NDT-NDE Crack Characterization Through a Learning-by-Examples Approach

M. Salucci, N. Anselmi, G. Oliveri, and A. Massa

Abstract

This document deals with the characterization of a single narrow crack in a planar conductive structure starting from eddy current testing (*ECT*) measurements. More precisely, the inversion problem at hand is formulated within the so-called learning-by-examples (*LBE*) paradigm, by considering the problem of estimating the dimensions of the defect as a regression one. Accordingly, a set of known input-output pairs is generated during an *off-line* phase and is given as input to a Support Vector Regressor (*SVR*) prediction model in order to train it on the relationship between defect and corresponding *ECT* data. Some numerical results are shown in order to verify the effectiveness, as well as the limits, of the proposed *LBE* technique when dealing with the presence of noise on testing data during the *on-line* inversion phase.

1 Crack Dimensions Estimation Inside a Plate Structure

1.1 Description

Let be given an homogeneous plate of thickness T and conductivity σ affected by a narrow crack and inspected by a single coil working in absolute mode at frequency f with lift-off δ (Fig. 1). The dimensions of the crack are completely described by the vector \mathbf{p} of I = 3 parameters

$$\mathbf{p} = \{d_0, l_0, w_0\} \tag{1}$$

which correspond to its depth, length and width, respectively. Moreover, we assume that the location of the crack (identified by the triplet of coordinates (x_0, y_0, z_0)) is fixed and known (Fig. 1).

Figure 1: Geometry of the problem.

A metamodel is used as forward solver to compute in a fast but accurate way the measured ECT signal associated to a particular dimension of the defect. More in details, for a given vector **p** of crack descriptors, the metamodel computes the complex ECT signal over a set of K measurement points uniformly distributed on the (x, y) plane

$$\Psi = \Phi \{ \mathbf{p} \} = \{ \Psi_k; \, k = 1, ..., K \}$$
(2)

where

• $\Psi_k = \Re \{\Psi_k\} + j\Im \{\Psi_k\}$ is the complex-valued *ECT* signal collected by the *k*-th measurement point (i.e., the impedance variation on the coil);

• Φ {.} is the forward operator, linking the defect barycentre (**p**) to the collected *ECT* signal (**\Psi**).

The goal of the inverse problem is to retrieve an estimation of the (unknown) dimensions of the flaw $\tilde{\mathbf{p}} = \left\{ \tilde{d}_0, \tilde{l}_0, \tilde{w}_0 \right\}$ (i.e., the output space) by exploiting the information embedded inside Ψ (i.e., the input space). Such a problem can be formulated as follows

$$\widetilde{\mathbf{p}} = \Phi^{-1} \left\{ \mathbf{\Psi} \right\}$$

(3)

where Φ^{-1} {.} denotes the (unknown) inverse operator, that has to be estimated.

1.2 Parameters of the forward solver (fixed)

• Forward solver

- total number of measurement points along x (i.e., across the crack): $H_x = 41$;
- measurement step along x: $\Delta_x = 0.5 \text{ [mm]};$
- total extension of the measurement region along x: $L_x = 20.0 \text{ [mm]};$
- total number of measurement points along y (i.e., along the crack): $H_y=57;$
- measurement step along y: $\Delta_y = 0.5 \text{ [mm]};$
- total extension of the measurement region along y: $L_y = 28.0$ [mm];
- total number of measurement point computed by the forward solver: $H = H_x \times H_y = 2337$;

Plate				
Thickness T	1 55 [mm]			
1 mckness 1	1.55 [mm]			
Conductivity σ	$1.02 \left[MS/m \right]$			
Coil				
Inner radius r_1	$1.0 \; [\mathrm{mm}]$			
Outer radius r_2	$1.75 \; [mm]$			
Length l_c	$2.0 \ [mm]$			
Number of turns n_t	328			
Lift-off δ	$0.303 \; [\mathrm{mm}]$			
Frequency f	100.0 [KHz]			
Crack				
x-Coordinate x_0	$15.0 \; [mm]$			
y-Coordinate y_0	$15.0 \ [mm]$			
z-Coordinate z_0	$1.24 \ [mm]$			

Table 1: Fixed parameters.

Parameter	Min [mm]	Max [mm]
Crack Depth d_0	0.31	1.24
Crack Length l_0	5.0	20.0
Crack Width w_0	0.05	0.4

Table 2: Validity ranges of the forward meta-model.

1.3 Standard *LBE* **Approach** (*GRID* – *SVR*): **Performances**

1.3.1 Parameters

• Measurement set-up for the inversion

- considered measurement step: $\Delta_x = \Delta_y = 0.5$ [mm];
- number of considered measurement points $K = K_x \times K_y = 5 \times 31 = 155;$
- measured quantity for each k-th point: $\{\Re(\Psi_k), \Im(\Psi_k)\};\$
- total number of measured features: $F = 2 \times K = 310$;

Figure 2: Location of the measurement points selected for the inversion (K = 155).

