An Innovative Material-by-Design Method for the Enhancement of Linear Active Electronically-Scanned Arrays

M. Salucci, G. Oliveri, N. Anselmi, G. Gottardi, and A. Massa

Abstract

The problem of enhancing the radiation features (in terms of directivity and sidelobe level) of an existing linear active electronically-scanned array (*AESA*) is addressed. A novel material-by-design (*MbD*) design technique is proposed to synthesize suitably engineered meta-material lenses able to significantly improve the performance of the covered antenna array without increasing the number of elementary radiators nor re-designing the feeding network. Moreover, the synthesized architectures are able to mimic the radiation characteristics of larger apertures without requiring highly-anisotropic meta-materials thanks to the exploitation of a customized quasi-conformal transformation optics (*QCTO*) technique in combination with a source inversion (*SI*) strategy. Some numerical results are presented and discussed in order to verify the potentialities of the proposed synthesis technique. 1 Extensive Analysis - Half-Cosine Profile - $h' = 6.0 [\lambda], l' = 0.0 [\lambda],$ $t' = 24.0 [\lambda], N = 22$

1.1 Step 1: Expanding the physical array $(N = 22, L = 10.5 [\lambda])$

Input Parameters

Figure 1: Transformation regions. The lower side of both virtual and physical boundaries are supposed to be PEC.

• Virtual Geometry

# Test Case	$h'[\lambda]$	$l' [\lambda]$	$t' [\lambda]$	$w' [\lambda]$
1	6.0	0.0	24.0	26.7
2	6.0	0.0	24.0	28.5
3	6.0	0.0	24.0	29.7
4	6.0	0.0	24.0	31.05
5	6.0	0.0	24.0	32.1

Table I: Considered virtual geometries. The values of w' have been empirically determined in order to achieve an aperture of the virtual array (L') equal to a multiple of $\lambda/2$. It is imposed that h = h', while w is not controlled by the user.

• Physical Array

- Number of elements, spacing, aperture: $N = 22, d = \frac{\lambda}{2}, L = 10.5 [\lambda];$
- Positions: $x_n \in [-L/2, L/2], y_n = \frac{\lambda}{4}, n = 1, ..., N;$
- Excitations: $I_n = 1.0, \varphi_n = \frac{-2\pi}{\lambda} x_n \sin(\phi_s + 90); n = 1, ..., N;$
- QCTO
 - Discretization cell dimension: $0.05 [\lambda] (0.01 [\lambda] \text{ for source mapping});$

1.1.1 Results

Resulting aperture of the virtual array (L') - for step 2

- The aperture of the virtual array (L') is computed after mapping the physical array into the virtual space;
- The resulting number of equi-spaced elements is computed as

$$N' = round\left(\frac{L'}{0.5} + 1\right)$$

	Virtual Geometry									
# Test Case	$h'[\lambda]$	$l'\left[\lambda ight]$	$t' [\lambda]$	$w' [\lambda]$	N'					
1	6.0	0.0	24.0	26.7	23					
2	6.0	0.0	24.0	28.5	25					
3	6.0	0.0	24.0	29.7	26					
4	6.0	0.0	24.0	31.05	$\overline{28}$					
5	6.0	0.0	24.0	32.1	30					

Table II: Resulting aperture and number of equi-spaced elements of the virtual array after expanding the physical array.

1.2 Step 2: Compressing the virtual array $(N' > N, L' > L [\lambda])$

Input Parameters

- Virtual Array
 - Number of elements, spacing, aperture: $N' = \{23; 25; 26; 28; 30\}, d' = \frac{\lambda}{2}, L' = \{11.0; 12.0; 12.5; 13.5; 14.5\}$ [λ];
 - Positions: $x'_n \in [-L'/2, L'/2], y'_n = \lambda/4, n = 1, ..., N';$
 - Steering angle: $\phi_s = 90 \ [deg];$
 - Excitations: $I'_n = 1.0, \ \varphi'_n = \frac{-2\pi}{\lambda} x_n \sin(\phi_s + 90); \ n = 1, ..., N';$
- Virtual Geometry: same of step 1;
- QCTO: same of step 1.

1.3 Source Inversion (SI)

Figure 2: Geometry for (a) the virtual array in free-space, (b) the "physical-dense" array inside the lens and (c) the physical-SI array inside the lens.

