A QCTO-SI Method for the Design of Enhancing Lenses for Linear Antenna Arrays

M. Salucci, G. Oliveri, N. Anselmi, G. Gottardi, and A. Massa

Abstract

In this work a novel material-by-design (*MbD*) strategy is proposed to address the problem of enhancing the radiation performance (in terms of directivity and side-lobe level) of existing linear phased arrays. Thanks to the integration of the quasi-conformal transformation optics (*QCTO*) technique with a customized source inversion (*SI*) strategy, the proposed approach enables the synthesis of meta-material lenses with reduced anisotropy indexes that are able to significantly enhance the radiation characteristics of linear antenna arrays, letting them mimic the performance of larger apertures. To prove the effectiveness of the *MbD* methodology, some numerical benchmarks are reported and discussed.

1 Half-Cosine Profile - $h' = 4.0 [\lambda], l' = 1.0 [\lambda], t' = 9.0 [\lambda], N = 15$ -Analysis vs. w'

1.1 Step 1: Expanding the physical array $(N = 15, L = 7.0 [\lambda])$

Input Parameters

Figure 1: Transformation regions. The lower side of both virtual and physical boundaries are supposed to be PEC.

• Virtual Geometry

# Test Case	$h'[\lambda]$	$l'[\lambda]$	$t' [\lambda]$	$w' [\lambda]$
1	4.0	1.0	9.0	9.9
2	4.0	1.0	9.0	10.6
3	4.0	1.0	9.0	11.3
4	4.0	1.0	9.0	11.9
5	4.0	1.0	9.0	12.5

Table I: Considered virtual geometries. The values of w' have been empirically determined in order to achieve an aperture of the virtual array (L') equal to a multiple of $\lambda/2$. It is imposed that h = h', while w is not controlled by the user.

• Physical Array

- Number of elements, spacing, aperture: $N = 15, d = \frac{\lambda}{2}, L = 7.0 [\lambda];$
- Positions: $x_n \in [-L/2, L/2], y_n = \frac{\lambda}{4}, n = 1, ..., N;$
- Steering angle: $\phi_s = 90.0 \ [deg];$
- Excitations: $I_n = 1.0, \varphi_n = \frac{-2\pi}{\lambda} x_n \sin(\phi_s + 90); n = 1, ..., N;$

• QCTO

- Discretization cell dimension: 0.15 [λ] (0.01 [λ] for source mapping);

1.1.1 Results

Transformation grids

Figure 2: Transformation grids for different values of w'. Physical geometry has been shifted on y by h/2 = 2.0 [λ].

Resulting aperture of the virtual array (L') - for step 2

- The aperture of the virtual array (L') is computed after mapping the physical array into the virtual space;
- The resulting number of equi-spaced elements is computed as

$$N' = round\left(\frac{L'}{0.5} + 1\right)$$

	Vi	rtual (Geome	try	Virtua	al Array
# Test Case	$h'[\lambda]$	$l' [\lambda]$	$t' [\lambda]$	$w' [\lambda]$	$L'[\lambda]$	N'
1	4.0	1.0	9.0	9.9	7.50	16
2	4.0	1.0	9.0	10.6	7.97	17
3	4.0	1.0	9.0	11.3	8.50	18
4	4.0	1.0	9.0	11.9	8.98	19
5	4.0	1.0	9.0	12.5	9.51	20

Table II: Resulting aperture and number of equi-spaced elements of the virtual array after expanding the physical array.

1.2 Step 2: Compressing the virtual array $(N' > N, L' > L [\lambda])$

Input Parameters

- Virtual Array
 - Number of elements, spacing, aperture: $N' = \{16; 17; 18; 19; 20\}, d' = \frac{\lambda}{2}, L' = \{7.5; 8.0; 8.5; 9.0; 9.5\}$ [λ];
 - Positions: $x'_n \in [-L'/2, L'/2], y'_n = \lambda/4, n = 1, ..., N';$
 - Steering angle: $\phi_s = 90.0 \ [deg];$
 - Excitations: $I'_n = 1.0, \ \varphi'_n = \frac{-2\pi}{\lambda} x_n \sin(\phi_s + 90); \ n = 1, ..., N';$
- Virtual Geometry: same of step 1;
- QCTO: same of step 1.

1.2.1 Results of the Transformation

Transformation grids

Figure 3: Transformation grids for different values of w'. Physical geometry has been shifted on y by h/2 = 2.0 [λ].

Lens Permittivity - $w' = 9.9 [\lambda]$

Figure 4: Components of the relative permittivity tensor of the lens.

Figure 5: Isotropic approximate permittivity distribution of the lens.

Figure 6: Components of the relative permittivity tensor of the lens.

Lens Permittivity - $w'=10.6~[\lambda]$

Figure 7: Isotropic approximate permittivity distribution of the lens.

Lens Permittivity - $w' = 11.3 [\lambda]$

Figure 8: Components of the relative permittivity tensor of the lens.

Figure 9: Isotropic approximate permittivity distribution of the lens.

Figure 10: Components of the relative permittivity tensor of the lens.

Lens Permittivity - $w' = 11.9 [\lambda]$

Figure 11: Isotropic approximate permittivity distribution of the lens.

Lens Permittivity - $w' = 12.5 [\lambda]$

Figure 12: Components of the relative permittivity tensor of the lens.

Figure 13: Isotropic approximate permittivity distribution of the lens.

Parameter	$w^{'}=9.9\;[\lambda]$	$w^{'}=10.6~[\lambda]$	$w^{'}=11.3\;[\lambda]$	$w^{'} = 11.9 \; [\lambda]$	$w^{'} = 12.5 \; [\lambda]$
$\text{Height}, \ h \ [\lambda]$	4.00	4.00	4.00	4.00	4.00
Width, $w[\lambda]$	9.16	9.17	9.12	9.02	8.91
Anisotropic Permittivity Range	[-0.11, 1.44]	[-0.20, 1.95]	[-0.30, 2.65]	[-0.39, 3.48]	[-0.48, 4.53]
Isotropic Permittivity Range	[0.00, 1.42]	[0.00, 1.90]	[0.00, 2.59]	[0.00, 3.37]	[0.00, 4.33]
Average Fractional Anisotropy, α_F	5.66×10^{-2}	1.01×10^{-1}	1.44×10^{-1}	1.81×10^{-1}	2.15×10^{-1}
Average Relative Anisotropy, α_R	4.67×10^{-2}	8.43×10^{-2}	1.23×10^{-1}	1.57×10^{-1}	1.90×10^{-1}

Physical Lens Parameters

Table III: Transformation statistics. Note that we impose h = h', while w is internally chosen by the QCTO software.

