Design of Planar Sub-Arrayed Phased Arrays Through Irregular Domino-Shaped Tiles

N. Anselmi, P. Rocca, M. Salucci, and A. Massa

Abstract

In this work, the design of planar sub-arrayed phased arrays through irregular domino-shaped tiles is presented. An innovative enumerative approach is exploited to synthesize the optimal clustering in order to obtain the maximum aperture coverage and radiation performance. Moreover, a design procedure based on optimal tiling theorems drawn from mathematical theory and exploiting a customized genetic algorithm (*GA*) optimizer to effectively minimize a suitably defined cost function is proposed. Some preliminary numerical results are presented in order to assess the potentialities of the proposed synthesis methods for small-sized arrays.

1 Numerical Validation

1.1 Preliminary Test Cases

1.1.1 Test Case #1: GA Strategy - 6x6 array

Array Analysis Parameters:

- Total Number of Elements: $M \times N = 6 \times 6 = 36$
- Spacing: $d = \lambda/2$
- Number of Samples along u: 512
- Number of Samples along v: 512
- Steering θ Direction: $\theta_s = 0$
- Steering ϕ Direction: $\phi_s = 0$

Tiling Parameters:

- Tile: Domino
- Number of Tiles Types: L = 2
 - Horizontal
 - Vertical
- Number of Single Tile Cell Covering: $D_i = 2, i = 1, ..., L$
- Total Number of Configurations: $C_{tot} = 6728$

Genetic Algorithm Parameters:

- Population Dimension: P = 100
- Maximum Number of Iterations: I = 1000
- Crossover Probability: $p_{cross} = 0.9$
- Mutation Probability: $p_{mut} = 0.01$
- Diversity Percentage: $p_{div} = 10\%$

Cost Function:

• Target SLL: $SLL_{dB}^{TARGET} = -20dB$

$$\Psi\left(T\right) = \frac{\left\{SLL\left[P_T\left(\theta,\phi\right)\right]_{dB} - SLL_{dB}^{TARGET}\right\}^2}{\left(SLL_{dB}^{TARGET}\right)^2}$$

Power Pattern

 $Tiling {\it Configuration}$

0

 $\mathbf{2}$

	SLL [dB]	D [dBi]	$HPBW_{az}$ [deg]	$HPBW_{el}$ [deg]	\overline{G}	$\Psi\left(T\right)$
Reference	-20.0	19.87	19.46	19.46	_	0.0
Horizontal	-14.50	19.84	19.46	18.63	0.0	7.6×10^{-2}
Vertical	-14.50	19.84	18.63	19.45	0.0	7.6×10^{-2}
GA	-18.51	19.87	19.14	19.10	0.7681	$5.5 imes 10^{-3}$

 Table 1. Pattern descriptors and fitness values for the presented solutions.

Figure 1. Fitness.

Comparison with Exhaustive Strategy:

	SLL [dB]	D [dBi]	$HPBW_{az}$ [deg]	$HPBW_{el}$ [deg]	\overline{G}	$\Psi\left(T\right)$
Reference	-20.0	19.87	19.46	19.46	_	0.0
Best	-18.60	19.89	19.25	19.08	0.9256	$4.9 imes 10^{-3}$
GA	-18.51	19.87	19.14	19.10	0.7681	$5.5 imes 10^{-3}$

Table 2. Pattern descriptors and fitness values for the presented solutions.

Figure 2. Ordered fitness values of the Exhaustive Strategy compared with the GA solution.

OUTCOME:

• The solution provided by the GA is very near to, but is not, the global optimum.

Array Analysis Parameters:

- Total Number of Elements: $N = 6 \times 6 = 36$
- Spacing: $d = \lambda/2$
- Number of Samples along u: 512
- Number of Samples along v: 512
- Steering θ Direction: $\theta_s = 0$
- Steering ϕ Direction: $\phi_s = 0$

Tiling Parameters:

- Tile: Domino
- Number of Tiles Types: L = 2
 - Horizontal
 - Vertical
- Number of Single Tile Cell Covering: $D_i = 2, i = 1, ..., L$
- Total Number of Configurations: $C_{tot} = 6728$

Genetic Algorithm Parameters:

- Population Dimension: P = 50
- Maximum Number of Iterations: I = 10
- Crossover Probability: $p_{cross} = 0.9$
- Mutation Probability: $p_{mut} = 0.01$
- Diversified Percentage: $p_{div} = 10\%$

Cost Function:

• Target SLL: $SLL_{dB}^{TARGET} = -20dB$

$$\Psi\left(T\right) = \frac{\left\{SLL\left[P_T\left(\theta,\phi\right)\right]_{dB} - SLL_{dB}^{TARGET}\right\}^2}{\left(SLL_{dB}^{TARGET}\right)^2}$$

7

	SLL [dB]	D [dBi]	$HPBW_{az}$ [deg]	$HPBW_{el}$ [deg]	\overline{G}	$\Psi\left(T\right)$
Reference	-20.0	19.87	19.46	19.46	_	0.0
Horizontal	-14.50	19.84	19.46	18.63	0.0	$7.6 imes 10^{-2}$
Vertical	-14.50	19.84	18.63	19.45	0.0	7.6×10^{-2}
GA	-18.597	19.89	19.08	19.25	0.9256	$4.9 imes 10^{-3}$

 Table 1. Pattern descriptors and fitness values for the presented solutions.