Parameters

- Before SI
 - Number of elements: $N' = \{23; 25; 26; 28; 30\}, d' < \lambda/2;$
- $\bullet~{\rm After}~{\rm SI}$
 - Number of elements after SI: $N = 22, d = \frac{\lambda}{2}$;
 - Aperture: L = 10.5;
- Radius of the observation domain: $r_{SI} = 400 [\lambda];$
- Number of field sampling points: $n_{SI} = 1000$.

Case $w' = 26.7 \ [\lambda], \ N = 22 \rightarrow N' = 23$ 30 Virtual (Free-Space) 25 20 E_(x',y') [V/m] ్లో 15 0.8 10 5 0 -30 (a) $N' = 23, d' = \frac{\lambda}{2}$ 20 Distribution Difference w.r.t. virtual Physical (Aniso-Lens) Physical (Free-Space) 30 30 25 25 103 20 E₇(x,y)|[V/m] × 10³ 20 1.2 × [u/u] 0.8 |⊽E^z(x'λ)| 1.2 15 15 χŅ ζ, 0.8 10 10 0.4 5 5 0 ⊾ -30 0 ► -30 20 0 x/λ -20 -10 10 20 0 x/λ -20 -10 10 (b) $N = 22, d = \frac{\lambda}{2}$, No-SI (c)30 30 25 25 1.6 _€01 × 10³ 1.2 0.8 [[]√[X] × 10³ 0.8 $|E_z(x,y)|$ [V/m] × 10³ 20 20 1.2 15 10 15 χŅ y/y 0.8 10 0.4 5 0 -30 0 (d) $N = 22, d = \frac{\lambda}{2}, SI$ о х/л (е) -20 20 30

1.3.1 Near-Field Distribution ($\phi_s = 90$ [deg], f = 600 [MHz])

Figure 3: $\phi_s=90$ [deg], f=600 [MHz] - Electric field distributions.

Case $w' = 28.5 \ [\lambda], \ N = 22 \rightarrow N' = 25$

Figure 4: $\phi_s = 90$ [deg], f = 600 [MHz] - Electric field distributions.

Case $w' = 29.7 [\lambda], N = 22 \rightarrow N' = 26$

Figure 5: $\phi_s=90$ [deg], $f=600~[{\rm MHz}]$ - Electric field distributions.

Case $w' = 31.05 \ [\lambda], \ N = 22 \rightarrow N' = 28$

Figure 6: $\phi_s = 90$ [deg], f = 600 [MHz] - Electric field distributions.

Case $w' = 32.1 \ [\lambda], \ N = 22 \rightarrow N' = 30$

Figure 7: $\phi_s = 90$ [deg], f = 600 [MHz] - Electric field distributions.

Anisotropic Lens

Figure 8: $\phi_s = 90$ [deg], f = 600 [MHz] - Far field pattern comparison for different values of w'.

1.3.3 Final Summary (f = 600 [MHz])

Test Case 1 - w'=26.7 []], $N=22 \rightarrow N'=23$

	Virtual Array	Physics	al "Dense" A	rr ay	Physical-SI Array			
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)	
Number of elements	23		23			22		
Aperture $[\lambda]$	11.0		10.23			10.5		
Spacing $[\lambda]$	0.5		< 0.5		0.5			
Aperture Ratio (w.r.t. virtual)	-		0.93		0.95			
	Steering at $\phi_s = 90 \ [deg], f = 600 \ [MHz]$							
$SLL \ [dB]$	13.21	13.19	13.25	-	13.20	13.30	-	
FNBW [deg]	9.99	10.71	9.63	-	10.35	9.45	-	
HPBW [deg]	4.41	4.74	4.29	-	4.61	4.23	-	
D_{\max} [dB]	15.57	15.26	15.70	-	15.37	15.80	-	
Matching Error, ξ (w.r.t. virtual, outside lens)	-	4.10×10^{-1}	2.14×10^{-1}	-	2.66×10^{-1}	2.40×10^{-1}	-	

Table III: Test case 1 - $w^{'}=26.7~[\lambda]:$ Summary.

Test Case 2 - w'=28.5 []], $N=22\rightarrow N'=25$

	Virtual Array	Physical "Dense" Array			Physical-SI Array			
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)	
Number of elements	25		22			22		
Aperture $[\lambda]$	12.00		10.41		10.5			
Spacing $[\lambda]$	0.5	< 0.5 0.5						
Aperture Ratio (w.r.t. virtual)	-	0.87 0.875						
		Steering at $\phi_s = 90$ [deg], $f = 600$ [MHz]						
$SLL \ [dB]$	13.21	13.22	13.22	-	13.20	13.23	-	
FNBW [deg]	9.09	10.53	8.91	-	10.35	8.91	-	
HPBW [deg]	4.05	4.67	3.94	-	4.61	3.91	-	
$D_{\max} \left[dB \right]$	15.93	15.32	16.06	-	15.37	16.11	-	
Matching Error, ξ (w.r.t. virtual, outside lens)	-	5.92×10^{-1}	1.82×10^{-1}	-	5.47×10^{-1}	1.99×10^{-1}	-	

Table IV: Test case 2 - $w^{'} = 28.5 \ [\lambda]$: Summary.