Anisotropic Lens

Figure 14: Far field pattern comparison for different values of w'.

Isotropic Lens

Figure 15: Far field pattern comparison for different values of w'.

1.2.3 Summary ($\phi_s = 90$ [deg], f = 600 [MHz])

	$w' = 9.9 [\lambda]$			
	Virtual Array	F	Physical Arra	ıy
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens
Number of elements	16		16	
Spacing $[\lambda]$	0.5		< 0.5	
Aperture $[\lambda]$	7.5		6.99	
$D_{\max}\left[dB\right]$	13.97	13.72	13.82	13.70
SLL [dB]	13.11	13.26	12.66	13.11
FNBW [deg]	14.32	15.40	14.50	15.22
3dB Beamwidth [deg]	6.36	6.80	6.46	6.71
Matching Error, \mathcal{E} (w.r.t. virtual, outside lens)	_	3.50×10^{-1}	3.74×10^{-1}	5.77×10^{-1}
	$w' = 10.6 [\lambda]$			
	$\frac{\omega}{\mathbf{Virtual A rrav}}$	F	Physical Arra	W
Environment	Free Space	Free Space	Aniso Lons	Leo Long
Number of elements	17	Free-space	17	150-Lens
	17		17	
	0.0		< 0.3	
$\frac{1}{ \lambda }$	8.0	10.71	7.01	10.00
$\frac{D_{\max}\left[dB\right]}{\left[dB\right]}$	14.25	13.71	13.88	13.60
	13.16	13.27	12.41	12.92
FNBW [deg]	13.60	15.58	13.96	15.22
3dB Beamwidth [deg]	5.97	6.83	6.23	6.72
Matching Error, ξ (w.r.t. virtual, outside lens)	-	5.82×10^{-1}	5.41×10^{-1}	9.06×10^{-1}
	$w' = 11.3 \left[\lambda\right]$			
	Virtual Array	F	Physical Arra	ıy
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens
Number of elements	18		18	
Spacing $[\lambda]$	0.5		< 0.5	
Aperture $[\lambda]$	8.5		6.97	
$D_{\max}\left[dB ight]$	14.50	13.68	13.86	13.38
SLL [dB]	13.14	13.33	12.37	12.27
FNBW [deg]	12.79	15.76	13.69	15.58
3dB Beamwidth [deg]	5.64	6.90	6.10	6.84
Matching Error, ξ (w.r.t. virtual, outside lens)	-	6.99×10^{-1}	5.54×10^{-1}	1.13
0 /3 ($w' = 11.9 [\lambda]$			
	Virtual Array	F	Physical Arra	v
Environment	Free-Space	Free-Space	Aniso-Lens	J Iso-Lens
Number of elements	10	Tiee Space	19	ino Temp
Spacing []	0.5		< 0.5	
	9.0		6.96	
$\frac{D}{D} \begin{bmatrix} dB \end{bmatrix}$	14 73	13.65	13.76	13.00
$\frac{D_{\max} \left[dD \right]}{SII \left[dD \right]}$	14.75	12.00	10.70	11.09
ENDW [dog]	13.00	15.21	12.10	11.41
2 dD Deermwidth [deer]	12.07	10.70 6.07	6.04	10.46
3aB Beamwidth [deg]	0.30	0.97	0.04	1.07
Matching Error, ξ (w.r.t. virtual, outside lens)	-	6.89×10^{-1}	0.41×10^{-1}	1.34
	$w' = 12.5 \left[\lambda\right]$			
	Virtual Array	H L	hysical Arra	iy L T T
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens
Number of elements	20		20	
Spacing $[\lambda]$	0.5		< 0.5	
Aperture $[\lambda]$	9.5		6.94	
$\overline{D_{\max}\left[dB ight]}$	14.96	13.63	13.53	12.73
		19.90	12.12	15.46
$SLL \ [dB]$	13.18	19.99		
$\frac{SLL \ [dB]}{FNBW \ [deg]}$	13.18 11.44	15.94	13.60	29.99
SLL [dB] FNBW [deg] 3dB Beamwidth [deg]	$ 13.18 \\ 11.44 \\ 5.06 $	15.94 7.04	13.60 6.08	29.99 7.38

Table IV: Summary for step 2.

1.3 Source Inversion (SI)

Parameters

 $\bullet~{\rm Before~SI}$

– Number of elements: $N' = \{16; 17; 18; 19; 20\}, \, d' < \lambda/2;$

- $\bullet~{\rm After}~{\rm SI}$
 - Number of elements after SI: $N = 15, d = \frac{\lambda}{2}$;
 - Aperture: L = 7.0;
- Radius of the observation domain: $r_{SI} = 50.0 \ [\lambda];$
- Number of field sampling points: $n_{SI} = 1000$.

Anisotropic Lens

Figure 16: $\phi_s = 90$ [deg], f = 600 [MHz] - Far field pattern comparison for different values of w'.

Isotropic Lens

Figure 17: $\phi_s = 90$ [deg], f = 600 [MHz] - Far field pattern comparison for different values of w'.

