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Abstract

In this work, an innovative particle swarm optimization (PSO)-based microwave
imaging approach is presented to solve the subsurface inverse scattering
problem. The proposed MF-IMSA-PSO method integrates a customized PSO
solver within a multi-scaling technique (i.e., the IMSA) in order to limit the ratio
between problem unknowns and non-redundant data, mitigating the negative
effects of both non-linearity and ill-posedness through the exploitation of
progressively acquired information about the solution. Moreover, the inversion is
performed by considering a multi-frequency (MF) solution strategy, by jointly
processing several frequency components extracted from the spectrum of the
measured data through ground penetrating radar (GPR). Some numerical results
are shown in order to verify the effectiveness of the developed GPR microwave
imaging technique when dealing with objects having a conductivity different
from that of the hosting (lossy) soil.



1.1

Definitions

Glossary
SF: Single-Frequencys;
FH: Frequency-Hopping;
M F': Multi-Frequency;
P: Swarm dimension;
U: Total number of unknowns;
S: Maximum number of IMSA zooming steps;
sbest: Last performed IMSA zooming step (s**t < 9);
Nen: IMSA zooming threshold;
Dy Investigation domain;
D,ps: Observation domain;
L: Side of the investigation domain;
N: Number of discretization cells in D;,q4;
V: Number of views;
M: Number of measurement points;
F: Number of frequencies considered for the inversion;
r®) = (z(), y(): Coordinates of the v-th source (v=1,...,V).
Iy = (xsfi),yfﬁ)): Coordinates of the m-th measurement point for the v-th view v, (m=1,..., M);
Era = Z—g: Relative electric permittivity for the upper half-space (y > 0);
04: Conductivity for the upper half-space (y > 0);
Erb = z—g: Background relative electric permittivity;
op: Background conductivity;

E(U)

inc

(rn; f): Measured internal incident field inside the n-th cell, for the v-th view at frequency f;

EW (rp; f): Computed internal incident field inside the n-th cell, for the v-th view at frequency f;

mc

E(U)

Iy, . (r%}); ): Measured external scattered by the m-th measurement point, for the v-th view at fre-

quency f;

Eig}ltt (r%); ): Measured external scattered by the m-th measurement point, for the v-th view at fre-

quency f.



1.2 Contrast function

The contrast function at frequency f is defined as
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where

e r = (x,y): position vector;

o R{7(r; f)} =[er (r) — &) ;

o S {r ()} =[],

o oq (v) = coer (v) — 558 ;

® ECeqb = E0ETL — jgzr_bf;
e ¢, (r): relative electric permittivity at position r;

e o (r): conductivity at position r;

NOTE: we assume that ¢, (r) and o (r) are not frequency dependent (non-dispersive mediums).

1.2.1 Contrast function and reference frequency f..; (MF approaches)

The contrast function at a generic frequency f can be expressed by means of the contrast function computed

for a selected reference frequency

f:fref (1)

as follows

,fref

T(r;f):%{T(r;fref)}+]T${T(r;fref)}- (2)

This allows to reduce the number of unknowns when dealing with multi-frequency techniques, since we can just

consider the contrast function at the reference frequency.



1.3 Cost function & unknowns

1.3.1 Multi-Frequency (M F) approaches

These approaches jointly consider data at F' frequencies. The functional minimized by the inversion algorithm

is defined as

¢ (X) = Dypate (X) + Puata (X)

where Pgqi (x) and Pgar, (X) are respectively the data and state terms of the cost function, defined as
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The unknowns of the inversion problem are

X = { (r; fref); E tot (rn,f])} n=1.,N;o=1,..,V;j=1,.., F.

The total number of unknowns for M F-based approaches is then given by

UMFZQN(lJrVF).

1.4 Reconstruction errors

The following integral error is defined

NTEQ
act rec
— 1 n —Tn |

Sreg = Nyeg |T,‘;Ct + 1|

n=1
where reg indicates if the error computation covers

e the overall investigation domain (reg = tot),

e the actual scatterer support (reg = int),

e or the background region (reg = ext).



2 Numerical Results: Variation of the Object Conductivity

2.1 Z-Shaped object (&, = 5.5)

2.1.1 Parameters

Background

Inhomogeneous and nonmagnetic background composed by two half spaces
e Upper half space (y > 0 - air): €., = 1.0, 6, = 0.0;

e Lower half space (y < 0 - soil): &, = 4.0, 0, = 1073[S/m];
Investigation domain (D;,,)

e Side: Lp,,, = 0.8 [m];

inv

e Barycenter: (z%’:“,y%r"v) = (0.00,—0.4) [m];
Time-Domain forward solver (FDTD - GPRMax2D)

e Side of the simulated domain: L =6 [m];

e Number of cells: NFPTP = 750 x 750 = 5.625 x 10°;
e Side of the FDTD cells [FPTP = 0.008 [m];

e Simulation time window: TFPTP = 20 x 10~ [sec];

e Time step: AtF'PTP =1.89 x 107! [sec];

e Number of time samples: N/ PTP = 1060;

e Boundary conditions: perfectly matched layer (PML);

e Source type: Gaussian mono-cycle (first Gaussian pulse derivative, called “Ricker” in GPRM ax2D)

— Central frequency: fy = 300 [MHz];

— Source amplitude: A = 1.0 [A];
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Figure 1: GPRMax2D excitation signal. (a) Time pulse, (b) normalized frequency spectrum.