Test Case 3 - w'=29.7 []], $N=22 \rightarrow N'=26$

	Virtual Array	Physical "Dense" Array Physical-SI Array						
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)	
Number of elements	26		26 22					
Aperture $[\lambda]$	12.5		10.28		10.5			
Spacing $[\lambda]$	0.5	< 0.5 0.5						
Aperture Ratio (w.r.t. virtual)	-	0.822 0.84						
		Steering at $\phi_s = 90$ [deg], $f = 600$ [MHz]						
$SLL \ [dB]$	13.21	13.23	13.20	-	13.20	13.27	-	
FNBW [deg]	8.73	10.71	8.73	-	10.35	8.55	-	
HPBW [deg]	3.90	4.74	3.81	-	4.61	3.78	-	
$D_{\max} \left[dB \right]$	16.10	15.27	16.19	-	15.37	16.27	-	
Matching Error, ξ (w.r.t. virtual, outside lens)	-	6.00×10^{-1}	1.15×10^{-1}	-	5.56×10^{-1}	1.58×10^{-1}	-	

Table V: Test case 3 - $w^{'}=29.7$ []: Summary.

Test Case 4 - $w' = 31.05 \ [\lambda], \ N = 22 \rightarrow N' = 28$

	Virtual Array	Physical "Dense" Array			Physical-SI Array			
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)	
Number of elements	28		28			22		
Aperture $[\lambda]$	13.5		10.42		10.5			
Spacing $[\lambda]$	0.5	< 0.5 0.5						
Aperture Ratio (w.r.t. virtual)	-		0.771			0.778		
	Steering at $\phi_s = 90$ [deg], $f = 600$ [MHz]							
$SLL \ [dB]$	13.21	13.21	13.15	-	13.20	13.20	-	
FNBW [deg]	8.19	10.53	8.19	-	10.35	8.19	-	
HPBW [deg]	3.62	4.69	3.65	-	4.61	3.62	-	
$D_{\max} \left[dB \right]$	16.42	15.32	16.39	-	15.37	16.44	-	
Matching Error, ξ (w.r.t. virtual, outside lens)	-	6.91×10^{-1}	1.38×10^{-1}	-	6.05×10^{-1}	1.31×10^{-1}	-	

Table VI: Test case 4 - $w^{'}=31.05\;[\lambda]:$ Summary.

Test Case 5 - w'=32.1 []], $N=22\rightarrow N'=30$

	Virtual Array	Physical "Dense" Array			Physical-SI Array			
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)	
Number of elements	30	30 22						
Aperture $[\lambda]$	14.5	10.64 10.5						
Spacing $[\lambda]$	0.5	< 0.5 0.5						
Aperture Ratio (w.r.t. virtual)	-	0.73 0.72						
		Steering at $\phi_s = 90$ [deg], $f = 600$ [MHz]						
$SLL \ [dB]$	13.23	13.24	13.12	-	13.20	13.09		
FNBW [deg]	7.65	10.35	7.83	-	10.35	7.83	-	
HPBW [deg]	3.38	4.61	3.46	-	4.61	3.48	-	
$D_{\max} \left[dB \right]$	16.72	15.40	16.61	-	15.37	16.57	-	
Matching Error, ξ (w.r.t. virtual, outside lens)	-	7.33×10^{-1}	2.17×10^{-1}	-	6.43×10^{-1}	2.44×10^{-1}	-	

Table VII: Test case 5 - $w^{'} = 32.1 \ [\lambda]$: Summary.

1.3.4 Final Summary: Performances vs. w' (vs. N')

Steering at $\phi_s = 90$ [deg]

This figure compares the pattern characteristics of

- 1. Original array (N = 22 elements, $d = \lambda/2$, Free-Space) GREY;
- 2. Target array (N' > N elements, $d = \lambda/2$, Free-Space) RED;
- 3. QCTO-SI array (N = 22 elements, $d = \lambda/2$, Anisotropic Lens + SI) CYAN;

Figure 9: Aniso-Lens, f = 600 [MHz] - Pattern performances vs w' (vs. N').