1.3.2 Final Summary ($\phi_s = 90$ [deg], f = 600 [MHz])

	$w' = 9.9 \left[\lambda\right]$			
	Virtual Array		hysical Array	
Environment Number of elements	Free-Space	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)
Spacing [)]	10		15	
$\frac{\text{Spacing } [\lambda]}{\text{A perture } [\lambda]}$	7.5		7.0	
$D_{\text{max}}[dB]$	13.97	13.71	13.81	13.69
$\frac{1}{SLL \ [dB]}$	13.11	13.08	12.67	13.15
FNBW [deg]	14.32	15.31	14.50	15.22
3dB Beamwidth [deg]	6.36	6.76	6.46	6.72
Matching Error, ξ (w.r.t. virtual, outside lens)	-	3.24×10^{-1}	3.75×10^{-1}	5.76×10^{-1}
	$w' = 10.6 \left[\lambda\right]$			•
	Virtual Array	P	hysical Array	
Environment	Free-Space	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)
Number of elements	17		15	
Spacing $[\lambda]$	0.5		0.5	
Aperture $[\lambda]$	8.0		7.0	
$D_{\max} \left[dB ight]$	14.25	13.71	13.88	13.59
$SLL \ [dB]$	13.16	13.08	12.53	13.07
FNBW [deg]	13.60	15.31	14.05	15.40
3dB Beamwidth [deg]	5.97	6.76	6.24	6.74
Matching Error, ξ (w.r.t. virtual, outside lens)	-	5.57×10^{-1}	5.47×10^{-1}	9.13×10^{-1}
	$w' = 11.3 [\lambda]$			
	Virtual Array		hysical Array	
Environment	Free-Space	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)
Number of elements	18		15	
$\frac{\text{Spacing } [\lambda]}{\lambda}$	0.5		0.5	
$\frac{A \text{ perture } [\lambda]}{D [JB]}$	8.5	19.71	(.0	19.90
$\frac{D_{\max}\left[aB\right]}{CLL\left[JD\right]}$	14.00	13.71	13.87	13.38
ENBW [dog]	13.14 12.70	15.08	12.32	12.35
3dB Beamwidth [deg]	5.64	6.76	6.12	6.88
$\frac{5aD}{\text{Matching Error } \mathcal{E}(\text{w.r.t. virtual outside lens})}$	5.04	6.60×10^{-1}	5.63×10^{-1}	1.09
statening Error; ç (w.r.t. virtual; outside lens)	w' = 11.0 [)	0.00 × 10	0.00 × 10	1.05
	$w = 11.9 [\lambda]$	וס	ausiaal Arrau	
Environment	Free Space	Free Space (No SI)	Aniso Long (SI)	Iso Long (SI)
Number of elements	19		15	130 Lens (51)
Spacing []	0.5		0.5	
Aperture $[\lambda]$	9.0		7.0	
$\frac{D_{\text{partial}}[r]}{D_{\text{max}}[dB]}$	14.73	13.71	13.78	13.11
SLL [dB]	13.06	13.08	12.34	11.89
FNBW [deg]	12.07	15.31	13.69	17.02
3dB Beamwidth [deg]	5.35	6.76	6.07	7.16
Matching Error, ξ (w.r.t. virtual, outside lens)	-	6.46×10^{-1}	6.15×10^{-1}	1.29
	$w' = 12.5 \left[\lambda\right]$			•
	1 · · ·	P	hysical Array	
	Virtual Array			Inc. Long. (CI)
Environment	Virtual Array Free-Space	Free-Space (No-SI)	Aniso-Lens (SI)	I ISO-Lens (51)
Environment Number of elements	Virtual Array Free-Space 20	Free-Space (No-SI)	Aniso-Lens (SI) 15	Iso-Lens (51)
${ m Environment} \ { m Number of elements} \ { m Spacing} [\lambda]$	Virtual Array Free-Space 20 0.5	Free-Space (No-SI)	Aniso-Lens (SI) 15 0.5	ISO-Lens (51)
$\begin{array}{c} \text{Environment} \\ \hline \text{Number of elements} \\ \hline \text{Spacing } [\lambda] \\ \hline \text{Aperture } [\lambda] \end{array}$	Virtual Array Free-Space 20 0.5 9.5	Free-Space (No-SI)	Aniso-Lens (SI) 15 0.5 7.0	ISO-Lens (51)
$\begin{array}{c} \text{Environment} \\ \text{Number of elements} \\ \text{Spacing } [\lambda] \\ \text{Aperture } [\lambda] \\ D_{\max} \ [dB] \end{array}$	Virtual Array Free-Space 20 0.5 9.5 14.96	Free-Space (No-SI) 13.71	Aniso-Lens (SI) 15 0.5 7.0 13.63	12.80
$\begin{array}{c} \text{Environment} \\ \text{Number of elements} \\ \text{Spacing } [\lambda] \\ \text{Aperture } [\lambda] \\ \hline D_{\max} \ [dB] \\ SLL \ [dB] \end{array}$	Virtual Array Free-Space 20 0.5 9.5 14.96 13.18	Free-Space (No-SI) 13.71 13.08	Aniso-Lens (SI) 15 0.5 7.0 13.63 12.42	12.80 16.60
$ \begin{array}{c} \text{Environment} \\ \text{Number of elements} \\ \text{Spacing } [\lambda] \\ \text{Aperture } [\lambda] \\ \\ D_{\max} \ [dB] \\ \\ \hline SLL \ [dB] \\ \\ \hline FNBW \ [\text{deg}] \\ \end{array} $	Virtual Array Free-Space 20 0.5 9.5 14.96 13.18 11.44	Free-Space (No-SI) 13.71 13.08 15.31	Aniso-Lens (SI) 15 0.5 7.0 13.63 12.42 13.69	12.80 16.60 30.70
$ \begin{array}{c} & \text{Environment} \\ & \text{Number of elements} \\ & \text{Spacing } [\lambda] \\ & \text{Aperture } [\lambda] \\ & D_{\max} [dB] \\ & SLL [dB] \\ \hline & FNBW [\text{deg}] \\ & 3dB \text{ Beamwidth } [\text{deg}] \\ \end{array} $	Virtual Array Free-Space 20 0.5 9.5 14.96 13.18 11.44 5.06	Free-Space (No-SI) 13.71 13.08 15.31 6.76	Aniso-Lens (SI) 15 0.5 7.0 13.63 12.42 13.69 6.09 6.09	12.80 16.60 30.70 7.50

1.3.3 Final Summary: Performances vs. w' (vs. N')

Anisotropic Lens - $\phi_s = 90$ [deg]

This figure compares the pattern characteristics of

- 1. Original array (N = 15 elements, $d = \lambda/2$, Free-Space) GREY;
- 2. Target array (N' > N elements, $d = \lambda/2$, Free-Space) RED;
- 3. QCTO-SI array (N = 15 elements, $d = \lambda/2$, Anisotropic Lens + SI) CYAN;

Figure 18: Aniso-Lens, f = 600 [MHz] - Pattern performances vs w' (vs. N').

