sup><br>S = 1                               | SNR =<br>S = 2<br>$6.40 \times 10^{-3}$<br>$7.19 \times 10^{-2}$<br>$3.47 \times 10^{-3}$<br>SNR =<br>S = 2                                                   | = $10dB$<br>S = 3<br>$5.23 \times 10^{-3}$<br>$6.41 \times 10^{-2}$<br>$2.75 \times 10^{-3}$<br>= $5dB$<br>S = 3                                                   | S = 4<br>5.23 × 10 <sup>-3</sup><br>6.41 × 10 <sup>-2</sup><br>2.75 × 10 <sup>-3</sup><br>S = 4                                       |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | $S = 1$ $1.27 \times 10^{-2}$ $1.07 \times 10^{-1}$ $8.49 \times 10^{-3}$ $S = 1$ $1.44 \times 10^{-2}$                       | SNR =<br>S = 2<br>$6.40 \times 10^{-3}$<br>$7.19 \times 10^{-2}$<br>$3.47 \times 10^{-3}$<br>SNR =<br>S = 2<br>$8.26 \times 10^{-3}$                          | = $10dB$<br>S = 3<br>$5.23 \times 10^{-3}$<br>$6.41 \times 10^{-2}$<br>$2.75 \times 10^{-3}$<br>= $5dB$<br>S = 3<br>$5.85 \times 10^{-3}$                          | S = 4 5.23 × 10 <sup>-3</sup> 6.41 × 10 <sup>-2</sup> 2.75 × 10 <sup>-3</sup> $S = 4$ 5.85 × 10 <sup>-3</sup>                         |  |  |
| $\frac{\xi_{tot}}{\xi_{int}}$ $\frac{\xi_{ext}}{\xi_{tot}}$ | $S = 1$ $1.27 \times 10^{-2}$ $1.07 \times 10^{-1}$ $8.49 \times 10^{-3}$ $S = 1$ $1.44 \times 10^{-2}$ $1.06 \times 10^{-1}$ | SNR =<br>S = 2<br>$6.40 \times 10^{-3}$<br>$7.19 \times 10^{-2}$<br>$3.47 \times 10^{-3}$<br>SNR =<br>SNR =<br>$8.26 \times 10^{-3}$<br>$7.72 \times 10^{-2}$ | = $10dB$<br>S = 3<br>$5.23 \times 10^{-3}$<br>$6.41 \times 10^{-2}$<br>$2.75 \times 10^{-3}$<br>= $5dB$<br>S = 3<br>$5.85 \times 10^{-3}$<br>$5.98 \times 10^{-2}$ | S = 4 5.23 × 10 <sup>-3</sup> 6.41 × 10 <sup>-2</sup> 2.75 × 10 <sup>-3</sup> $S = 4$ 5.85 × 10 <sup>-3</sup> 5.98 × 10 <sup>-2</sup> |  |  |

Table IX: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.20$  - Reconstruction errors: total  $(\xi_{tot})$ , internal  $(\xi_{int})$  and external  $(\xi_{ext})$  errors.

|           | SNR = 50 dB |       |         |       |  |
|-----------|-------------|-------|---------|-------|--|
|           | S = 1       | S = 2 | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00        | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100         | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100         | 144   | 36      | 36    |  |
|           |             | SNR = | = 20 dB |       |  |
|           | S = 1       | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00        | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100         | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100         | 144   | 36      | 36    |  |
|           |             | SNR = | = 10 dB |       |  |
|           | S = 1       | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00        | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100         | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100         | 144   | 36      | 36    |  |
|           |             | SNR   | = 5dB   |       |  |
|           | S = 1       | S=2   | S=3     | S = 4 |  |
| $L^{(S)}$ | 6.00        | 1.80  | 1.80    | 1.80  |  |
| $N^{(S)}$ | 100         | 208   | 208     | 208   |  |
| $Q^{(S)}$ | 100         | 144   | 36      | 36    |  |
|           |             |       |         |       |  |

Table X: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.20$  - Investigation domain parameters: restricted investigation domain size  $L^{(S)}$ , total number of cells  $N^{(S)}$  and number of cells within the restricted domain size  $Q^{(S)}$ .

#### 2.1.6 L-shaped Object, $\ell = 1.5\lambda$ , $\tau = 0.20$ - IMSA-BCS multi-resolution grids



Figure 6: L-shaped Object,  $\ell = 1.5\lambda$ ,  $\tau = 0.20$  - Example of IMSA-BCS multi-resolution grids for (a)(d)SNR = 20 [dB], (b)(e) SNR = 10 [dB] and (c)(f) SNR = 5 [dB] at the step (a)-(c) S = 1 and (d)-(f) S = 2, 3.

#### 2.1.7 L-shaped Object, $\ell = 1.5\lambda$ - Resume: Errors vs. $\tau$



Figure 7: L-shaped Object,  $\ell = 1.5\lambda$  - Reconstruction errors vs.  $\tau$ : (a) total error, (b) internal error and (c) external error.