Frequency parameters

e Frequency range: f € [fmin, fmaz] = [200.0,600.0] [MHz] (—3 [dB] bandwidth of the Gaussian Monocycle

excitation centered at fo = 300 [MHz]);

e Frequency step: Af =100 [MHz] (F =5 frequency steps in [fmin, fmaz]);

| f [MHz] | Ao [m] | Ap [m] | f* [MHz| |

200.0 1.50 0.75 200.5
300.0 1.00 0.50 297.6
400.0 0.75 0.37 401.1
500.0 0.60 0.30 498.1
600.0 0.50 0.25 601.6

Table 1: Considered frequencies and corresponding wavelength in the upper medium (), free space) and in the
lower medium (A, soil). f* is the nearest frequency sample available from transformed time-domain data, and
represents the real frequency considered by the inversion algorithm.

Scatterer

e Type: Z-Shaped;

e Side: 0.28 [m];

e Electromagnetic properties: &y op; = 5.5, 0op; = {10745 x 107410735 x 1073, 1072} [S/m];

| erobj | ooby [S/m] | R{7} [ S{7} |

5.5 10~ 1.5 0.040
5.5 5x 1071 1.5 0.022
5.5 10~3 1.5 0.000
5.5 5x 1073 1.5 | —0.180
5.5 10~2 1.5 | —0.404

Table 2: Real and imaginary parts of the contrast function vs.

imaginary part is computed as {7} = [M} at the central frequency (feent = 400 [MHz]).

27Tf80

different values of object conductivity. The
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Figure 2: Actual object.

Measurement setup

Considered frequency: fpin, = 200 [MHz], Ay = 0.75 [m]. !
o #DolFs =2ka = i—’;L\/i = 27.0.8y/2 ~9.5;

0.75

e Number of views (sources): V = 10;

— min {z, } = —0.5 [m], max{z,} = 0.5 [m];

— height: y, = 0.1 [m], Vo =1,...,V;
e Number of measurement points: M = 9;

— min{x,, } = —0.5 [m], max {z,,} = 0.5 [m];

— height: y,,, = 0.1 [m], Vm =1,..., M;

INOTE: This choice is done in order to keep the number of unknowns lower than 5000.
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Figure 3: Location of the measurement points (M = 9) and of the sources (V = 10). Only one source is active
for each view.

Inverse solver parameters

e Shared parameters

— Number of unknowns: U = 2N (14 VF) = 4998;
— Weight of the state term of the functional: 1.0;
— Weight of the data term of the functional: 1.0;
— Weight of the penalty term of the functional: 0.0;
— Convergence threshold: 10710;
— Variable ranges:
* g, € [4.0,5.8];
« R{EG} € [-8,8], S{E} € [-8,8);
— Degrees of freedom:

x Considered frequency: fi:n = 200 [MHz|, A\, = 0.75 [m];
LV2

2
@ha)® _ (BXEE) N2, o 080\2 - .
* 2 == b ) = 47T )\_b = 47T (m) >~ 4487,

— Number of cells: N =49 =7 x 7,
— Maximum number of IMSA steps: S = 4;

— Side ratio threshold: 7, = 0.2;
e MF—IMSA — PSO parameters

— Maximum number of iterations: I = 20000;
— Swarm dimension: P = W‘r’o x U = 250;

- Cl :CQ :2.0;

— Inertial weight: w = 0.4;



— Velocity clamping: enabled;
e MF — IMSA — CG parameters

— Maximum number of iterations: I = 200;

Signal to noise ratio (on Fi. (1))

e SNR = {50,40,30,20} [dB] + Noiseless data.



2.1.2 o,; = 107 [S/m] (S{r} = 0.040) - MF — IMSA — PSO vs. MF — IMSA — CG: Final

reconstructions
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Figure 4: MF —IMSA—PSO vs. MF —IMSA — CG: Retrieved dielectric profiles at the IM S A convergence
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2.1.3 o,; = 5x 1074 [S/m] (S{r} = 0.022) - MF — IMSA — PSO vs. MF — IMSA — CG: Final

reconstructions
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Figure 5: MF —IMSA—PSO vs. MF —IMSA — CG: Retrieved dielectric profiles at the IM S A convergence
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2.1.4 ou; = 1072 [S/m] (S{7} = 0.0) - MF — IMSA— PSO vs. MF —IMSA — CG: Final recon-

structions
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Figure 6: MF —IMSA— PSO vs.
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MF —IMSA— CG: Retrieved dielectric profiles at the /M S A convergence
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2.1.5 o,; =5 x 1073 [S/m] (S{r} = —0.180) - MF — IMSA — PSO vs. MF — IMSA — CG: Final

reconstructions
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Figure 7: MF —IMSA—PSO vs. MF —IMSA — CG: Retrieved dielectric profiles at the IM S A convergence
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2.1.6 oo = 1072 [S/m] (S{r} = —0.404) - MF — IMSA — PSO vs. MF — IMSA — CG: Final

reconstructions
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Figure 8: MF —IMSA—PSOvs. MF —IMSA— CG: Retrieved dielectric profiles at the IM S A convergence



21.7 MF—-IMSA—-PSO vs. MF —IMSA - CG:

Errors vs. o
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2.1.8 MF —-IMSA— PSO vs.

Reconstruction Error [Arbitrary Unit]
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Figure 10: MF — IMSA — PSO vs. MF — IMSA — CG: Reconstruction errors vs. SNR.
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3 Conclusions

The reported results indicate that

e The proposed M F—IMSA—PSO imaging technique yields accurate reconstructions also when considering

a variation of the conductivity of the buried scatterer;

e On average a significant improvement of the retrieved profiles is obtained with respect to the M F —

IMSA — CG approach, which is based on a deterministic conjugate gradient (CG) solver [5].
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