2 Half-Cosine Profile - $h' = 4.0 \ [\lambda], \ l' = 0.0 \ [\lambda], \ t' = 9.0 \ [\lambda], \ N = 15$ -Analysis vs. w'

What Changed?

With respect to the previous test case, here we change the value of l'

$$l^{'} = 1.0[\lambda] \rightarrow 0.0[\lambda]$$

all other parameters (i.e., $h^{'}, l^{'}, N$) are kept.

NOTE: The values of w' must be however re-determined for this new configuration.

2.1 Step 1: Expanding the physical array $(N = 15, L = 7.0 [\lambda])$

Figure 19: Transformation regions. The lower side of both virtual and physical boundaries are supposed to be PEC.

• Virtual Geometry

# Test Case	$h' [\lambda]$	$l' [\lambda]$	$t' [\lambda]$	$w' [\lambda]$
1	4.0	0.0	9.0	10.3
2	4.0	0.0	9.0	11.3
3	4.0	0.0	9.0	12.1
4	4.0	0.0	9.0	12.9
5	4.0	0.0	9.0	13.6

Table VI: Considered virtual geometries. The values of w' have been empirically determined in order to achieve an aperture of the virtual array (L') equal to a multiple of $\lambda/2$. It is imposed that h = h', while w is not controlled by the user.

• Physical Array

- Number of elements, spacing, aperture: $N = 15, d = \frac{\lambda}{2}, L = 7.0 [\lambda];$
- Positions: $x_n \in [-L/2, L/2], y_n = \frac{\lambda}{4}, n = 1, ..., N;$

- Steering angle: $\phi_s = 90.0 \ [deg];$
- Excitations: $I_n = 1.0, \ \varphi_n = \frac{-2\pi}{\lambda} x_n \sin(\phi_s + 90); \ n = 1, ..., N;$

• QCTO

- Discretization cell dimension: 0.15 [λ] (0.01 [λ] for source mapping);

2.1.1 Results

Transformation grids

Figure 20: Transformation grids for different values of w'. Physical geometry has been shifted on y by h/2 = 2.0 [λ].

Resulting aperture of the virtual array (L') - for step 2

- The aperture of the virtual array (L') is computed after mapping the physical array into the virtual space;
- The resulting number of equi-spaced elements is computed as

$$N' = round\left(\frac{L'}{0.5} + 1\right)$$

	Vi	rtual (Geome	try	Virtua	al Array
# Test Case	$h'[\lambda]$	$l' [\lambda]$	$t' [\lambda]$	$w' [\lambda]$	$L'[\lambda]$	N'
1	4.0	0.0	9.0	10.3	7.52	16
2	4.0	0.0	9.0	11.3	8.02	17
3	4.0	0.0	9.0	12.1	8.49	18
4	4.0	0.0	9.0	12.9	9.01	19
5	4.0	0.0	9.0	13.6	9.52	20

Table VII: Resulting aperture and number of equi-spaced elements of the virtual array after expanding the physical array.

2.2 Step 2: Compressing the virtual array $(N' > N, L' > L [\lambda])$

Input Parameters

- Virtual Array
 - Number of elements, spacing, aperture: $N' = \{16; 17; 18; 19; 20\}, d' = \frac{\lambda}{2}, L' = \{7.5; 8.0; 8.5; 9.0; 9.5\}$ [λ];
 - Positions: $x'_n \in [-L'/2, L'/2], y'_n = \lambda/4, n = 1, ..., N';$
 - Steering angle: $\phi_s = 90.0 \ [deg];$
 - Excitations: $I'_n = 1.0, \ \varphi'_n = \frac{-2\pi}{\lambda} x_n \sin(\phi_s + 90); \ n = 1, ..., N';$
- Virtual Geometry: same of step 1;
- QCTO: same of step 1.

2.2.1 Results of the Transformation

Transformation grids

Figure 21: Transformation grids for different values of w'. Physical geometry has been shifted on y by h/2 = 2.0 [λ].

Lens Permittivity - $w' = 10.3 [\lambda]$

Figure 22: Components of the relative permittivity tensor of the lens.

Figure 23: Isotropic approximate permittivity distribution of the lens.

Figure 24: Components of the relative permittivity tensor of the lens.

Lens Permittivity - $w' = 11.3 \ [\lambda]$

Figure 25: Isotropic approximate permittivity distribution of the lens.

Lens Permittivity - $w' = 12.1 [\lambda]$

Figure 26: Components of the relative permittivity tensor of the lens.

Figure 27: Isotropic approximate permittivity distribution of the lens.

Figure 28: Components of the relative permittivity tensor of the lens.

Lens Permittivity - $w' = 12.9 [\lambda]$

Figure 29: Isotropic approximate permittivity distribution of the lens.

Lens Permittivity - $w' = 13.6 [\lambda]$

Figure 30: Components of the relative permittivity tensor of the lens.

Figure 31: Isotropic approximate permittivity distribution of the lens.

Parameter	$w^{'}=10.3\;[\lambda]$	$w^{'}=11.3\;[\lambda]$	$w^{'} = 12.1 \; [\lambda]$	$w^{'} = 12.9 \; [\lambda]$	$w^{'}=13.6~[\lambda]$
Height, $h[\lambda]$	4.00	4.00	4.00	4.00	4.00
Width, $w[\lambda]$	9.51	9.72	9.78	9.76	9.71
Anisotropic Permittivity Range	[-0.11, 1.46]	[-0.21, 2.03]	[-0.30, 2.67]	[-0.39, 3.51]	[-0.47, 4.43]
Isotropic Permittivity Range	[0.00, 1.44]	[0.00, 1.99]	[0.00, 2.59]	[0.00, 3.41]	[0.00, 4.35]
Average Fractional Anisotropy, α_F	7.35×10^{-2}	1.28×10^{-1}	1.71×10^{-1}	2.12×10^{-1}	2.47×10^{-1}
Average Relative Anisotropy, α_R	6.06×10^{-2}	1.07×10^{-1}	1.46×10^{-1}	1.84×10^{-1}	2.19×10^{-1}

Physical Lens Parameters

Table VIII: Transformation statistics. Note that we impose h = h', while w is internally chosen by the QCTO software.