#### 2.1.8 L-shaped Object, $\ell = 1.5\lambda$ - Resume: Errors vs. SNR



Figure 8: L-shaped Object,  $\ell = 1.5\lambda$  - Reconstruction errors vs. SNR: (a) total error, (b) internal error and (c) external error.



Figure 9: L-shaped Object,  $\ell = 1.5\lambda$  - Reconstruction errors vs. IMSA step, S: (a)(b) total error, (c)(d) internal error and (e)(f) external error for  $(a)(c)(e) \tau = 0.1$  and  $(b)(d)(f) \tau = 0.2$ .



Figure 10: L-shaped Object,  $\ell = 1.5\lambda$  - Reconstruction errors vs. IMSA step, S: (a)(b) total error, (c)(d) internal error and (e)(f) external error for (a)(c)(e) SNR = 10dB and (b)(d)(f) SNR = 5dB.

## References

- M. Salucci, G. Oliveri, and A. Massa, "GPR prospecting through an inverse scattering frequency-hopping multi-focusing approach," *IEEE Trans. Geosci. Remote Sens.*, vol. 53, no. 12, pp. 6573-6592, Dec. 2015.
- [2] M. Salucci, L. Poli, N. Anselmi, and A. Massa, "Multifrequency Particle Swarm Optimization for enhanced multiresolution GPR microwave imaging," *IEEE Trans. Geosci. Remote Sens.*, vol. 55, no. 3, pp. 1305-1317, Mar. 2017.
- [3] M. Salucci, L. Poli, and A. Massa, "Advanced multi-frequency GPR data processing for non-linear deterministic imaging," *Signal Processing* - Special Issue on 'Advanced Ground-Penetrating Radar Signal-Processing Techniques,' vol. 132, pp. 306-318, Mar. 2017.
- [4] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," *IEEE Trans. Antennas Propag.*, vol. 63, no. 11, pp. 4889-4900, Nov. 2015.
- [5] G. Oliveri, M. Salucci, N. Anselmi, and A. Massa, "Compressive sensing as applied to inverse problems for imaging: theory, applications, current trends, and open challenges," *IEEE Antennas Propag. Mag.* -Special Issue on "Electromagnetic Inverse Problems for Sensing and Imaging," vol. 59, no. 5, pp. 34-46, Oct. 2017.
- [6] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics A review," IEEE Antennas Propag. Mag., pp. 224-238, vol. 57, no. 1, Feb. 2015.
- [7] N. Anselmi, L. Poli, G. Oliveri, and A. Massa, "Iterative multi-resolution bayesian CS for microwave imaging," *IEEE Trans. Antennas Propag.*, vol. 66, no. 7, pp. 3665-3677, Jul. 2018.
- [8] N. Anselmi, G. Oliveri, M. A. Hannan, M. Salucci, and A. Massa, "Color compressive sensing imaging of arbitrary-shaped scatterers," *IEEE Trans. Microw. Theory Techn.*, vol. 65, no. 6, pp. 1986-1999, Jun. 2017.
- [9] G. Oliveri, N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," *IEEE Trans. Antennas Propag.*, vol. 62, no. 10, pp. 5157-5170, Oct. 2014.
- [10] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach," *Journal of Optical Society of America A*, vol. 30, no. 6, pp. 1261-1272, 2013.
- [11] L. Poli, G. Oliveri, F. Viani, and A. Massa, "MT-BCS-based microwave imaging approach through minimum-norm current expansion," *IEEE Trans. Antennas Propag.*, vol. 61, no. 9, pp. 4722-4732, Sep. 2013.
- [12] F. Viani, L. Poli, G. Oliveri, F. Robol, and A. Massa, "Sparse scatterers imaging through approximated multitask compressive sensing strategies," *Microwave Opt. Technol. Lett.*, vol. 55, no. 7, pp. 1553-1558, Jul. 2013.

- [13] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," *IEEE Trans. Geosci. Remote Sens.*, vol. 51, no. 5, pp. 2920-2936, May 2013.
- [14] L. Poli, G. Oliveri, and A. Massa, "Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing," *IEEE Trans. Antennas Propag.*, vol. 60, no. 6, pp. 2865-2879, Jun. 2012.
- [15] G. Oliveri, L. Poli, P. Rocca, and A. Massa, "Bayesian compressive optical imaging within the Rytov approximation," *Optics Letters*, vol. 37, no. 10, pp. 1760-1762, 2012.
- [16] G. Oliveri, P. Rocca, and A. Massa, "A Bayesian compressive sampling-based inversion for imaging sparse scatterers," *IEEE Trans. Geosci. Remote Sens.*, vol. 49, no. 10, pp. 3993-4006, Oct. 2011.
- [17] G. Oliveri, M. Salucci, and N. Anselmi, "Tomographic imaging of sparse low-contrast targets in harsh environments through matrix completion," *IEEE Trans. Microw. Theory Tech.*, vol. 66, no. 6, pp. 2714-2730, Jun. 2018.
- [18] M. Salucci, A. Gelmini, L. Poli, G. Oliveri, and A. Massa, "Progressive compressive sensing for exploiting frequency-diversity in GPR imaging," *Journal of Electromagnetic Waves and Applications*, vol. 32, no. 9, pp. 1164- 1193, 2018.