Figure 10: Maximum directivity (D_{max}) and HPBW of the physical array with N = 22 elements (after SI and inside the anisotropic lens) vs. anisotropy of the lens and its permittivity ranges, for different steering angles (ϕ_s) .

References

- G. Oliveri, G. Gottardi, F. Robol, A. Polo, L. Poli, M. Salucci, M. Chuan, C. Massagrande, P. Vinetti, M. Mattivi, R. Lombardi, and A. Massa, "Co-design of unconventional array architectures and antenna elements for 5G base station," *IEEE Trans. Antennas Propag.*, vol. 65, no. 12, pp. 6752-6767, Dec. 2017.
- [2] P. Rocca, G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies - A review," *Proc. IEEE*, vol. 104, no. 3, pp. 544-560, Mar. 2016.
- [3] G. Oliveri, M. Salucci, N. Anselmi and A. Massa, "Multiscale System-by-Design synthesis of printed WAIMs for waveguide array enhancement," *IEEE J. Multiscale Multiphysics Computat. Techn.*, vol. 2, pp. 84-96, 2017.
- [4] A. Massa and G. Oliveri, "Metamaterial-by-Design: Theory, methods, and applications to communications and sensing - Editorial," EPJ Applied Metamaterials, vol. 3, no. E1, pp. 1-3, 2016.
- [5] L. Poli, G. Oliveri, P. Rocca, M. Salucci, and A. Massa, "Long-Distance WPT Unconventional Arrays Synthesis," J. Electromagnet. Wave., vol. 31, no. 14, pp. 1399-1420, Jul. 2017.
- [6] G. Oliveri, F. Viani, N. Anselmi, and A. Massa, "Synthesis of multi-layer WAIM coatings for planar phased arrays within the system-by-design framework," *IEEE Trans. Antennas Propag.*, vol. 63, no. 6, pp. 2482-2496, Jun. 2015.
- [7] G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, "An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses," *IEEE Antennas Wireless Propag. Lett.*, vol. 13, pp. 1783-1786, 2014.
- [8] G. Oliveri, D. H. Werner, and A. Massa, "Reconfigurable electromagnetics through metamaterials A review" Proc. IEEE, vol. 103, no. 7, pp. 1034-1056, Jul. 2015.
- [9] G. Oliveri, E. T. Bekele, M. Salucci, and A. Massa, "Transformation electromagnetics miniaturization of sectoral and conical horn antennas," *IEEE Trans. Antennas Propag.*, vol. 64, no. 4, pp. 1508-1513, Apr. 2016.
- [10] G. Oliveri, E. T. Bekele, M. Salucci, and A. Massa, "Array miniaturization through QCTO-SI metamaterial radomes," *IEEE Trans. Antennas Propag.*, vol. 63, no. 8, pp. 3465-3476, Aug. 2015.
- [11] G. Oliveri, E. T. Bekele, D. H. Werner, J. P. Turpin, and A. Massa, "Generalized QCTO for metamateriallens-coated conformal arrays," *IEEE Trans. Antennas Propag.*, vol. 62, no. 8, pp 4089-4095, Aug. 2014.
- [12] G. Oliveri, E. Bekele, M. Carlin, L. Tenuti, J. Turpin, D. H. Werner, and A. Massa, "Extended QCTO for innovative antenna system designs," IEEE Antenna Conference on Antenna Measurements and Applications (CAMA 2014), pp. 1-3, Nov. 16-19, 2014.
- [13] G. Oliveri, P. Rocca, M. Salucci, E. T. Bekele, D. H. Werner, and A. Massa, "Design and synthesis of innovative metamaterial-enhanced arrays," IEEE International Symposium on Antennas Propag. (APS/URSI 2013), Orlando, Florida, USA, pp. 972 - 973, Jul. 7-12, 2013.

- [14] G. Oliveri, "Improving the reliability of frequency domain simulators in the presence of homogeneous metamaterials - A preliminary numerical assessment," *Progress In Electromagnetics Research*, vol. 122, pp. 497-518, 2012.
- [15] M. Salucci, G. Oliveri, N. Anselmi, G. Gottardi, and A. Massa, "Performance enhancement of linear active electronically-scanned arrays by means of MbD-synthesized metalenses," J. Electromagnet. Wave., vol. 0, no. 0, pp. 1-29, 2017 (DOI: 10.1080/09205071.2017.1410077).