Virtual Grid Orthogonality

Figure 32: Orthogonality of the virtual grid for different values of w'.

Figure 33: Electric field distributions.

Case $w' = 11.3 [\lambda], N' = 17$

Figure 34: Electric field distributions.

Case $w' = 12.1 \ [\lambda], \ N' = 18$

Figure 35: Electric field distributions.

Case $w' = 12.9 [\lambda], N' = 19$

Figure 36: Electric field distributions.

Case $w' = 13.6 [\lambda], N' = 20$

Figure 37: Electric field distributions.

Anisotropic Lens

Figure 38: Far field pattern comparison for different values of w'.

Isotropic Lens

Figure 39: Far field pattern comparison for different values of w'.

2.2.4 Summary ($\phi_s = 90$ [deg], f = 600 [MHz])

	$w' = 10.3 \left[\lambda\right]$			
	Virtual Array	F	Physical Arra	y
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens
Number of elements	16		16	
Spacing $[\lambda]$	0.5		< 0.5	
Aperture $[\lambda]$	7.5		6.98	
$D_{\max}\left[dB\right]$	13.97	13.70	13.98	13.83
SLL [dB]	13.11	13.07	13.00	13.88
FNBW [deg]	14.32	15.40	14.05	15.04
3dB Beamwidth [deg]	6.36	6.81	6.2	6.57
Matching Error, ξ (w.r.t. virtual, outside lens)	-	3.59×10^{-1}	4.36×10^{-1}	5.36×10^{-1}
	$w' = 11.3 [\lambda]$			
	Virtual Array	F	Physical Arra	v
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens
Number of elements	17	Tree Space	17	150 Lens
Specing []]	0.5		< 0.5	
	8.0		6.07	
$\frac{P_{\text{Aperture}}[\lambda]}{D_{\text{Aperture}}[dB]}$	14.25	12.67	14.10	12.06
$\frac{D_{\max}\left[uD\right]}{CII\left[dD\right]}$	14.20	13.07	14.19	13.90
ENDW [dom]	13.10	15.21	12.00	14.33
	13.60	15.58	13.24	14.80
3 <i>aB</i> Beamwidth [deg]	5.97	0.89	5.82	0.39
Matching Error, ξ (w.r.t. virtual, outside lens)	-	0.05×10^{-1}	5.57×10^{-1}	8.19×10
	$w' = 12.1 \left[\lambda\right]$			
	Virtual Array	F	Physical Arra	y
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens
Number of elements	18		18	
Spacing $[\lambda]$	0.5		< 0.5	
Aperture $[\lambda]$	8.5		6.98	
$D_{\max} \left[dB ight]$	14.50	13.70	14.27	13.99
$SLL \ [dB]$	13.14	13.24	12.69	14.37
FNBW [deg]	12.79	15.58	12.70	14.68
3dB Beamwidth [deg]	5.64	6.86	5.62	6.32
Matching Error, ξ (w.r.t. virtual, outside lens)	-	6.94×10^{-1}	5.49×10^{-1}	1.03
	$w' = 12.9 [\lambda]$	1		
	Virtual Array	I I	Physical Arra	v
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens
Number of elements	19	1100 Space	19	100 2010
$\frac{1}{2}$	0.5		< 0.5	
$\frac{1}{1}$	9.0		6 95	
D [dB]	14 73	13.65	14.24	13.03
$\frac{D_{\max} [uD]}{SII [dB]}$	13.06	13.00	19.24	11.35
	12.07	15.30	12.01	14.45
2dB Boomwidth [dog]	5.25	6.06	5.40	6.38
Matching Error 6 (mr.t. virtual outside long)	0.00	0.90	6.22×10^{-1}	0.30
Matching Error, ξ (w.r.t. virtual, outside lens)	-	0.90×10	0.53×10	1.51
	$w' = 13.6 \left[\lambda\right]$	-		
	Virtual Array	l l	hysical Arra	y
Environment	Free-Space	Free-Space	Aniso-Lens	Iso-Lens
Number of elements	20		20	
Spacing $[\lambda]$	0.5		< 0.5	
Aperture $[\lambda]$	9.5		6.94	
		13.63	14.15	13.87
$D_{\max} \left[dB \right]$	14.96	10.00		
$\frac{D_{\max} [dB]}{SLL [dB]}$	14.96 13.18	13.35	12.54	14.54
	14.96 13.18 11.44	$ 13.35 \\ 15.85 $	12.54 12.25	14.54 15.04
$ \begin{array}{c} D_{\text{max}} \left[dB \right] \\ SLL \left[dB \right] \\ \hline FNBW \left[\text{deg} \right] \\ \hline 3dB \text{ Beamwidth } \left[\text{deg} \right] \end{array} $	$ \begin{array}{r} 14.96 \\ 13.18 \\ 11.44 \\ 5.06 \\ \end{array} $	$ \begin{array}{r} 13.35 \\ 13.35 \\ 15.85 \\ 7.00 \\ \end{array} $	$ \begin{array}{r} 12.54 \\ 12.25 \\ 5.45 \end{array} $	$ \begin{array}{r} 14.54 \\ 15.04 \\ 6.43 \end{array} $

Table IX: Summary for step 2.

2.3 Source Inversion (SI)

Parameters

 $\bullet~$ Before SI

– Number of elements: $N' = \{16; 17; 18; 19; 20\}, \, d' < \lambda/2;$

- $\bullet~{\rm After}~{\rm SI}$
 - Number of elements after SI: $N = 15, d = \frac{\lambda}{2}$;
 - Aperture: L = 7.0;
- Radius of the observation domain: $r_{SI} = 50.0 \ [\lambda];$
- Number of field sampling points: $n_{SI} = 1000$.

