Efficient Tiling of Large Planar Sub-Arrayed Phased Arrays Through Schemata-Driven Evolutionary Optimization

N. Anselmi, P. Rocca, M. Salucci, and A. Massa

Abstract

In this work, the synthesis of large clustered arrays - computationally unaffordable through standard stochastic global optimization techniques - is addressed through an innovative schemata-driven approach. The proposed design methodology is based on the analytic definition of a set of reference tiling arrangements and a customized genetic algorithm (*GA*)-based strategy which is able to effectively and efficiently explore the solution space of the complete tiling configurations. Some representative numerical experiments are presented in order to verify the effectiveness of the developed synthesis technique for the tiling of large planar phased sub-arrays providing optimal side-lobe level (*SLL*) radiation performance.

1 Numerical Validation

1.1 BIG PROBLEM DIMENSION

1.1.1 Test Case #7: GA Strategy - 10x10 array - Schemata Approach

Array Analysis Parameters:

- Total Number of Elements: $M \times N = 10 \times 10 = 100$
- Spacing: $d = \lambda/2$
- Number of Samples along *u*: 512
- Number of Samples along v: 512
- Steering θ Direction: $\theta_s = 0$
- Steering ϕ Direction: $\phi_s = 0$

Tiling Parameters:

- Tile: Domino
- Number of Tiles Types: L = 2
 - Horizontal
 - Vertical
- Number of Single Tile Cell Covering: $D_i = 2, i = 1, ..., L$
- Total Number of Configurations: $C_{tot} = 2.5858 \times 10^{11}$
- Number of Inner Lattice Points: $N_{inn} = 81$

Genetic Algorithm Parameters:

- Number of Unknowns: U = 243
- Population Dimension: P = 176
- Maximum Number of Iterations: I = 1000
- Crossover Probability: $p_{cross} = 0.9$
- Mutation Probability: $p_{mut} = 0.01$
- Diversity Percentage: $p_{div} = 10\%$

 $\Psi\left(T\right)=SLL$

Schemata Analysis:

 S_2

 S_3

 S_6

 S_5

Figure 2. Schematas sorted fitness.

i	$Schemata S_i$	$\Psi\left(S_{i} ight)$
1	000000000000000000000000000000000000000	1.2102×10^{-2}
2	000000000000000000000000000000000000	1.2102×10^{-2}
3	000000000000000000000000000000000000	1.1725×10^{-2}
4	0000000001111111001111110011111110011111	1.1740×10^{-2}
5	111111111111111111111111111111111111111	1.2167×10^{-2}
6	11111111111111111111111111112221111112221111	1.1916×10^{-2}
7	1111111111111111112222211112222211112222	1.1916×10^{-2}
8	1111111112222222112222221122222211222222	1.1805×10^{-2}
9	111111111222222211222222112233322112233322112233322112223332211222222	1.2888×10^{-2}
10	111111111222222211233333211233333211233333211233333211233333211233333211222222	1.1980×10^{-2}

Table 1. Schemata words

GA Optimization RESULTS:

Figure 3. Fitness of the GA simulations for each random seed.

Figure 4. Fitness of the GA simulation: statistic simulation results.

Solution	$\mathbf{w} - GA$	Seed	$\Psi\left(T_{GA}\right)$
GA - 1	101000101111111110122222101122222111122222111122222111222222	$\{0.0\}$	1.10696×10^{-2}
GA-2	10100010111111111012222210112222211112222211112222211122111110111111	$\{0.5\}$	1.10877×10^{-2}
GA - 3	1010001011111111101222221011222221111223221111222221112211111011111111	$\{0.2, 0.6, 0.7, 0.8\}$	1.10877×10^{-2}
GA-4	10100010011111111012222210112222211112232211112222211122111110111111011001000001	$\{0.1\}$	1.11143×10^{-2}
GA - 5	001000101011111110111111100111111110111211110111111	$\{0.4\}$	1.11954×10^{-2}
GA - 6	10100000011111101101111111011111111101111	$\{0.3\}$	1.12539×10^{-2}
GA-7	0010001111111111111111111111112221111112221111	$\{0.9\}$	1.14961×10^{-2}

Table 2. GA solutions

Seed	t_{tot}	K
0.0	1.50×10^4	42
0.1	1.55×10^4	78
0.2	1.49×10^4	655
0.3	1.47×10^4	494
0.4	1.43×10^4	437
0.5	1.52×10^4	33
0.6	1.45×10^4	468
0.7	1.42×10^4	229
0.8	1.45×10^4	29
0.9	1.49×10^4	6

Table 5. Timings and number of iterations for convergence (K).