• Standard LBE Approach

- Training set generation
 - * sampling: uniform grid sampling in (d_0, l_0, w_0) ;
 - * number of quantization levels: $Q_{x_0} = Q_{y_0} = Q_{z_0} = \{5; 6; ...; 10\};$
 - * number of training samples: $N = Q_{x_0} \times Q_{y_0} \times Q_{z_0} = \{125; 216; ...; 1000\};$
 - * SNR on training data: Noiseless;
- Test set generation
 - * Sampling: Latin Hypercube Sampling (LHS);
 - * Number of test samples: M = 1000;
 - * SNR on test data: Noiseless + $SNR = \{40; 30; 20; 10\} [dB].$

1.3.2 Calibration of the SVR parameters via cross-validation

The best (C, γ) pair of parameters is selected for training the three SVR regressors.

Parameters

- number of subsets: V = 5;
- variation range for parameter $C: C \in \{10^0; 10^1; ...; 10^6\};$
- variation range for parameter γ : $\gamma \in \left\{10^{-5}; 10^{-5}; ...; 10^{0}\right\};$
- dimension of the training set: N = 1000;

Results

Parameter	Best C ($C*$)	Best γ ($\gamma *$)	CV MSE (η)
Crack Depth d_0	10^{3}	10^{-3}	2.12×10^{-3}
Crack Length l_0	10^{4}	10^{-2}	$4.53 imes 10^{-3}$
Crack Width w_0	10^{6}	10^{-4}	2.34×10^{-3}

Table 3: Optimal (C, γ) pairs and CV MSE found by applying a 5-fold cross-validation for the estimation of the crack dimensions.

Figure 3: Standard Approach - True vs. predicted crack dimensions for different dimensions of the training set (N). SNR = 20 [dB] on test ECT data.

1.3.4 Prediction Errors

Figure 4: Standard Approach - Normalized Mean Error (NME) vs. training size (N)

Figure 5: Standard Approach - Normalized Mean Error (NME) vs. SNR on the test ECT measurements.

 $\mathbf{6}$

More information on the topics of this document can be found in the following list of references.

References

- [1] M. Salucci, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," *IEEE Trans. Geosci. Remote Sens.*, vol. 54, no. 11, pp. 6818-6832, Nov. 2016 (DOI: 10.1109/TGRS.2016.2591439).
- [2] M. Salucci, G. Oliveri, F. Viani, R. Miorelli, C. Reboud, P. Calmon, and A. Massa, "A learning-by-examples approach for non-destructive localization and characterization of defects through eddy current testing measurements," in 2015 IEEE International Symposium on Antennas and Propagation, Vancouver, 2015, pp. 900-901 (DOI: 10.1109/APS.2015.7304837).
- [3] M. Salucci, S. Ahmed and A. Massa, "An adaptive Learning-by-Examples strategy for efficient Eddy Current Testing of conductive structures," in 2016 European Conference on Antennas and Propagation, Davos, 2016, pp. 1-4 (DOI: 10.1109/EuCAP.2016.7481447).
- [4] P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," *Inverse Probl.*, vol. 25, pp. 1-41, Dec. 2009 (DOI: :10.1088/0266-5611/25/12/123003).
- [5] A. Massa, P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics A review," *IEEE Antennas Propag. Mag.*, pp. 224-238, vol. 57, no. 1, Feb. 2015 (DOI: 10.1109/MAP.2015.2397092).
- [6] N. Anselmi, G. Oliveri, M. Salucci, and A. Massa, "Wavelet-based compressive imaging of sparse targets," *IEEE Trans. Antennas Propag.*, vol. 63, no. 11, pp. 4889-4900, Nov. 2015 (DOI: 10.1109/TAP.2015.2444423).
- [7] M. Salucci, G. Oliveri, and A. Massa, "GPR prospecting through an inverse-scattering frequency-hopping multifocusing approach," *IEEE Trans. Geosci. Remote Sens.*, vol. 53, no. 12, pp. 6573-6592, Dec. 2015 (DOI: 10.1109/TGRS.2015.2444391).
- [8] T. Moriyama, G. Oliveri, M. Salucci, and T. Takenaka, "A multi-scaling forward-backward time-stepping method for microwave imaging," *IEICE Electron. Express*, vol. 11, no. 16, pp. 1-12, Aug. 2014 (DOI: 10.1587/elex.11.20140578).
- [9] T. Moriyama, M. Salucci, M. Tanaka, and T. Takenaka, "Image reconstruction from total electric field data with no information on the incident field," *J. Electromagnet. Wave.*, vol. 30, no. 9, pp. 1162-1170, 2016 (DOI: 10.1080/09205071.2016.1182876).
- [10] M. Salucci, L. Poli, and A. Massa, "Advanced multi-frequency GPR data processing for non-linear deterministic imaging," *Signal Processing - Special Issue on "Advanced Ground-Penetrating Radar Signal-Processing Techniques*," vol. 132, pp. 306-318, Mar. 2017 (DOI: 10.1016/j.sigpro.2016.06.019).