Synthesized Excitations

Check SI: Free-Space Patterns

Figure 41: $\phi_s = 90$ [deg], f = 600 [MHz] - Free-space far field pattern comparison for different values of w'.

2.3.2 Near-Field Distribution ($\phi_s = 90$ [deg], f = 600 [MHz])

Figure 42: $\phi_s = 90$ [deg], f = 600 [MHz] - Electric field distributions.

Case $w' = 11.3 [\lambda], N' = 17$

Figure 43: $\phi_s = 90$ [deg], f = 600 [MHz] - Electric field distributions.

Case $w' = 12.1 [\lambda], N' = 18$

Figure 44: $\phi_s = 90$ [deg], f = 600 [MHz] - Electric field distributions.

Case $w' = 12.9 [\lambda], N' = 19$

Figure 45: $\phi_s = 90$ [deg], f = 600 [MHz] - Electric field distributions.

Case $w' = 13.6 [\lambda], N' = 20$

Figure 46: $\phi_s = 90$ [deg], f = 600 [MHz] - Electric field distributions.

Anisotropic Lens

Figure 47: $\phi_s = 90$ [deg], f = 600 [MHz] - Far field pattern comparison for different values of w'.

Isotropic Lens

Figure 48: $\phi_s = 90$ [deg], f = 600 [MHz] - Far field pattern comparison for different values of w'.