	SLL [dB]	D [dBi]	$HPBW_{az}$ [deg]	$HPBW_{el}$ [deg]	$\Psi\left(T\right)$
Reference	-20.0	24.44	11.19	11.19	1.00×10^{-2}
Horizontal	-18.4826	24.4540	11.1547	11.1861	1.41821×10^{-2}
Vertical	-18.4826	24.4540	11.1861	11.1547	1.41821×10^{-2}
GA-1	-19.5587	24.4659	11.1978	11.1794	1.10696×10^{-2}
GA-2	-19.5517	24.4641	11.1972	11.1762	1.10877×10^{-2}
GA - 3	-19.5517	24.4641	11.1972	11.1762	1.10877×10^{-2}
GA-4	-19.5412	24.4672	11.1772	11.1797	1.11143×10^{-2}
GA-5	-19.5096	24.4690	11.1573	11.1833	1.11954×10^{-2}
GA-6	-19.4870	24.4687	11.1574	11.1925	1.12539×10^{-2}
GA-7	-19.3945	24.4606	11.1686	11.1582	1.14961×10^{-2}

Table 2. Pattern descriptors and fitness values for the presented solutions.

Array Analysis Parameters:

- Total Number of Elements: $M \times N = 16 \times 16 = 256$
- Spacing: $d = \lambda/2$
- Number of Samples along *u*: 512
- Number of Samples along v: 512
- Steering θ Direction: $\theta_s = 0$
- Steering ϕ Direction: $\phi_s = 0$

Tiling Parameters:

- Tile: Domino
- Number of Tiles Types: L = 2
 - Horizontal
 - Vertical
- Number of Single Tile Cell Covering: $D_i=2, i=1,...,L$
- Total Number of Configurations: $C_{tot} = 2.4449 \times 10^{30}$
- Number of Inner Lattice Points: $N_{inn} = 225$

Genetic Algorithm Parameters:

- Number of Unknowns: U = 675
- Population Dimension: P = 464
- Maximum Number of Iterations: I = 1000
- Crossover Probability: $p_{cross} = 0.9$
- Mutation Probability: $p_{mut} = 0.01$
- Diversity Percentage: $p_{div} = 10\%$

Cost Function:

 $\Psi\left(T\right) = SLL$

Schemata Analysis:

-1 0 x

 S_5

2

0 x

 S_7

-2

0 x

 S_6

-1

-2

 S_{15}

 S_8

1 2 3

-1 0 x

i	$\Psi\left(S_{i}\right)$	i	$\Psi\left(S_{i}\right)$	i	$\Psi\left(S_{i} ight)$
1	1.0992×10^{-2}	11	1.0918×10^{-2}	21	1.0887×10^{-2}
2	1.0970×10^{-2}	12	1.0898×10^{-2}	22	1.1093×10^{-2}
3	1.0945×10^{-2}	13	1.0884×10^{-2}	23	1.0871×10^{-2}
4	1.0940×10^{-2}	14	1.0841×10^{-2}	24	1.0840×10^{-2}
5	1.0961×10^{-2}	15	1.0863×10^{-2}	25	1.0918×10^{-2}
6	1.0994×10^{-2}	16	1.0888×10^{-2}	26	1.0923×10^{-2}
7	1.1018×10^{-2}	17	1.0893×10^{-2}	27	1.0945×10^{-2}
8	1.0866×10^{-2}	18	1.0872×10^{-2}	28	1.0970×10^{-2}
9	1.0889×10^{-2}	19	1.0840×10^{-2}	29	1.0992×10^{-2}
10	1.0913×10^{-2}	20	1.0862×10^{-2}	_	_

Table 1. Fitness of the schematas

GA Optimization RESULTS:

Figure 3. Fitness of the GA simulations for each random seed.

Figure 4. Fitness of the GA simulation: statistic simulation results.

Seed	$\Psi\left(T_{GA}\right)$
$\{0.5\}$	$1.06191 imes 10^{-2}$
$\{0.2\}$	1.06196×10^{-2}
$\{0.0, 0.7\}$	1.06234×10^{-2}
$\{0.8\}$	1.06251×10^{-2}
$\{0.1\}$	1.06262×10^{-2}
$\{0.6\}$	1.06270×10^{-2}
$\{0.3\}$	1.06292×10^{-2}
$\{0.4, 0.9\}$	1.06301×10^{-2}
	Seed $\{0.5\}$ $\{0.2\}$ $\{0.0, 0.7\}$ $\{0.8\}$ $\{0.1\}$ $\{0.6\}$ $\{0.3\}$ $\{0.4, 0.9\}$

SeedK t_{tot} [s] 0.0 3.56×10^4 130 $3.51 imes 10^4$ 2510.10.2 3.59×10^4 270.3 3.52×10^4 250.4 3.55×10^4 410.5 3.52×10^4 450 3.55×10^4 0.61580.7 3.58×10^4 4960.8 3.51×10^4 5960.9 3.56×10^4 46

Table 3. Timings and number of iterations for convergence (K).