Figure 1. Fitness.

Conf.	w
Best	000001101111111111111111111
GA	1000011000111101111110000
	Table 3. Words

Comparison with Exhaustive Strategy:

Reference

 $Best - T_{1435}$

 T_{GA}

	SLL [dB]	D [dBi]	$HPBW_{az}$ [deg]	$HPBW_{el}$ [deg]	$\Psi\left(T\right)$]
Reference	-20.0	19.87	19.46	19.46	0.0	
$Best - T_{770}$	-18.597	19.89	19.25	19.08	$4.9 imes 10^{-3}$	
$Best - T_{1435}$	-18.597	19.89	19.08	19.25	4.9×10^{-3}	
GA	-18.597	19.89	19.08	19.25	$4.9 imes 10^{-3}$	

 Table 2. Pattern descriptors and fitness values for the presented solutions.

Figure 2. Ordered fitness values of the Exhaustive Strategy compared with the GA solution.

Conf	W
$Best - T_{770}$	000001101111111111111111111
$Conf - T_{1077}$	000001111111111111111111111111
$Conf - T_{1108}$	0000011111112111111111111
$Conf - T_{1370}$	0000101111011110111100001
$Conf - T_{1417}$	0000101111012110111100001
$Conf - T_{1435}$	0000101111012210111100001
$Conf - T_{3691}$	1000011110111101111010000
$Conf - T_{3709}$	1000011110112101111010000
$Conf - T_{3727}$	1000011110122101111010000
$Conf - T_{6445}$	111111111111111111101100000
$Conf - T_{6449}$	11111111111111111111100000
$Conf - T_{6480}$	111111111111111111111100000
GA	0000101111012210111100001

Table 3. The global optimal solutions and GA solution words.

OUTCOME:

• The solution provided by the GA belongs to the set of optimal solutions.

References

- L. Manica, P. Rocca, and A. Massa, "Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach," *IEEE Trans. Antennas Propag.*, vol. 57, pp. 1684-1691, Jun. 2009.
- [2] P. Rocca, R. J. Mailloux, and G. Toso, "GA-based optimization of irregular subarray layouts for wideband phased array design," *IEEE Antennas Wireless Propag. Lett.*, vol. 14, pp. 131-134, 2015.
- [3] A. Massa, G. Oliveri, M. Salucci, C. Nardin, and P. Rocca, "Dealing with EM functional optimization through new generation evolutionary-based methods," IEEE Int. Conf. Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO 2014), Pavia, Italy, pp. 1-4, May 14-16, 2014.
- [4] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," *Inverse Probl.*, vol. 25, pp. 1-41, Dec. 2009.
- [5] P. Rocca, G. Oliveri, and A. Massa, "Differential Evolution as applied to electromagnetics," *IEEE Antennas Propag. Mag.*, vol. 53, no. 1, pp. 38-49, Feb. 2011.
- [6] G. Oliveri, M. Donelli, and A. Massa, "Genetically-designed arbitrary length almost difference sets," *Electron. Lett.*, vol. 5, no. 23, pp. 1182-1183, Nov. 2009.
- [7] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Irregular phased array tiling by means of analytic schemata-driven optimization," *IEEE Trans. Antennas Propag.*, vol. 65, no. 9, pp. 4495-4510, Sep. 2017.
- [8] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, "Optimization of excitation tolerances for robust beamforming in linear arrays," *IET Microw. Antennas Propag.*, vol. 10, no. 2, pp. 208-214, 2016.
- [9] L. Poli, P. Rocca, M. Salucci, and A. Massa, "Reconfigurable thinning for the adaptive control of linear arrays," *IEEE Trans. Antennas Propag.*, vol. 61, no. 10, pp. 5068-5077, Oct. 2013.
- [10] P. Rocca, G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies - A review," *Proc. IEEE*, vol. 104, no. 3, pp. 544-560, Mar. 2016.
- [11] L. Poli, G. Oliveri, P. Rocca, M. Salucci, and A. Massa, "Long-distance WPT unconventional arrays synthesis," *Journal of Electromagnetic Waves and Applications*, vol. 31, no. 14, pp. 1399-1420, Jul. 2017.
- [12] G. Oliveri, M. Salucci, and A. Massa, "Synthesis of modular contiguously clustered linear arrays through a sparseness-regularized solver," *IEEE Trans. Antennas Propag.*, vol. 64, no. 10, pp. 4277-4287, Oct. 2016.
- [13] T. Moriyama, E. Giarola, M. Salucci, and G. Oliveri, "On the radiation properties of ADS-thinned dipole arrays," *IEICE Electronics Express*, vol. 11, no. 16, pp. 1-10, Aug. 2014.
- [14] T. Moriyama, L. Poli, and P. Rocca, "Adaptive nulling in thinned planar arrays through genetic algorithms," *IEICE Electronics Express*, vol. 11, no. 21, pp. 1-9, Sep. 2014.