ADS-Guided Design of Planar Thinned Phased Arrays Through Genetic Optimization

M. Salucci, G. Gottardi, N. Anselmi, and G. Oliveri

Abstract

This work presents an innovative hybrid approach for synthesizing thinned planar phased arrays. The *a-priori* information provided by analytical almost difference sets (*ADSs*) is profitably exploited by a customized stochastic optimization approach based on genetic algorithms (*GAs*). Such an *ADSGA* approach is able to overcome the current limitations of state-of-the-art techniques based on *ADSs*. Some numerical results are shown in order to assess the potentialities, as well as the limitations, of the proposed design methodology.

1 Problem III - Definition of a General Purpose ADS Construction technique for Array Synthesis

With reference to the potential limitation outlined in the Introduction, the aim is now to and the explicit forms of ADS s sequences (i.e., binary sequences with a three-level auto-correlation function) for arbitrary values of N. Towards this end, let us denote with $L\{\rho\}$ and $R\{\rho\}$ the number of levels of the auto-correlation function $\xi(\tau)$ of a trial solution ρ and the number of τ values for which $\xi(\tau)$ differ from . Then, the search for admissible (but not available in ADS repositories) ADS sequences is recast as the solution of the following problem

$$Min(F\{\rho\}) = \alpha [L\{\rho\} - 3] + \beta R\{\rho\}$$

subject to $N_x \neq N_{x-ADS}$ and $N_y \neq N_{y-ADS}$ The ADSGA within the *auto-correlation space* instead of in the *pattern space*, while the constraints are still on the set of parameters defining the ADS as well as the corresponding array arrangement.

• Initialization: Random

RESULTS: P = 6 , Q = 6, K = 32

Setting Parameters of Algorithms

GA Parameters

- Chromosome Dimension $C = 36 \ bits$
- Population Dimension S = 10
- Max Iteration number $K_{max} = 5000$

Array Parameters

- Number of total cells N = 32
- Dimension X: 6
- Dimension Y: 6

•
$$\nu = \frac{32}{36} = 88.9\%$$

Figure 1.

Figure 2.

RESULTS: P = 6 , Q = 10, K = 6

Setting Parameters of Algorithms

GA Parameters

- Chromosome Dimension $C = 60 \ bits$
- Population Dimension S = 30
- Max Iteration number $K_{max} = 10000$

Array Parameters

- Number of total cells N = 60
- Dimension X: 6
- Dimension Y: 10

•
$$\nu = \frac{6}{60} = 0.10\%$$

(*)

Figure 3.

Figure 4.

RESULTS: P = 10 , Q = 10, K = 5

Setting Parameters of Algorithms

GA Parameters

- Chromosome Dimension $C = 100 \ bits$
- Population Dimension S = 10
- Max Iteration number $K_{max} = 5000$

Array Parameters

- Number of total cells N = 100
- Dimension X: 10
- Dimension Y: 10

•
$$\nu = \frac{5}{100} = 5\%$$

Figure 5.

Figure 6.

RESULTS: P = 12 , Q = 16, K = 184

Setting Parameters of Algorithms

GA Parameters

- Chromosome Dimension $C = 192 \ bits$
- Population Dimension S = 50
- Max Iteration number $K_{max} = 10000$

Array Parameters

- Number of total cells N = 192
- $\bullet\,$ Dimension X: 12
- Dimension Y: 16

•
$$\nu = \frac{184}{192} = 95.83\%$$

(b)

Figure 7.

Figure 8.

RESULTS: P = 14 , Q = 14, K = 7

Setting Parameters of Algorithms

GA Parameters

- Chromosome Dimension $C = 196 \ bits$
- Population Dimension S = 40
- Max Iteration number $K_{max} = 5000$

Array Parameters

- Number of total cells N = 196
- Dimension X: 14
- Dimension Y: 14

•
$$\nu = \frac{7}{196} = 3,57\%$$

Figure 9.

Figure 10.

11

RESULTS: P = 15, Q = 15, K = 8

Setting Parameters of Algorithms

GA Parameters

- Chromosome Dimension $C = 225 \ bits$
- Population Dimension S = 100
- Max Iteration number $K_{max} = 30000$

Array Parameters

- Number of total cells N = 225
- Dimension X: 15
- Dimension Y: 15

•
$$\nu = \frac{8}{225} = 3,55\%$$

Figure 11.