2.3.4 Final Summary ($\phi_s = 90$ [deg], f = 600 [MHz])

	$w' = 10.3 \left[\lambda\right]$			
	Virtual Array		hysical Array	
Environment	Free-Space	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)
Number of elements	16		15	
	0.5		0.5	
$D \left[dR \right]$	13.07	12 71	1.0	12.82
$\frac{D_{\max} [aD]}{SII [dB]}$	13.97	13.71	13.98	13.00
FNBW [dec]	14.32	15.00	14.05	15.04
3dB Beamwidth [deg]	6.36	6 76	6.20	6.57
Matching Error. \mathcal{E} (w.r.t. virtual, outside lens)	-	3.24×10^{-1}	4.30×10^{-1}	5.26×10^{-1}
······································	$w' = 11.3$ [λ			0.2020
	Virtual Array	Р	hysical Array	
Environment	Free-Space	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)
Number of elements	17		15	150 Lens (51)
$\frac{1}{2} \frac{1}{2} \frac{1}$	0.5		0.5	
$\frac{1}{\text{A perture } [\lambda]}$	8.0		7.0	
$D_{\max}[dB]$	14.25	13.71	14.20	13.97
SLL [dB]	13.16	13.08	12.95	14.50
FNBW [deg]	13.60	15.31	13.24	14.86
3dB Beamwidth [deg]	5.97	6.76	5.83	6.40
Matching Error, ξ (w.r.t. virtual, outside lens)	-	5.57×10^{-1}	5.69×10^{-1}	8.22×10^{-1}
	$w' = 12.1 \ [\lambda]$			L
	Virtual Array	Р	hysical Array	
Environment	Free-Space	Free-Space (No-SI)	Aniso-Lens (SI)	Iso-Lens (SI)
Number of elements	18		15	
Spacing $[\lambda]$	0.5		0.5	
Aperture $[\lambda]$	8.5		7.0	
$D_{\max}\left[dB\right]$	14.50	13.71	14.27	13.98
SLL [dB]	13.14	13.08	12.84	14.72
FNBW [deg]	12.79	15.31	12.79	14.86
3dB Beamwidth [deg]	5.64	6.76	5.64	6.37
	-	6.60×10^{-1}	5.38×10^{-1}	1.01
Matching Error, ξ (w.r.t. virtual, outside lens)				•
Matching Error, ξ (w.r.t. virtual, outside lens)	$w' = 12.9 \left[\lambda\right]$			
Matching Error, ξ (w.r.t. virtual, outside lens)	$w' = 12.9 [\lambda]$ Virtual Array	P	hysical Array	
Matching Error, ξ (w.r.t. virtual, outside lens) Environment	$w' = 12.9 [\lambda]$ Virtual Array Free-Space	PI Free-Space (No-SI)	hysical Array Aniso-Lens (SI)	Iso-Lens (SI)
$\begin{array}{c} \text{Matching Error, } \xi \text{ (w.r.t. virtual, outside lens)} \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$w' = 12.9 [\lambda$ Virtual Array Free-Space 19	PI Free-Space (No-SI)	hysical Array Aniso-Lens (SI) 15	Iso-Lens (SI)
$\begin{array}{c} \mbox{Matching Error, ξ (w.r.t. virtual, outside lens)} \\ \hline \\ $	$w' = 12.9 [\lambda$ Virtual Array Free-Space 19 0.5	PI Free-Space (No-SI)	hysical Array Aniso-Lens (SI) 15 0.5	Iso-Lens (SI)
$ \begin{array}{c} \underline{ \text{Matching Error}, \xi \left(\text{w.r.t. virtual, outside lens} \right) } \\ \underline{ \text{Environment}} \\ \underline{ \text{Number of elements}} \\ \underline{ \text{Spacing } [\lambda] } \\ \underline{ \text{Aperture } [\lambda] } \end{array} $	$w' = 12.9 [\lambda$ Virtual Array Free-Space 19 0.5 9.0	PI Free-Space (No-SI)	hysical Array Aniso-Lens (SI) 15 0.5 7.0	Iso-Lens (SI)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$w' = 12.9 \lambda $ Virtual Array Free-Space 19 0.5 9.0 14.73	PI Free-Space (No-SI) 13.71	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26	Iso-Lens (SI)
$\begin{array}{c} \label{eq:matching Error, ξ (w.r.t. virtual, outside lens)} \\ \hline \\ $	$w' = 12.9 \lambda$ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06	PI Free-Space (No-SI) 13.71 13.08	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78	Iso-Lens (SI)
$\begin{array}{c} \mbox{Matching Error, ξ (w.r.t. virtual, outside lens)} \\ \hline \\ \mbox{Environment} \\ \hline \\ \mbox{Number of elements} \\ \hline \\ \mbox{Spacing $[\lambda]$} \\ \hline \\ \mbox{Aperture $[\lambda]$} \\ \hline \\ \mbox{D}_{max} $[dB]$ \\ \hline \\ \mbox{SLL $[dB]$} \\ \hline \\ \mbox{FNBW $[deg]$} \end{array}$	$w' = 12.9 \lambda$ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07	PI Free-Space (No-SI) 13.71 13.08 15.31	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43	Iso-Lens (SI) 13.94 14.99 15.22
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{\max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg]	$w' = 12.9 \lambda$ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35	PI Free-Space (No-SI) 13.71 13.08 15.31 6.76	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52	Iso-Lens (SI) 13.94 14.99 15.22 6.45
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{\max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens)	$w' = 12.9 [\lambda]$ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35	$\begin{array}{c} & \text{PI} \\ \hline & \\ \hline \\ \hline$	$\begin{array}{c} \text{hysical Array} \\ \text{Aniso-Lens (SI)} \\ 15 \\ 0.5 \\ 7.0 \\ 14.26 \\ 12.78 \\ 12.43 \\ 5.52 \\ 6.10 \times 10^{-1} \end{array}$	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens)	$w' = 12.9 \lambda$ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - $w' = 13.6 \lambda$	$\begin{array}{c} & \text{Pl} \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ 13.71 \\ \hline & \\ 13.08 \\ \hline & \\ 15.31 \\ \hline & \\ 6.76 \\ \hline & \\ 6.46 \times 10^{-1} \end{array}$	$\begin{array}{c} \text{hysical Array}\\ \text{Aniso-Lens (SI)}\\ 15\\ 0.5\\ 7.0\\ 14.26\\ 12.78\\ 12.43\\ 5.52\\ 6.10\times10^{-1}\\ \end{array}$	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens)	$w' = 12.9 \lambda $ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - $w' = 13.6 \lambda $ Virtual Array	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens) Environment	$w' = 12.9 \lambda $ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - $w' = 13.6 \lambda $ Virtual Array Free-Space	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array Aniso-Lens (SI)	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27 Iso-Lens (SI)
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements	$w' = 12.9 \lambda $ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - $w' = 13.6 \lambda $ Virtual Array Free-Space 20	$\begin{tabular}{ c c c c c } \hline PI \\ \hline Free-Space (No-SI) \\ \hline \\ $	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array Aniso-Lens (SI) 15	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27 Iso-Lens (SI)
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} $[dB]$ SLL $[dB]$ $FNBW$ [deg] 3dB Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$	$w' = 12.9 \lambda $ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - $w' = 13.6 \lambda $ Virtual Array Free-Space 20 0.5	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array Aniso-Lens (SI) 15 0.5	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27 Iso-Lens (SI)
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{\max} $[dB]$ SLL $[dB]$ $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$	$w' = 12.9 \lambda$ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - $w' = 13.6 \lambda$ Virtual Array Free-Space 20 0.5 9.5	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array Aniso-Lens (SI) 15 0.5 7.0	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27 Iso-Lens (SI)
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{\max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{\max} [dB] $Case$ [dE]	$w' = 12.9 \lambda $ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - $w' = 13.6 \lambda $ Virtual Array Free-Space 20 0.5 9.5 14.96	$\begin{tabular}{ c c c c c } \hline PI \\ \hline Free-Space (No-SI) \\ \hline \\ $	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.17	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27 Iso-Lens (SI) 13.87 13.87
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{\max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{\max} [dB] SLL [dB]	$w' = 12.9 \lambda$ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - w' = 13.6 \lambda Virtual Array Free-Space 20 0.5 9.5 14.96 13.18 11.15	$\begin{tabular}{ c c c c c } \hline PI \\ \hline Free-Space (No-SI) \\ \hline \\ $	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.17 12.74	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27 Iso-Lens (SI) 13.87 15.20 15.20
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} [dB] SLL [dB] $FNBW$ [deg] B	$w' = 12.9 \lambda $ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - $w' = 13.6 \lambda $ Virtual Array Free-Space 20 0.5 9.5 14.96 13.18 11.44	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.17 12.74 12.74 12.43	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27 Iso-Lens (SI) 13.87 15.20 15.48
Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg] Matching Error, ξ (w.r.t. virtual, outside lens) Environment Number of elements Spacing $[\lambda]$ Aperture $[\lambda]$ D_{max} [dB] SLL [dB] $FNBW$ [deg] $3dB$ Beamwidth [deg]	$w' = 12.9 \lambda $ Virtual Array Free-Space 19 0.5 9.0 14.73 13.06 12.07 5.35 - w' = 13.6 \lambda Virtual Array Free-Space 20 0.5 9.5 14.96 13.18 11.44 5.06	$\begin{array}{c} & \mathbf{PI} \\ \hline \mathbf{Free-Space} (\text{No-SI}) \\ \hline \\ & 13.71 \\ \hline 13.08 \\ \hline 15.31 \\ \hline 6.76 \\ \hline 6.46 \times 10^{-1} \\ \hline \\ \hline \\ \mathbf{PI} \\ \hline \\ \hline \\ \mathbf{Free-Space} (\text{No-SI}) \\ \hline \\ \hline \\ \hline \\ 13.71 \\ \hline \\ 13.08 \\ \hline \\ 15.31 \\ \hline \\ 6.76 \\ \hline \\ \hline \\ \hline \end{array}$	hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.26 12.78 12.43 5.52 6.10×10^{-1} hysical Array Aniso-Lens (SI) 15 0.5 7.0 14.17 12.74 12.74 12.43 5.49	Iso-Lens (SI) 13.94 14.99 15.22 6.45 1.27 Iso-Lens (SI) 13.87 15.20 15.48 6.55 14.9

2.3.5 Final Summary: Performances vs. w' (vs. N')

Anisotropic Lens - $\phi_s = 90$ [deg]

This figure compares the pattern characteristics of

- 1. Original array (N = 15 elements, $d = \lambda/2$, Free-Space) GREY;
- 2. Target array (N' > N elements, $d = \lambda/2$, Free-Space) RED;
- 3. QCTO-SI array (N = 15 elements, $d = \lambda/2$, Anisotropic Lens + SI) CYAN;

Figure 49: Aniso-Lens, f = 600 [MHz] - Pattern performances vs w' (vs. N').