	SLL [dB]	D [dBi]	$HPBW_{az}$ [deg]	$HPBW_{el}$ [deg]	$\Psi\left(T\right)$
Reference	-20.0	29.30	6.03	6.03	1.00×10^{-2}
Horizontal	-18.5654	28.5534	6.8224	6.7823	1.39×10^{-2}
Vertical	-18.5654	28.5534	6.7823	6.8224	1.39×10^{-2}
GA - 1	-19.7391	28.4608	6.7680	6.7748	1.06191×10^{-2}
GA-2	-19.7389	28.4645	6.7696	6.7760	1.06196×10^{-2}
GA - 3	-19.7374	28.4655	6.7695	6.7758	1.06234×10^{-2}
GA-4	-19.7367	28.4635	6.7690	6.7757	1.06251×10^{-2}
GA-5	-19.7362	28.4621	6.7687	6.7750	1.06262×10^{-2}
$\overline{GA-6}$	-19.7359	28.4616	6.7700	6.7765	1.06270×10^{-2}
GA-7	-19.7350	28.4605	6.7694	6.7776	1.06292×10^{-2}
GA-8	-19.7346	28.4597	6.7706	6.7769	1.06301×10^{-2}

 Table 1. Pattern descriptors and fitness values for the presented solutions.

Steered Beam

Table 1. Comparison between the steered pattern ($\theta = 30^{\circ} - \phi = 90^{\circ}$) for (a) the "trivial" vertical tiling, (b) the optimized GA tiling.

References

- L. Manica, P. Rocca, and A. Massa, "Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach," *IEEE Trans. Antennas Propag.*, vol. 57, pp. 1684-1691, Jun. 2009.
- [2] P. Rocca, R. J. Mailloux, and G. Toso, "GA-based optimization of irregular subarray layouts for wideband phased array design," *IEEE Antennas Wireless Propag. Lett.*, vol. 14, pp. 131-134, 2015.
- [3] A. Massa, G. Oliveri, M. Salucci, C. Nardin, and P. Rocca, "Dealing with EM functional optimization through new generation evolutionary-based methods," IEEE Int. Conf. Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO 2014), Pavia, Italy, pp. 1-4, May 14-16, 2014.
- [4] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," *Inverse Probl.*, vol. 25, pp. 1-41, Dec. 2009.
- [5] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," *IEEE Antennas Propag. Mag.*, vol. 53, no. 1, pp. 38-49, Feb. 2011.
- [6] G. Oliveri, M. Donelli, and A. Massa, "Genetically-designed arbitrary length almost difference sets," *Electron. Lett.*, vol. 5, no. 23, pp. 1182-1183, Nov. 2009.
- [7] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Irregular phased array tiling by means of analytic schemata-driven optimization," *IEEE Trans. Antennas Propag.*, vol. 65, no. 9, pp. 4495-4510, Sep. 2017.
- [8] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Optimization of excitation tolerances for robust beamforming in linear arrays," *IET Microw. Antennas Propag.*, vol. 10, no. 2, pp. 208-214, 2016.
- [9] L. Poli, P. Rocca, M. Salucci, and A. Massa, "Reconfigurable thinning for the adaptive control of linear arrays," *IEEE Trans. Antennas Propag.*, vol. 61, no. 10, pp. 5068-5077, Oct. 2013.
- [10] P. Rocca, G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies - A review," *Proc. IEEE*, vol. 104, no. 3, pp. 544-560, Mar. 2016.
- [11] L. Poli, G. Oliveri, P. Rocca, M. Salucci, and A. Massa, "Long-distance WPT unconventional arrays synthesis," *Journal of Electromagnetic Waves and Applications*, vol. 31, no. 14, pp. 1399-1420, Jul. 2017.
- [12] G. Oliveri, M. Salucci, and A. Massa, "Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver," *IEEE Trans. Antennas Propag.*, vol. 64, no. 10, pp. 4277-4287, Oct. 2016.
- [13] T. Moriyama, E. Giarola, M. Salucci, and G. Oliveri, "On the radiation properties of ADS-thinned dipole arrays," *IEICE Electronics Express*, vol. 11, no. 16, pp. 1-10, Aug. 2014.
- [14] T. Moriyama, L. Poli, and P. Rocca, "Adaptive nulling in thinned planar arrays through genetic algorithms," *IEICE Electronics Express*, vol. 11, no. 21, pp. 1-9, Sep. 2014.