Figure 12.

P	Q	K	ν [%]	Λ	$\#(\Lambda)$
6	6	32	88.8	28	23
6	10	6	10.0	0	29
8	8	59	92.1	54	43
10	10	5	5.0	0	79
12	12	137	95.1	130	101
12	14	184	95.8	176	135
14	14	7	3.5	0	153
15	15	8	3.5	0	168

Table I.

• Table I: Properties of the new ADS sequences

References

- P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Problems, vol. 25, pp. 1-41, Dec. 2009.
- [2] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," *IEEE Antennas Propag. Mag.*, vol. 53, no. 1, pp. 38-49, Feb. 2011.
- [3] M. Salucci, G. Gottardi, N. Anselmi, and G. Oliveri, "Planar thinned array design by hybrid analytical-stochastic optimization," *IET Microwaves, Antennas & Propagation*, vol. 11, no. 13, pp. 1841-1845, Oct. 2017.
- [4] G. Oliveri, M. Donelli, and A. Massa, "Genetically-designed arbitrary length almost difference sets," *Electronics Letters*, vol. 5, no. 23, pp. 1182-1183, Nov. 2009.
- [5] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Irregular phased array tiling by means of analytic schemata-driven optimization," *IEEE Transactions on Antennas and Propagation*, vol. 65, no. 9, pp. 4495-4510, September 2017.
- [6] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Optimization of excitation tolerances for robust beamforming in linear arrays," *IET Microwaves, Antennas & Propagation*, vol. 10, no. 2, pp. 208-214, 2016.
- [7] P. Rocca, M. Donelli, G. Oliveri, F. Viani, and A. Massa, "Reconfigurable sum-difference pattern by means of parasitic elements for forward-looking monopulse radar," *IET Radar, Sonar & Navigation*, vol 7, no. 7, pp. 747-754, 2013.
- [8] T. Moriyama, L. Poli, and P. Rocca, "Adaptive nulling in thinned planar arrays through genetic algorithms," *IEICE Electronics Express*, vol. 11, no. 21, pp. 1-9, Sep. 2014.
- [9] L. Poli, P. Rocca, M. Salucci, and A. Massa, "Reconfigurable thinning for the adaptive control of linear arrays," *IEEE Transactions on Antennas and Propagation*, vol. 61, no. 10, pp. 5068-5077, Oct. 2013.
- [10] P. Rocca, L. Poli, G. Oliveri, and A. Massa, "Adaptive nulling in time-varying scenarios through time-modulated linear arrays," *IEEE Antennas Wireless Propag. Lett.*, vol. 11, pp. 101-104, 2012.
- [11] P. Rocca, G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies - A review," *Proceedings of the IEEE*, vol. 104, no. 3, pp. 544-560, March 2016.
- [12] L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Failure correction in time-modulated linear arrays," IET Radar, Sonar & Navigation, vol. 8, no. 3, pp. 195-201, 2014.
- [13] G. Oliveri, M. Salucci, and A. Massa, "Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver," *IEEE Transactions on Antennas and Propagation*, vol. 64, no. 10, pp. 4277-4287, Oct. 2016.
- [14] P. Rocca, N. Anselmi, and A. Massa "Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization," *IEEE Trans. Antennas Propag.*, vol. 62, no. 7, pp. 3603-3612, Jul. 2014.
- [15] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Optimization of excitation tolerances for robust beamforming in linear arrays," *IET Microwaves, Antennas & Propagation*, vol. 10, no. 2, pp. 208-214, 2016.
- [16] T. Moriyama, E. Giarola, M. Salucci, and G. Oliveri, "On the radiation properties of ADS-thinned dipole arrays" *IEICE Electronics Express*, vol. 11, no. 16, pp. 1-10, Aug. 2014.
- [17] G. Oliveri, F. Viani, and A. Massa, "Synthesis of linear multi-beam arrays through hierarchical ADS-based interleaving," *IET Microw. Antennas Propag.*, vol. 8, no. 10, pp. 794-808, Jul. 2014.