3 Half-Cosine Profile - Comparisons

Figure 50: Transformation regions. The lower side of both virtual and physical boundaries are supposed to be PEC.

Analyzed configurations

- 1. $h' = 4.0 [\lambda], l' = 1.0 [\lambda], t' = 10.0 [\lambda], N = 15;$
- 2. $h' = 4.0 [\lambda], l' = 1.0 [\lambda], \mathbf{t}' = 9.0 [\lambda], N = 15;$
- 3. $h' = 4.0 [\lambda], l' = 0.0 [\lambda], t' = 9.0 [\lambda], N = 15;$

3.1 Far-Field Patterns ($\phi_s = 90$ [deg], f = 600 [MHz]), After SI, Anisotropic Lens

Case $N = 15 \rightarrow N' = 20$

Figure 51: $\phi_s = 90$ [deg], f = 600 [MHz] - Far field pattern comparison after SI step.

Observations

- 1. $h' = 4.0 [\lambda], l' = 1.0 [\lambda], \mathbf{t}' = \mathbf{10.0} [\lambda] \rightarrow h' = 4.0 [\lambda], l' = 1.0 [\lambda], \mathbf{t}' = \mathbf{9.0} [\lambda]$
 - The reduction of t' leads to worse results, especially in terms of FNBW and HPBW;
 - An increase of the side lobes is obtained;

2. $h' = 4.0 \ [\lambda], \mathbf{l}' = \mathbf{1.0} \ [\lambda], t' = 9.0 \ [\lambda] \rightarrow h' = 4.0 \ [\lambda], \mathbf{l}' = \mathbf{0.0} \ [\lambda], t' = 9.0 \ [\lambda]$

- The reduction of l' leads to better results;
- h' = 4.0 [λ], l' = 0.0 [λ], t' = 9.0 [λ] seems to provide comparable results, in terms of FNBW and HPBW, w.r.t. the case h' = 4.0 [λ], l' = 1.0 [λ], t' = 0.0 [λ]; however, external side-lobes seem slightly higher.

References

- G. Oliveri, G. Gottardi, F. Robol, A. Polo, L. Poli, M. Salucci, M. Chuan, C. Massagrande, P. Vinetti, M. Mattivi, R. Lombardi, and A. Massa, "Co-design of unconventional array architectures and antenna elements for 5G base station," *IEEE Trans. Antennas Propag.*, vol. 65, no. 12, pp. 6752-6767, Dec. 2017.
- [2] P. Rocca, G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies - A review," *Proc. IEEE*, vol. 104, no. 3, pp. 544-560, Mar. 2016.
- [3] G. Oliveri, M. Salucci, N. Anselmi and A. Massa, "Multiscale System-by-Design synthesis of printed WAIMs for waveguide array enhancement," *IEEE J. Multiscale Multiphysics Computat. Techn.*, vol. 2, pp. 84-96, 2017.
- [4] A. Massa and G. Oliveri, "Metamaterial-by-Design: Theory, methods, and applications to communications and sensing - Editorial," EPJ Applied Metamaterials, vol. 3, no. E1, pp. 1-3, 2016.
- [5] L. Poli, G. Oliveri, P. Rocca, M. Salucci, and A. Massa, "Long-Distance WPT Unconventional Arrays Synthesis," J. Electromagnet. Wave., vol. 31, no. 14, pp. 1399-1420, Jul. 2017.
- [6] G. Oliveri, F. Viani, N. Anselmi, and A. Massa, "Synthesis of multi-layer WAIM coatings for planar phased arrays within the system-by-design framework," *IEEE Trans. Antennas Propag.*, vol. 63, no. 6, pp. 2482-2496, Jun. 2015.
- [7] G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, "An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses," *IEEE Antennas Wireless Propag. Lett.*, vol. 13, pp. 1783-1786, 2014.
- [8] G. Oliveri, D. H. Werner, and A. Massa, "Reconfigurable electromagnetics through metamaterials A review" Proc. IEEE, vol. 103, no. 7, pp. 1034-1056, Jul. 2015.
- [9] G. Oliveri, E. T. Bekele, M. Salucci, and A. Massa, "Transformation electromagnetics miniaturization of sectoral and conical horn antennas," *IEEE Trans. Antennas Propag.*, vol. 64, no. 4, pp. 1508-1513, Apr. 2016.
- [10] G. Oliveri, E. T. Bekele, M. Salucci, and A. Massa, "Array miniaturization through QCTO-SI metamaterial radomes," *IEEE Trans. Antennas Propag.*, vol. 63, no. 8, pp. 3465-3476, Aug. 2015.
- [11] G. Oliveri, E. T. Bekele, D. H. Werner, J. P. Turpin, and A. Massa, "Generalized QCTO for metamateriallens-coated conformal arrays," *IEEE Trans. Antennas Propag.*, vol. 62, no. 8, pp 4089-4095, Aug. 2014.
- [12] G. Oliveri, E. Bekele, M. Carlin, L. Tenuti, J. Turpin, D. H. Werner, and A. Massa, "Extended QCTO for innovative antenna system designs," IEEE Antenna Conference on Antenna Measurements and Applications (CAMA 2014), pp. 1-3, Nov. 16-19, 2014.
- [13] G. Oliveri, P. Rocca, M. Salucci, E. T. Bekele, D. H. Werner, and A. Massa, "Design and synthesis of innovative metamaterial-enhanced arrays," IEEE International Symposium on Antennas Propag. (APS/URSI 2013), Orlando, Florida, USA, pp. 972 - 973, Jul. 7-12, 2013.

- [14] G. Oliveri, "Improving the reliability of frequency domain simulators in the presence of homogeneous metamaterials - A preliminary numerical assessment," *Progress In Electromagnetics Research*, vol. 122, pp. 497-518, 2012.
- [15] M. Salucci, G. Oliveri, N. Anselmi, G. Gottardi, and A. Massa, "Performance enhancement of linear active electronically-scanned arrays by means of MbD-synthesized metalenses," J. Electromagnet. Wave., vol. 0, no. 0, pp. 1-29, 2017 (DOI: 10.1080/09205071.2017.1410077).